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We consider 	ow of an incompressible Newtonian 	uid produced by two parallel plates, moving towards and away from each other
with constant velocity. Inverse solutions of the equations of motion are obtained by assuming certain forms of the stream function.
Analytical expressions for the stream function, 	uid velocity components, and 	uid pressure are derived.

1. Introduction

Owing to the nonlinear nature of the Navier-Stokes equa-
tions, their exact solutions are far and few in number.
Importance of the exact solutions lies in the fact that they
serve as standards for validating the corresponding solutions
obtained by numerical methods and other approximate tech-
niques. �e inverse or the indirect method, see for example,
Neményi [1], is o
en used to compute these exact solutions.

Finding exact solution using the inverse method consists
of making an assumption on the general form of the stream
function �, involving certain unknown functions, without
considering the shape of boundaries of the solution domain
occupied by the 	uid. We then substitute this assumed
form of � in the compatibility equation for the stream
function to �nd the unknown functions involved in �. �is
provides the stream function �, and subsequently, the 	uid
velocity components. Once the 	uid velocity components
are available, then the second step is to compute the 	uid
pressure �eld using the component form of the Navier-Stokes
equations. �is kind of methods with applications in various
�elds of continuum mechanics are given in an article by
Neményi [1]. Moreover, a number of reviews on the exact

solutions for Navier-Stokes equations have been published,
for example, Berker [2], Dryden et al. [3], Whitham [4],
Schlichting [5], Wang [6], and Wang [7].

In this paper, we apply the technique described above to
analyze the 	ow of a viscous incompressible 	uid induced by
the motion of two parallel plates. �ese plates are moving
towards each other and in the opposite direction with a
constant velocity�, when size of the plates ismuch larger than
distance between them. A large class of the processes such as
the motion of liquid through a hydraulic pump and that of
the underground water may mathematically be considered
from this point of view, see Aristov and Gitman [8] and
Siddiqui et al. [9, 10]. We apply the inverse method to solve
this problem for Berker type 	ow, Riabouchinsky type 	ow
and the potential 	owwith perturbation.�e results obtained
are compared with the known viscous solutions by setting the
relative velocity � of the disks equal to zero.
2. Basic Equations

If u denotes the 	uid velocity, f the total of body forces,
T the stress tensor, � the constant 	uid density, and�/�� = (�/��) + u ⋅ ∇ the material derivative, then the basic
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set of equations governing the 	ow of an incompressible 	uid
are ∇ ⋅ u = 0,

��u�� = �f + ∇ ⋅ T.
(1)

�e constitutive equation, relating the stress tensor to the rate
of strain tensor, for an incompressible Newtonian 	uid is,
T = −
I+�∇u. �us, in the absence of body forces, the basic
set of equations governing the 	ow of an incompressible 	uid
becomes ∇ ⋅ u = 0,

�u�� + (u ⋅ ∇) u = −1�∇
 + ]∇2u, (2)

where 
 denotes the 	uid pressure, � the coe�cient of
viscosity, and ] = �/� the kinematic viscosity.

3. Problem Formulation

Consider the motion of an incompressible Newtonian 	uid
produced by themotion of twoparallel platesmoving towards
each other or in the opposite direction with constant velocity�. �e size of the disks is much larger than the distance
between them. We assume that the horizontal velocity com-
ponents � and V are independent of vertical coordinate ,
whereas the vertical velocity component � depends linearly
on the distance between the disks, see Aristov andGitman [8]
and Siddiqui et al. [9, 10].

u = [� (�, �, �) , V (�, �, �) , −2�] . (3)

Using (3) into (2), we obtain

���� + �V�� = 2�, (4)

���� + ����� + V

���� + �

∗

�� = ]∇2�, (5)

�V�� + � �V�� + V

�V�� + �

∗

�� = ]∇2V, (6)

where 
∗ = 
(�, �, �)/� − 2�22. �e equation for the
vertical component � is identically satis�ed. Equations (4)–
(6) are three partial di�erential equations in three unknowns,
namely, �, V, and 
∗. Once the velocity components � and V

are determined, the pressure �eld can be found through (5)
and (6). Eliminating 
∗ between (5) and (6), we obtain

���� + 2�� + ����� + V

���� = ]∇2�, � = �V�� − ���� , (7)

where � denotes magnitude of the vorticity vector.
We now introduce the stream function � de�ning the

horizontal components of the 	uid velocity through the
relations [8, 9]:

� = �� + ���� , V = �� − ���� . (8)

�en, the continuity equation (4) is identically satis�ed
and momentum equations (5) and (6) yield the following
compatibility equation:

� (∇2�)�� − � (�, ∇2�)� (�, �)
= −�[2∇2� + �� (∇2�)�� + �� (∇2�)�� ] + ]∇4�,

(9)

where

� (�, ∇2�)� (�, �) = ���� � (∇
2�)�� − ���� � (∇

2�)�� . (10)

�e stream function � is determined by solving the com-
patibility equation (9), and the velocity components � and
V can be determined through (8). One solution of the
compatibility equation (9) is the trivial solution � = 0
that corresponds to the potential motion, known as the
motion near stagnation point. Other stationary solutions are
examined in the following section.

4. Solutions of the Problem

Berker Type Flows. In this type of 	ow we look for the stream
function � in the following general form

� (�, �) = � (�) + � (�) , (11)

where �(�) and �(�) are arbitrary functions of � and �,
respectively. �is type of 	ow was also studied in the context
of second grade 	uid by Siddiqui et al. [9, 10] using certain
forms of �(�) and �(�). Here, we consider more general
cases. Using (11) in the compatibility equation (9), we obtain

���� (�) �� (�) − �� (�) ���� (�)
= −� [2��� (�) + 2��� (�) + ����� (�) + ����� (�)]
+ ] [�(4) (�) + �(4) (�)] .

(12)

For � = 0 (12) reduces to Berker’s case. Now following Berker
[2], we plan to study the following particular cases.

If ���(�) = 0, ���(�) ̸= 0. �en, in this case the vorticity� = −∇2� is a function of � only and (12) reduces to

�(4) (�) − (�� −  1
]

)���� (�) − (2�
]

)��� (�) = 0, (13)

where ��(�) =  1,  1 being an arbitrary constant. Now,
integrate (13) twice to get

��� (�) − (�� −  1
]

)�� (�) =  � + ", (14)

where  , " are arbitrary constants. For  = " = 0, the
solution of (14) is given by

� (�) = #1 ∞∑
�=1
( ��−1(� −  1/�)2�−1(2& − 1) (& − 1)!(2])�−1) , (15)
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where #1 = exp[-1 −  21/(2]�)] and -1 denotes an arbitrary
constant. �erefore, the stream function � is given by

� (�, �) =  1� + "1
+ #1 ∞∑
�=1
( ��−1(� −  1/�)2�−1(2& − 1) (& − 1)!(2])�−1) ,

(16)

where "1 is an arbitrary constant. Although the solution
(16) for the stream function � is a power series, we were
able to identify the series solution for �. �us, the velocity
components are

� = �� + #1 exp(�(� −  1/�)22] ) ,
V = �� −  1,
� = −2�.

(17)

Consequently, the analytical expression for the 	uid pressure
distribution in this case is the following:


 = 314� − �2�2
× [�2 + (� −  1� )

2 + 61] − 2��22, 61 = 281�2� ,
(18)

where 31 and 81 are arbitrary constants.
Similarly, if ���(�) ̸= 0, ���(�) = 0, then the stream

function � in the form of a power series is given by

� (�, �) = #2 ∞∑
�=1
( ��−1(� +  2�)2�−1(2& − 1) (& − 1)!(2])�−1)

+  2� + "2,
(19)

where #2 = exp[-2 −  22/(2]�)],  2 = ��(�). Here,  2, "2,
and-2 are arbitrary constants. Again, wewere able to identify
the power series for V, and components of the 	uid velocity
are

� = �� +  2,
V = �� − #2 exp(�(� +  2/�)22] ) ,

� = −2�.
(20)

Correspondingly, the analytical expression for the 	uid pres-
sure distribution in this case is


 = 324� − �2�2
× [(� +  2� )

2 + �2 + 62] − 2��22, 62 = 282�2� ,
(21)

where 32 and 82 are arbitrary constants.

If ������ ̸= 0. �en, we have to solve (12) to �nd the
functions �(�) and �(�), which is both nonlinear and
nonseparable. However, by di�erentiating �rst w.r.to � and
then w.r.to � this equation becomes

�(4) (�) ��� (�) − ��� (�) �(4) (�) = 0, (22)

which is in the separable form. �erefore, separating vari-
ables, (22) yields the following two linear ordinary di�erential
equations with constant coe�cients:

�(4) (�) − 9��� (�) = 0, �(4) (�) − 9��� (�) = 0, (23)

where 9 is an arbitrary constant.

(a) If 9 < 0, let 9 = −:2, : being constant, then the
solutions of (23) are given by

� (�) = 81 + 82� + 83 cos:� + 84 sin:�,
� (�) = ;1 + ;2� + ;3 cos:� + ;4 sin:�, (24)

where 81, 82, 83, 84, ;1, ;2, ;3, and ;4 are arbitrary constants.
�erefore, the stream function � is

� = 8 + 82� + 83 cos:� + 84 sin:�
+ ;2� + ;3 cos:� + ;4 sin:�, (25)

where 8 = 81 + ;1, so that the 	uid velocity components are

� = �� + ;2 − : (;3 sin:� − ;4 cos:�) ,
V = �� − 82 + : (83 sin:� − 84 cos:�) ,

� = −2�.
(26)

(b) If 9 = 0, then solution to (23) is given by

� (�) = 81�3 + 82�2 + 83� + 84,
� (�) = ;1�3 + ;2�2 + ;3� + ;4, (27)

where 81, 82, 83, 84, ;1, ;2, ;3, and ;4 are arbitrary constants.
�us, the stream function � is

� (�, �) = 81�3 + ;1�3 + 82�2 + ;2�2
+ 83� + ;3� + ;, ; = 84 + ;4. (28)

Correspondingly, the 	uid velocity components �, V, and �
along �, �, and  axes are given by

� = �� + 3;1�2 + 2;2� + ;3,
V = �� − 381�2 − 282� − 83,

� = −2�.
(29)
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(c) If 9 > 0, let 9 = :2, : being constant then solution to
(23) is given by

� (�) = 81 + 82� + 83@−�� + 84@��,
� (�) = ;1 + ;2� + ;3@−�� + ;4@��, (30)

where 81, 82, 83, 84, ;1, ;2, ;3, and ;4 are arbitrary constants.
�erefore, the stream function � is given by

� = ; + 82� + 83@−�� + 84@��
+ ;2� + ;3@−�� + ;4@��. (31)

Consequently, the velocity components of the 	uid are the
following:

� = �� + ;2 − : (;3@−�� − ;4@��) ,
V = �� − 82 + : (83@−�� − 84@��) ,

� = −2�.
(32)

�e pressure distribution in all the three cases (a), (b), and (c)
is given by


 =  + "4� − �� ("� + A) ��
− �2�2 (�2 + �2) + � ("� + A) � (�)
− 9� [��� − � (�)] � (�)
+ [94 − ��] ��� (�) − 2��22.

(33)

We remark that all the solutions given in (26), (29), and
(32) are free from viscosity coe�cient 4 and are known
as universal solutions. However, pressure �eld in each case
involves the viscosity coe�cient 4. Further note that the
solutions are essentially the same as that of the Berker [2] in
2-dimensional case.

4.1. Riabouchinsky Type Flow. Here, we assume that the
stream function � is linear in � and has the following general
form:

� (�, �) = �� (�) + � (�) , (34)

where �(�) and�(�) are arbitrary functions of �. Using (34),
Aristov and Gitman [8] obtained an analytical solution of the
compatibility equation by taking �(�) as a linear function of�. Siddiqui et al. [9, 10] studied the same in the context of
second grade 	uid. Here, we consider some more particular
cases of �(�).

On substituting from (34) the compatibility equation (9)
yields the following two di�erential equations:

�;3�;�3 − ;�;� ;
2�;�2 = �[3;

2�;�2 + �;
3�;�3 ] − ]

;4�;�4 , (35)

�;3�;�3 − ;�;� ;
2�;�2 = �[2;

2�;�2 + �;
3�;�3 ] − ]

;4�;�4 , (36)

and (35) admits the following particular solutions:

� (�) = 3� + 6, (37)

� (�) = 6](� + 31)−1 − �31, (38)

� (�) = 32@−	� + �(� − 49) + 9], (39)

where 3, 31, 32, 6, and 9 are arbitrary constants. If �(�) =0, then, (37)–(39) completely determine the solution for
the stream function � and hence for the 	uid velocity
components � and V. �us, we assume �(�) ̸= 0 and try to
solve (36) in combination with (37)–(39).

(a) On substituting value of the function �(�) from (37)
in (36), we obtain

]

;4�;�4 + [(3 − �) � + 6] ;
3�;�3 − 2�;

2�;�2 = 0. (40)

Now, setting D = ;2�/;�2 and choosing the constant3 = �, (40) reduces to the following equation with constant
coe�cients:

]

;2D;�2 + 6;D;� − 2�D = 0, (41)

E⇒ D(�) = 81@
1� + 82@
2�, (42)

whereG1 = (−6 +√62 + 8�])/2],G2 = (−6 −√62 + 8�])/2]
and 81, 82 are arbitrary constants. �us,

� (�) = 81G21 ⋅ @
1� + 82G22 ⋅ @
2� +  � + ", (43)

where  , " are arbitrary constants. �erefore, the stream
function and the corresponding 	uid velocity components
are

� (�, �) = � (�� + 6) + 81G21 ⋅ @
1� + 82G22 ⋅ @
2� +  � + ",
� = 2�� + 81G1 @
1� + 82G2 @
2� +  ,

V = −6, � = −2�.
(44)

(b) Integrating (36) once, letting D = ;�/;� in the
resulting equation and substituting the value of �(�) from
(38), we obtain

]

;2D;�2 + [6](� + 31)−1 − � (� + 31)] ;D;�
+ [6](� + 31)−2 − �]D = 0,

(45)

which is a second order di�erential equation with variable
coe�cients. To solve, we assume

D(�) = ∞∑
�=0
8�(� + 31)�+�, (46)
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where J is a constant to be determined. We obtain the
following solution of (45)

D (�) = A1(� + 31)−3 [1 − �(� + 31)2
]

]
+ A2(� + 31)−2 [1 − �(� + 31)23!] − D1 (�)] ,

D1 (�) = ∞∑
�=1
([1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2& − 1)] ⋅ [�(� + 31)2]�+1(2& + 3)!]�+1 ) .

(47)

�erefore, the function �(�) �nally becomes

� (�) = −A1 [�
]

ln (� + 31) + 12(� + 31)−2]
− A2(� + 31)−1 [1 + �� (� + 31)3!] + �1] ,

�1 (�) = ∞∑
�=1
[[
1 ⋅ 3 ⋅ 5 ⋅ ⋅ ⋅ (2& − 1)(2& + 1) (2& + 3)! (�(� + 31)

2

]

)�+1]] .
(48)

Hence, the stream function � and the 	uid velocity compo-
nents are given by

� (�, �) = [6](� + 31)−1 − �31] � + � (�) ,
� = �� − 6]�(� + 31)−2

+ A1(� + 31)−3 [1 − �(� + 31)2
]

] + A2�1,
V = � (� + 31) − 6](� + 31)−1,

� = −2�,
�1 = (� + 31)−2 [1 − 13! ⋅ �(� + 31)

2

]

− D1] .

(49)

It is remarked that by choosing the constant A2 = 0 we may
get rid of the power series part and may obtain closed form
solution for the stream function � and for the 	uid velocity
component �.

(c) On substituting value of the function �(�) from (39)
into (36) yields

]

;4�;�4 + [32@−	� − 4�9 + 9]] ;3�;�3
− 2�;2�;�2 − 3292@−	� ;�;� = 0.

(50)

It is not easy to obtain the general solution of (50).�erefore,
we consider a special case when 32 = 0 and obtain

]

;4�;�4 + (9] − 4�9 ) ;
3�;�3 − 2�;

2�;�2 = 0. (51)

In order to solve this equation we reduce its order by lettingD = ;2�/;�2. �en (51) becomes

]

;2D;�2 + T;D;� − 2�D = 0, T = 9] − 4�9 . (52)

We notice that for 32 = 0, the particular solution (39) falls
back to the solution given in (37) with 3 = � and 6 = 9] −4�/9.�is is why (52) is similar to (41) having solution similar
to (42), that is,

D(�) = 81@
1� + 82@
2�, G1,2 = −T ± √T2 + 8]�2] , (53)
where 81 and 82 are arbitrary constants. �us,

� (�) = 81G21 ⋅ @
1� + 82G22 ⋅ @
2� +  � + ", (54)

where  and " are two arbitrary constants. �e stream
function � and the 	uid velocity components are

� (�, �) = � [� (� − 49) + 9]]
+ 81G21 ⋅ @
1� + 82G22 ⋅ @
2� +  � + ",

� = 2�� + 81G1 @
1� + 82G2 @
2� +  ,
V = 4�9 − 9], � = −2�.

(55)

�e analytical expression for the 	uid pressure distribution in
all the three cases (a), (b), and (c) is given by


 = �2 [( �2 + "� + A) − �2 (�2 + �2)
+ (2�� − �) � − 2]��] − 2��22. (56)

Remark. If we set 6 = 0 in (37), we can recover the case�(�) = 3� studied by Aristov and Gitman [8]. Similarly,
letting � = 0 in the cases (38) and (39) additionally studied
in this paper, Riabouchinsky type 2-dimensional solutions
can be obtained, see Berker [2], Polyanin and Zaitsev [11].
Moreover, the case (39) has also been considered by Siddiqui
et al. [9, 10] in the context of second grade 	uid. However, the
special cases considered for evaluation of �(�) they choose32 = 0 and/or � = 0. Clearly, choosing � = 0 means that the
plates are at not moving.

4.2. Potential Flow Perturbations. In this section, we look
for the 	uid motion resulting from the superposition of a
potential 	ow and a perturbation, see Berker [2]. �erefore,
the stream function of this type of 	uid motion will be of the
form

� (�, �) = V (�, �) + W (�, �) , (57)
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where the function W(�, �) denotes perturbation and the
function V(�, �) corresponds to the potential 	ow of the 	uid
that satis�es the following equation:

∇2V = 0. (58)

Now on substituting from (57) and (58) into the compatibility
equation (9), we obtain

]∇4W − � [2∇2W + � ��� (∇2W) + � ��� (∇2W)]
= −� (V, ∇2W)� (�, �) − � (W, ∇2W)� (�, �) .

(59)

Let us now suppose that the perturbation W is being restricted
to satisfy the following condition:

∇2W = Z (W) , (60)

that is, the vorticity of the perturbation is constant along each
streamline of this same perturbation. �erefore, by virtue of
(60), the second term on right hand side of (59) disappears
and we obtain

]∇4W − � [2∇2W + � ��� (∇2W) + � ��� (∇2W)] = −� (V, ∇
2W)� (�, �) .
(61)

We now consider the special case where the potential func-
tion V is given by V = 3�, 3 being an arbitrary constant,
then, the perturbation function W must satisfy the following
two equations:

∇2W = Z (W) (62)

]∇4W − � [2∇2W + � ��� (∇2W) + � ��� (∇2W)] = − ��� (∇2W) .
(63)

To �nd a particular solution of this system, we assume thatZ(W) = W and W is a homogeneous function of degree & of the
variables � and �. �erefore, the solution of the system (62)
and (63) is given by

W (�, �) = Θ (�) @��, (64)

where ^ = (& + 2� − ])/3 is constant and Θ is an arbitrary
function of �. �e stream function � is given by

� (�, �) = 3� + (81@√1−�2� + 82@−√1−�2�) @�� if ^2 < 1,
� (�, �) = 3� + (81 + 82�) @�� if ^2 = 1,

� (�, �) = 3� + (81 cos (^2 − 1) � + 82 sin (^2 − 1) �) @��,
if ^2 > 1.

(65)

Knowing stream function, the velocity components of the
	uidmotion and the expressions for pressure distribution can
be easily found.
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