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An analysis of the gyroscope dynamics of an anti-aircraft missile

launched from a mobile platform
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Abstract. The work considers the effect of the kinematic action resulting from the basic motion of the vehicle on the dynamics of the

launcher and the gyroscope acting as the drive of the opto-electro-mechanical target coordinator in a self-guided missile. The problem was

analyzed using a hypothetical short-range anti-aircraft system. The simulation results were represented graphically.
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1. Introduction

The analysis was conducted for a missile equipped with a con-

trolled mechanical gyroscope suspended on a Cardan joint [1],

whose diagram is presented in Fig. 1. It is assumed that:

a) the rotor motor mass does not coincide with the centre of

the inner frame mass and the motion centre, O, i.e. the

point of intersection of the axis of rotation of the rotor and

the frames. The considerations concerned a heavy gyro-

scope.

b) the Ox1, Oy1, Oz1 axes are main central axes of inertia of

the outer frame; in a similar way, the Ox2, Oy2, Oz2 and

Ox3, Oy3, Oz3 axes are the main central axes of inertia

of the inner frame and the rotor, respectively.

We assumed that the following quantities were known:

1. m1, m2, m3 – masses of the gyroscope outer and inner

frames and the rotor, respectively;

2. Jx1
, Jy1

, Jz1
– moments of inertia of the outer frame with

regard to the Ox1, Oy1, and Oz1 axes, respectively;

3. Jx2
, Jy2

, Jz2
– moments of inertia of the inner frame with

regard to the Ox2, Oy2, Oz2 axes, respectively;

4. Jx3
, Jy3

, Jz3
– moments of inertia of the rotor with regard

to the Ox3, Oy3, Oz3 axes, respectively;

5. −→ω ∗

p (p∗, q
∗, r

∗) – components of the angular velocity vec-

tor of the platform (kinematic excitation of the platform);

6.
−→

V p (Vp, 0, 0) – components of the linear velocity vector

of the platform displacements – coordinates of velocity of

point O in the system connected with the platform;

7.
−→

F g (Fx3
, Fy3

, Fz3
) – components of the force acting on

the rotor mass centre given in the coordinate system con-

nected with the platform, Oxyz;

8. Moments of the interaction forces:
−→

M c– between the plat-

form and the outer frame;
−→

M b – between the outer frame

and the inner frame;
−→

Mk – between the inner frame and

the rotor;

9. moments of the viscous friction forces in the bearings of

the inner and outer frames Mrb = ηb

dϑg

dt
and Mrc =

ηc

dψg

dt
, respectively; where: ηc, ηb, µc, µb – coefficients of

friction in the bearings;

10.
−→

M rk – moment of the friction forces in the bearings of the

inner frame and the rotor and the aerodynamic resistances.

Fig. 1. General view of the gyroscope with the assumed coordinate

systems after Ref. [1]

The model of the launcher-missile-gyroscope system [1]

has seven degrees of freedom, which results from the struc-

ture of the formulated model. The positions of the system

at any moment were determined assuming seven independent

generalized coordinates:
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1. yv – vertical displacement of the turret mass centre, Sv;

2. ϕv – angle of rotation of the turret about the Svxv axis;

3. ϑv – angle of rotation of the pedestal about the Svzv axis;

4. ξpv – straightline displacement of the missile mass centre,

Sp, along the Svξpv axis;

5. ψg – angle of rotation of the gyroscope outer frame;

6. ϑg – angle of rotation of the gyroscope inner frame;

7. Φg – angle of rotation of the gyroscope rotor frame.

Equations of motion of the controlled gyroscope. It was

assumed that the rotor was an axial and symmetrical body:

Jx3
= Jgo, Jy3

= Jz3
= Jgk . Moreover, when Mk = Mrk,

we had ωgx3
≈ const = ng. Thus, we obtained two equations

describing the gyroscope motion

[

Jy2
+ Jgk + (m2 +m3) · l

2

g

] dωgy3

dt
+

+ (Jx2
− Jz2

− Jgk)ωgx2
ωgz3

+ Jgongωgz3
+

+ (m2 +m3) · lg

[(

ω̇gy1
lg − Vgx1

ϑ̇g

)

cosϑg + Vgx2
ωgy2

+

−Vgy2
ωgx2

−

(

ωgy1
ϑ̇glg + V̇gx1 cosϑg

)

sinϑg

]

=

= Mb +Mg −Mrb,
(1)

[

Jz2
+ Jgk + (m2 +m3) · l

2

g

] d

dt
(ωgz2

cosϑg)−

− [(Jx2
+ Jgo) ω̇gx2

+ (Jz2
+ Jgk)ωgy1

ωgz2
] sinϑg−

− (Jx2
ωgx2

+ Jgong)
(

ωgy1
+ ϑ̇g

)

cosϑg+

+ (Jy2
+ Jgk) ωgy2

ωgx1
+ (Jy1

− Jx1
) ωgx1

ωgy1
+

Jz1
ω̇gz1

+ (m2 +m3) ·

·lg

[

V̇gy2
+

(

V̇gy1
+ lgω̇gz1

)

cosϑg + Vgx2
ωgx1

sinϑg +

− (Vgy1
+ ωgz1

lg) ϑ̇g sinϑg − Vgz2
ωgx1

(cosϑg + 1) +

+ (Vgy1
ωgy2

− Vgy2
ωgy1

) sinϑg+

+ Vgx1
(ωgz1

+ ωgz2
)] = Mc −Mrc,

(2)

where

Mg = (m2 +m3) · lg · g · coϑg;

V̇gx1
= V̇p cosψg − Vpψ̇g sinψg;

V̇gy1
= −V̇p sinψg − Vpψ̇g cosψg;

V̇gy2
= −V̇p sinψg − Vpψ̇g cosψg + lg (ω̇gz1

+ ω̇gz2
) ;

ω̇gz1
=

(

ψ̈g + ṙ∗
)

;

ω̇gz2
= ω̇gx1

sinϑg + ωgx1
ϑ̇g cosϑg+

+ω̇gz1
cosϑg − ωgz1

ϑ̇g sinϑg;

ω̇gx1
= ṗ∗ cosψg − p∗ψ̇g sinψg + q̇∗ sinψg + q∗ψ̇g cosψg;

ω̇gx2
= ω̇gx1

cosϑg − ωgx1
ϑ̇g sinϑg−

−ω̇gz1
sinϑg − ωgz1

ϑ̇g sinϑg;

ω̇gy1
= −ṗ∗ sinψg − p∗ψ̇g cosψg + q̇∗ cosψg − q∗ψ̇g sinψg;







ωgx1

ωgy1

ωgz1






=







p∗ cosψg + q∗ sinψg

−p∗ sinψg + q∗ cosψg

ψ̇g + r∗






;







ωgx2

ωgy2

ωgz2






=

=









(p∗ cosψg + q∗ sinψg) cosϑg −

(

r∗ + ψ̇g

)

sinϑg

−p∗ sinψg + q∗ cosψg + ϑ̇g

(p∗ cosψg + q∗ sinψg) sinϑg +
(

r∗ + ψ̇g

)

cosϑg









;







ωgx3

ωgy3

ωgz3






=

=









(p∗ cosψg + q∗ sinψg) cosϑg −

(

r∗ + ψ̇g

)

sinϑg + Φ̇g

−p∗ sinψg + q∗ cosψg + ϑ̇g

(p∗ cosψg + q∗ sinψg) sinϑg +
(

r∗ + ψ̇g

)

cosϑg









;

Vgx2
= Vp cosϑg cosψg + lgωgy1

sinϑg;

Vgy2
= −Vp sinψg + lg (ωgz1

+ ωgz2
) ;

Vgz2
= Vp sinϑg cosψg − lg (ωgy1

cosϑg + ωgy2
) ;

Vgx1
= Vp cosψg;

Vgy1
= −Vp sinψg;

Vgz1
= 0.

Basing on the equations of motion derived for the

launcher-missile-gyroscope system presented in [2], it was

possible to perform a numerical analysis of the behavior of a

self-propelled anti-aircraft missile system during the motion

over uneven terrain. It should be emphasized that the system

effectiveness is largely dependent on the accuracy of the gy-

roscope, which constitutes the control drive of the head of the

tracking missile, i.e. the target coordinator. Thermal radiation

falls on the infrared detector through the lens and the raster.

The detector converts them into an electric signal [3], which

contains information about the direction and magnitude of the

angular displacement between the position of the line of sight

in space and the optical axis of the lens. The signal parame-

ters, such as frequency or phase, are related to the position of

the dot on the raster, i.e. the position of the target in space.

The signal is transmitted from the detector to the electronic

unit. This desired signal and the one resulting from the po-

sition of the gyroscope axis in space determine the deviation

of the gyroscope control system. It is necessary to conduct a

comprehensive study concerning the effects of the kinematic

excitations generated by the motions of the launcher and the

missile on the gyroscope performance. We consider the vari-

ation in the angular velocity −→ω p (p∗, q∗, r∗) defined by the

following equations:

p∗ = ϕ̇v cosϑpv cosψpv − ϑ̇v cosϑpv sinψpv,

q∗ = ϑ̇v sinϑpv sinψpv − ϕ̇v sinϑpv cosψpv,

r∗ = ϑ̇v cosψpv + ϕ̇v sinψpv

(3)
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and the variation in the linear velocity
−→

V p (Vpxv
, Vpyv

, Vpzv
)

of the missile motion along the launcher [4] described by the

following equations:

Vpxv
= (lξ − lηϑv) ξ̇pv − lηξpvϑ̇v,

Vpyv
= (lη + lξϑv − lζϕv) ξ̇pv + lξξpvϑ̇v − lζξpvϕ̇v + ẏv,

Vpzv
= (lζ + lηϕv) ξ̇p + lηξpvϕ̇v.

(4)

All the quantities in Eqs. (3) and (4) were described in [2].

The kinematic interactions can cause disturbances of the gy-

roscope motion, which are due to the inevitable friction in the

bearings of the gyroscope frames and the non-concentricity

of the mass centre and the rotation centre.

2. Kinematic excitations

2.1. Excitations affecting the launcher performance. The

analysis concerned the behavior of a launcher mounted on a

wheeled vehicle going over a single bump with the front and

rear wheels [4]. It was assumed that the basic motion of the

vehicle carrying the launcher can be described from the for-

mula sn = Vn · (t− tgb), where: Vn = 8.3 m/s – velocity of

the vehicle with the launcher; tgb = 0.5 s – time in which the

vehicle carrying the launcher climbs a bump with the front

wheels. The form of the excitations were modeled by applying

the following equations:

y01 = y0 sin2 (ω0 · sn) ,

ẏ01 = y0ω0Vn sin (2ω0 · sn) ,
(5a)

y02 = y0 sin2 (ω0 · sn) ,

ẏ02 = y0ω0Vn sin (2ω0 · sn) ,
(5b)

y03 = y0 sin2 [ω0 (sn − lwn)] ,

ẏ03 = y0ω0Vn sin [2ω0 (sn − lwn)] ,
(5c)

y04 = y0 sin2 [ω0 (sn − lwn)] ,

ẏ04 = y0ω0Vn sin [2ω0 (sn − lwn)] ,
(5d)

where y0 = 0.05 m, l0 = 0.35 m, ω0 =
π

l0
, lwn = l1 + l2.

2.2. Excitations affecting the gyroscope performance. If

we assume that the gyroscope performs small motions round

its position of equilibrium, then the moments of the viscous

friction forces in the bearings of the gyroscope frames can be

approximately written as [1]:

Mrb = ηb·q
∗ = ηb

(

ϑ̇v sinϑpv sinψpv − ϕ̇v sinϑpv cosψpv

)

,

(6a)

Mrc = ηc · r
∗ = ηc

(

ϑ̇v cosψpv + ϕ̇v sinψpv

)

(6b)

where ηb, ηc – coefficients of the moments of the viscous

friction forces.

Equations (6) show that the kinematic excitation of the

launcher causes an excitation of the gyroscope through friction

in the bearings of the frames. It is not possible to complete-

ly eliminate the friction, thus a rapid motion of the launcher

will have influence on the accuracy of the pre-determined po-

sition of the gyroscope axis in space. The higher the values

of coefficients η
b

and η
c
, the more visible the drifts of the

gyroscope axis will be. To prevent this undesirable phenom-

enon, it is necessary to apply additional correction moments

to the gyroscope frames [1]:

Mb = −kbϑg + kcψg − hg

dϑg

dt
(7a)

Mc = −kcϑg − kbψg − hg

dψg

dt
(7b)

where kb, kc – coefficients of the corrector amplifications; hg

– coefficient of the corrector attenuation.

3. Results

The effect of the launcher motion on the gyroscope perfor-

mance was analyzed using a hypothetical anti-aircraft system

with short-range missiles, which was described in Ref. [2].

The following parameters were assumed for the gyroscope:

Jx1
= 2.5 · 10−5 kgm2, Jy1

= Jx1
,

Jz1
= Jx1

, Jx2
= 5 · 10−5 kgm2,

Jy2
= Jx2

, Jz2
= Jx2

,

Jx3
= 5 · 10−4 kgm2,

Jy3
= Jx3

, Jz3
= Jx3

,

m2 = 0.1 kg, m3 = 0.14 kg,

m = m2 +m3, ng = 500 rad/s,

lg = 0.002 m, ηb = ηb = 0.01 Nms;

kb = 31.5, kc = −3, hg = 31.5.

Selected results of the computer simulation are presented

in Figs. 2–13.

Fig. 2. A profile of a single obstacle (bump) in the function of time
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Fig. 3. Vertical displacements of the launcher and progressive dis-

placements of the missile with regard to the guide rail in the function

of time

Fig. 4. Velocities of the vertical displacements of the launcher and

progressive displacements of the missile with regard to the guide rail

in the function of time

Fig. 5. Angular displacements of the launcher in the function of time

Fig. 6. Angular velocities of the launcher in the function of time

Fig. 7. Vertical accelerations of the launcher and progressive accel-

erations of the missile with regard to the guide rail in the function

of time

Fig. 8. Angular accelerations of the launcher in the function of time
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Fig. 9. Angular displacements of the gyroscope axis in the function

of time without correction

Fig. 10. Angular velocities of the gyroscope axis in the function of

time without correction

Fig. 11. Corrective control moments of the gyroscope in the function

of time

Fig. 12. Angular displacements of the gyroscope axis in the function

of time with correction

Fig. 13. Angular velocities of the gyroscope axis in the function of

time with correction

4. Conclusions

The results of the computer simulation show that maintaining

the gyroscope axis in the pre-determined position during tar-

get tracking is difficult when the vehicle is climbing a bump

and when the missile is moving along the guide rail, as shown

in Figs. 9 and 10. A displacement of the gyroscope axis from

the pre-determined position by several steps can lead to the

loss of the target image in the field of view of the target coor-

dinator lens. These additional displacements of the gyroscope

axis need to be minimized by the automated correction sys-

tem described by Eq. (7). The displacements – whether big or

small – always appear during the gyroscope operation, no mat-

ter how advanced the technology applied is. The gyroscope

becomes more resistant to undesirable kinematic interaction

of the launcher and the missile motion along the guide rail

(Figs. 12 and 13) after correction controls Mb and Mc are

applied (Fig. 11). The results confirm the suitability of the

algorithm used to correct the gyroscope operation affected by

disturbances generated by the launcher and the missile.
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