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_________________________________________________ 
Abstract: The entropy generation during transient laminar natural convection in a square 
enclosure is numerically investigated. Two different cases are considered. The enclosure  is 
heated either completely or partially from the left side wall and cooled from the opposite 
side wall. The bottom and the top of the enclosure are assumed as insulated. The Boussinesq 
approximation is used in the natural convection modelling. The solutions are obtained from 
quiescent conditions proceeded through the transient up to the steady-state. The calculations 
are made for the Prandtl numbers 0.01 and 1.0 and Rayleigh numbers between 102 – 108. 
The entropy generation and the active places triggering the entropy generation are obtained 
for each case after the flow and thermal characteristics are determined. It is found that the 
active sites in the completely heated case are at the left bottom corner of the heated wall and 
the right top corner of the cooled wall at the same magnitudes. In the case of partial heating, 
however, the active site is observed at the top corner of the heated section especially at 
lower Pr and Ra values.   
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Nomenclature 
g gravitational acceleration, m/s2 
H enclosure height, m 
k thermal conductivity, W/mK             
L enclosure width, m 
lh heated part, m 
Ns dimensionless entropy generation number 
P dimensionless pressure  
p pressure, N/m2 

Pr Prandtl number  
genS ′′′ entropy generation, W/m3 -K 

Q overall heat transfer rate, W 
q heat flux, W/m2  
Ra Rayleigh number  
T temperature, K 
t time, s 
Tavg average temperature  (  =(Th+Tc)/2 ), K  
∆T temperature difference, K 
U dimensionless horizontal velocity 

component 
u horizontal velocity component, m/s 
V dimensionless vertical velocity component 
v vertical velocity component, m/s 

X, Y dimensionless coordinates 
x, y  coordinates, m 
 
Greek Letters  
α thermal diffusivity, m2/s 
β coefficient of thermal expansion, 1/K 
ρ density, kg/m3 

θ dimensionless temperature 
ν  kinematic viscosity, m2/s 
ζ  dimensionless vorticity 

ψ stream function, m2/s 
Ψ dimensionless stream function 
τ dimensionless time 
Φ viscous dissipation function, s-2 

ω vorticity, s-1 

µ dynamic viscosity, N-s/m2 

φ irreversibility distribution function 
 
Subscripts  
c cold surface 
h hot surface 

 
Introduction 

The phenomenon of natural convection in enclosures has attracted increasing attention in recent years.  
Applications extending from the double paned windows in buildings to the cooling of electronic 
systems are examples of natural convection systems. The comprehensive reviews of articles on natural 
convection were made by Catton [1], Yang [2], Ostrach [3], Kakaç and Yener [4], and Bejan [5]. In 
addition to the studies [6-10], Lage and Bejan [11] was investigated numerically the natural convection 
in a square enclosure heated and cooled in the horizontal direction in the Prandtl number range 0.01–
10 and the Rayleigh number range 102 –1011. 

The flow and heat transfer in a square cavity with variable size heater and cooler on the vertical 
walls were analyzed numerically by Yücel and Türkoğlu [12]. The convective flow induced by 
buoyancy forces in a square enclosure due to partially heated and cooled side walls having constant 
size varying locations of the heater and cooler was performed by Türkoğlu and Yücel [13]. 



Entropy 2003, 5, 496-505 
 

 

498

Bejan [14-16] has introduced the method of the minimization entropy generation to classical 
engineering topics such as heat transfer augmentation, heat exchanger design, and thermal insulation 
systems to evaluate the performance of the systems thermodynamics. In the literature, various studies 
on the entropy generation rates and the irreversibilities for the basic convective heat transfer 
arrangements can be found [17-20]. However, the entropy generation during the natural convection in 
an enclosed cavities has not received much attention since the natural convection systems do not 
include very high rates of heat and work transfer in which the irreversibilities can be neglected easily 
in comparison with the forced convection systems.  Since the natural convection systems have gained 
increasing importance recently, there is a requirement for the second law analysis under different 
thermal conditions.  

In the present study, the entropy generation within a square enclosure is investigated numerically.  
The enclosure filled with a motionless fluid is partially or completely heated and cooled from the 
vertical lateral walls while the other walls are insulated.  The effects of the heating completely or 
partially on the entropy generation are investigated by considering the Prandtl  numbers of 1.0 and 
0.01  and the Rayleigh numbers from 102 to 108. The governing equations for two-dimensional 
cartesian coordinates coupled with the Boussinesq approximation are solved numerically.  Active sites 
for the entropy generation through the enclosure are determined after the flow characteristics are 
obtained. 

 
Mathematical Formulation 

The physical system considered in the present study is shown schematically in Fig.1.  The physical 
system is composed of a closed square cavity with a completely (Fig.1a) or partially (Fig.1b) heated 
left side wall, completely cooled an opposite wall, insulated top and bottom walls. The enclosure is 
filled with a motionless fluid at a uniform temperature at the beginning. All walls are impermeable no-
slip boundaries.  
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                                  (a)                                  (b) 
Figure 1. Schematic of the enclosure considered in the present study  
                a) completely and b) partially heated cases. 
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Assuming that the Boussinesq approximation, the dimensionless governing equations in stream-
function-vorticity transport form for the two-dimensional transient incompressible buoyancy driven 
flow of a Newtonian fluid are written as follows 
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where the following dimensionless variables are used 
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where Ra and Pr numbers are defined as 
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and the dimensionless stream-function and vorticity definitions are given 
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In case of the completely heated side wall, the dimensionless initial condition and boundary 
conditions are 

0==Ψ== θVU         at  0=τ    
0=Ψ==VU              at  the walls                                     

5.0=θ      at  X=0 and 0<Y<1 
5.0−=θ                 at  X=L/H and 0<Y<1  

0=
∂
∂
Y
θ                        at Y=0 and Y=1        (8) 

In the second case, the dimensionless initial condition and boundary conditions are 
0==Ψ== θVU         at  0=τ    

0=Ψ==VU              at  the walls                                     
5.0=θ      at  X=0 and 0<Y≤ 0.5 
0=

∂
∂
Y
θ      at  X=0 and 0.5<Y<1 



Entropy 2003, 5, 496-505 
 

 

500

5.0−=θ                 at  X=L and 0<Y<1    
0=

∂
∂
Y
θ                       at Y=0 and Y=1        (9) 

The entropy generation per unit volume at an arbitrary point in the medium is given by [14-16] 
Φ+∇⋅−=′′′

T
T

T
Sgen

µq
2

1           (10) 

where T is the local absolute temperature, q is the heat flux vector, and Φ is the viscous dissipation 
function. The volumetric entropy generation rate for a two-dimensional flow in cartesian coordinates 
becomes 
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By using the same dimensionless parameters given in Eq.(4), Eq.(11) takes the following 
dimensionless form:  
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where Ns the entropy generation number, is the dimensionless volumetric entropy generation rate and 
written explicitly as 

2
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where Tavg is the average temperature ((Th+Tc )/2), ∆T is the temperature difference (Th-Tc). 
The coefficient of the second term on the right-hand side of the Eq.(12), φ, is defined as 

irreversibility distribution function and represents the relative importance of fluid friction and heat 
transfer on the entropy generation.  In the present study, φ is obtained as 
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Eq.(12) is used to derive irreversibility profiles (or contours) for the present physical problem after 
the velocity and temperature fields are determined. The dimensionless governing equations given by 
equations (1)-(3) and equations (12)-(14) show that θ, ζ and Ψ are dependent variables; X, Y and τ are 
independent variables, and the equations depend on the Pr and Ra numbers.  In this study, the effect of 
completely or partially heated wall on the rate of entropy generation are investigated by considering 
the boundary conditions given in the Eqns.(8) and (9), respectively.  

 
Numerical Solution   

The present problem is solved numerically using finite volume method (FVM) coupled with power-
law scheme for the convective terms. The resulting system of linear equations are solved by Gauss-
Seidel iteration method.  The solutions are started from quiescent conditions proceeded through the 
transient up to the steady-state case.  A computer program was written and compared with the 
isotherms and stream function solutions obtained by those of reported by Lage and Bejan [11] under 
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the case of an enclosure with differentially heated side walls. The present and the benchmark results 
are summarized in Table 1 for the steady–state values of the Nusselt number at more relevant grids for 
each case. 

 
Table 1. The Summary of the present and benchmark results for steady-state  

                   Nusselt values 

Pr Ra 
Benchmark values by 
Lage and Bejan [11] 

Grid 

 
Present values 
at steady-state 

 
102 1.00 40 x 40 1.004 
103 1.05 40 x 40 1.080 
104 1.50 40 x 40 1.593 

0.01 

105 2.77 70 x 70 2.778 
105 4.9 90 x 90 4.674 
106 9.2 100 x 100 9.194 
107 17.9 100 x 100 17.897 

1.0 

108 31.8 200 x 200 31.784 
 

 
Results And Discussion 

The entropy generation represented by Ns has been calculated for  certain combinations of Prandtl 
and Rayleigh numbers as Pr = 1.0 for Ra = 105, 106, 107 and 108 and Pr =  0.01 for Ra = 102, 103, 104 

and 105 . 
Fig.2 demonstrates the irreversibilities due to heat transfer at the different time steps for the 

combination of Prandtl number 1.0 and Rayleigh number 105 for completely and partially heated walls 
in Fig.2a,b respectively. In the completely heated case (Fig.2a) the entropy generation is concentrated 
along the heated and cooled walls where the temperature gradient is maximum. The active sites 
originate at the left bottom corner and at the right top corner. The active sites are at the top corner of 
the heated section and cooled wall in the case of partial heating (Fig.2b). 

Fig.3 shows the transient entropy generation due to fluid friction at the same Pr and Ra numbers. 
For both cases, the contours of the entropy generation due to fluid friction are observed at the center of 
the vertical walls. 

Fig.4 summarizes the effect of Rayleigh number on the entropy generation due to heat transfer at 
the steady-state. The isotherms in the enclosure develope rapidly with increasing Rayleigh number. 
The active sites originate at the left bottom corner and at the right top corner for completely heated  
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Figure 2. Transient change in entropy   
generation due to heat transfer 
from τ=5 up to steady-state for  
a) completely and b) partially  
heated cases (Pr=1.0, Ra= 105 ,  
φ=10-10 and 90x90 grid). 

 (b) (a) (b) 

Figure 3. Transient change in entropy  
generation due to fluid friction  
from τ=5 up to steady-state for  
a) completely and b) partially  
heated cases (Pr=1.0,  Ra= 105,  
φ=10-10 and 90x90 grid). 
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Figure 4. The effect of Rayleigh number given  
on the entropy generation due to heat  
transfer at steady-state for a) completely  
and b) partially heated cases (Ra= 102,  
φ=10-13 40x40 grid,Ra= 103 ,φ=10-12 , 
40x40 grid, Ra= 104, φ=10-11 , 40x40  
grid, Ra= 105, φ=10-10 , 70x70 grid). 

Figure 5. The effect of Rayleigh number given  
on the entropy generation due to fluid  
friction at steady-state for a)completely  
and b) partially heated cases (Ra= 102,  
φ=10-13 ,40x40 grid, Ra= 103 ,φ=10-12 , 
40x40 grid, Ra= 104 ,φ=10-11, 40x40  
grid, Ra= 105 , φ=10-10 ,70x70 grid). 
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case (Fig.4a) while the active sites are on the heated part and on the cooled wall as seen in (Fig.4b). 
When Rayleigh number increases, the temperature gradient concentrates along the vertical wall; 
therefore, entropy generation due to heat transfer concentrates along the vertical walls. 

The entropy generation due to fluid friction for various Rayleigh values is given in Fig.5. The 
structure of the contours keep the similar distribution of both cases (Fig.5a,b).  Since all of the walls 
are no-slip boundaries, the contours of the entropy generation number are observed at the center of all 
walls.  

The magnitude of entropy generation  due to fluid friction irreversibilities is negligible with respect 
to the entropy generation due to the heat conduction.  Therefore the  total value of the entropy 
generation number  is the same with that of the heat conduction. 

 
Conclusion  

The study investigates the entropy generation during transient laminar natural convection in a 
square enclosure with a completely or partially heated left side wall, completely cooled an opposite 
wall, insulated top and bottom walls.  At the beginning, the enclosure is occupied by motionless fluid. 
The initial temperature is uniform and equal to the enclosure average. All surfaces are rigid no-slip 
boundaries. The entropy generation numbers and active sites have been determined. The active sites, 
i.e., the spots at which the entropy generation initiates due to irreversibilities representing the energy 
loss regions. In the case of completely heated wall, the active site for the entropy generation due to 
heat transfer is observed at the lower left corner of the heated wall and the upper right corner of the 
cooled wall at the same magnitude. However, in the case of partial heating, the most effective site is 
found at the upper corner of the heated part of the side wall. 

The irreversibilities are dominant due to heat transfer whereas fluid friction irreversibilities have 
been found negligible as it is expected for the natural convection. Therefore, total value of the entropy 
generation number has the same distribution and value with the entropy generation due to heat 
transfer. 
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