
Please do not remove this page

An analysis of the inertia weight parameter for
binary particle swarm optimization
Liu, Jianhua; Mei, Yi; Li, Xiaodong
https://researchrepository.rmit.edu.au/discovery/delivery/61RMIT_INST:ResearchRepository/12247163060001341?l#13248362820001341

Liu, Mei, Y., & Li, X. (2016). An analysis of the inertia weight parameter for binary particle swarm
optimization. IEEE Transactions on Evolutionary Computation, 20(5), 666–681.
https://doi.org/10.1109/TEVC.2015.2503422

Published Version: https://doi.org/10.1109/TEVC.2015.2503422

Document Version: Accepted Manuscript

Downloaded On 2022/08/21 16:47:52 +1000
© 2015 IEEE
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

Thank you for downloading this document from the RMIT Research
Repository.

The RMIT Research Repository is an open access database showcasing the
research outputs of RMIT University researchers.

RMIT Research Repository: http://researchbank.rmit.edu.au/

Citation:

See this record in the RMIT Research Repository at:

Version:

Copyright Statement:
©

Link to Published Version:

PLEASE DO NOT REMOVE THIS PAGE

Liu, J, Mei, Y and Li, X 2016, 'An analysis of the inertia weight parameter for binary
particle swarm optimization', IEEE Transactions on Evolutionary Computation, vol.
20, no. 5, pp. 666-681.

https://researchbank.rmit.edu.au/view/rmit:36767

Accepted Manuscript

2015 IEEE

https://dx.doi.org/10.1109/TEVC.2015.2503422

1

An Analysis of the Inertia Weight Parameter for Binary Particle Swarm
Optimization

Jianhua Liu, Member, IEEE, Yi Mei, Member, IEEE and Xiaodong Li, Senior Member, IEEE

Abstract—In particle swarm optimization, the inertia weight
is an important parameter for controlling its search capability.
There have been intensive studies of the inertia weight in
continuous optimization, but little attention has been paid to the
binary case. This study comprehensively investigates the effect of
the inertia weight on the performance of binary particle swarm
optimization, from both theoretical and empirical perspectives.
A mathematical model is proposed to analyze the behavior of
binary particle swarm optimization, based on which several
lemmas and theorems on the effect of the inertia weight are
derived. Our research findings suggest that in the binary case, a
smaller inertia weight enhances the exploration capability while
a larger inertia weight encourages exploitation. Consequently,
this paper proposes a new adaptive inertia weight scheme for
binary particle swarm optimization. This scheme allows the
search process to start first with exploration and gradually move
towards exploitation by linearly increasing the inertia weight.
The experimental results on 0/1 knapsack problems show that
the binary particle swarm optimization with the new increasing
inertia weight scheme performs significantly better than that with
the conventional decreasing and constant inertia weight schemes.
This study verifies the efficacy of increasing inertia weight in
binary particle swarm optimization.

Index Terms—Binary Particle Swarm Optimization, Mathe-
matical Modelling, Knapsack Problems.

I. INTRODUCTION

PARTICLE Swarm Optimization (PSO) [1] [2] has been
successfully applied to many optimization problems, in

particular those with continuous domains. It has also been
applied to discrete domains (e.g. [3] [4] [5] [6] [7] [8]), and
extended from single-objective to multi-objective optimization
(e.g. [7] [8] [9]). Among the various discrete PSO variants,
the Binary PSO (BPSO), originally developed by Kennedy
and Eberhart [5], is probably the most well-known. BPSO has
been applied to many combinatorial problems, e.g. job-shop
scheduling [10], the knapsack problem [11], electric power
systems [12], data mining (more specifically, feature selection)
[13] [14], image processing [15], sensor networks [16], very-
large-scale integrated circuit design [17], and others [18] [19].
Nevertheless, the success of BPSO for solving combinatorial
problems is still limited compared with Continuous PSO
(CPSO) [20].

From a theoretical perspective, CPSO has been studied
extensively. For example, dynamic system theory was adopted

Jianhua Liu is with the School of Information Science and Engineering,
Fujian University of Technology, Fuzhou, Fujian, 350108, China. e-mail:
jhliu@fjnu.edu.cn.

Yi Mei is with the School of Engineering and Computer Science, Vic-
toria University of Wellington, Wellington 6140, New Zealand. e-mail:
yi.mei@ecs.vuw.ac.nz.

Xiaodong Li is with the School of Computer Science and Information
Technology, RMIT University, Melbourne, VIC, 3001, Australia. e-mail:
xiaodong.li@rmit.edu.au.

Manuscript received ** **, **; revised ** **, ****.

to analyze CPSO in [21]. The trajectory of a particle was
analyzed in [22], which led to a model of constriction PSO.
The studies on a particle’s trajectory was further extended
in [23] to include the influence of the inertia weight. All
the above theoretical analyses were based on the stagnation
assumption, in which the personal and global best positions
were assumed to remain the same throughout the process.
There are also other studies in which the stagnation assumption
was relaxed to some extent ([24] [25] [26] [27] [28]). However,
to the best of our knowledge, the theoretical analysis of BPSO
is quite limited.

In PSO, the inertia weight plays an important role for bal-
ancing its exploration and exploitation. The fact was first men-
tioned and discussed in [29]. Typically, the balance between
exploration and exploitation in CPSO is related to both the
inertia weight and the acceleration coefficients [23]. However,
the acceleration coefficients are often set to equal constant
values, a common practice in CPSO [30] [31]. In such a case,
a larger inertia weight would improve CPSO’s exploration
ability, while a smaller inertia weight would emphasize more
on exploitation [30] [31] [32] [33]. Based on this observation,
a linearly decreasing inertia weight scheme was proposed in
[30], and validated for CPSO in [32] [33] [34], where the
acceleration coefficients were set to equal constant values.
The decreasing inertia weight with equal constant acceleration
coefficients has been widely accepted as a norm by many
CPSO researchers and practitioners [31] [35] [36]. Zheng et al.
[37] [38] recommended an increasing inertia weight scheme.
However, they used different acceleration coefficient values,
which made it difficult to analyze how the inertia weight
affects the performance of the algorithm [39]. Although there
are other adaptive inertia weight schemes proposed (e.g. [40]
[41]), the decreasing inertia weight is still one of the most
widely adopted schemes [42].

With regard to BPSO, no attempts have been made to inves-
tigate the effect of the inertia weight parameter on the trade-off
between exploration and exploitation of the algorithm. When
designing an adaptive inertia weight scheme for BPSO, most
studies directly adopted the commonly used decreasing inertia
weight scheme in CPSO (e.g. benchmark functions [43], dis-
tribution network reconfiguration [44], feature selection [45],
wind turbines placement [46]). However, there is no theoretical
study or analysis found to support the validity of such a direct
adoption.

Apart from a direct adoption of the linearly decreasing
inertia weight setting from CPSO, several studies also suggest
other settings. For example, a review on advances in particle
swarm optimization for antenna designs suggested a constant
weight of 1.0 to be used [47]. In another study [48], it was
found that the inertia weight with a value less than 1.0 prevents

2

convergence. A chaotic BPSO was developed for feature
selection in [49], which utilized chaotic maps to determine
the inertia weight. Overall, with no theoretical guidance, it is
difficult to design an efficient inertia weight scheme for BPSO.

To find a guideline for setting the inertia weight in BPSO,
this paper carries out first-order analysis on the effect of the
inertia weight on the behavior of BPSO, based on which a
novel adaptive inertia weight scheme for BPSO is proposed.
In short, our research findings suggest that in general a smaller
inertia weight encourages exploration while a larger inertia
weight enhances exploitation. Thus, we recommend that in
most cases an increasing inertia weight should be favorably
considered for BPSO. Our experimental results on the classical
0/1 knapsack problems are consistent with this conclusion on
the inertia weight setting in BPSO. This research makes the
following contributions:

1) A theoretical study of BPSO is carried out, where
several lemmas and theorems are derived to provide
evidence that the inertia weight significantly influences
the velocity term of BPSO under different scenarios.

2) The impact of the inertia weight on the performance
of BPSO is investigated. Generally speaking, with the
acceleration coefficients being fixed, a smaller inertia
weight tends to enhance exploration, whereas a larger
inertia weight is more likely to encourage exploitation.

3) A BPSO with an increasing inertia weight is proposed,
and evaluated on the 0/1 knapsack problems. The empir-
ical results showed that our idea (increasing the inertia
weight) obtained from the theoretical results is effective
in practice.

The rest of the paper is organized as follows: Section
II introduces the standard framework of BPSO, which is
proposed by Kennedy and Eberhart [5]. Section III presents
the theoretical studies on BPSO, including a set of lemmas
and theorems regarding the effect of the inertia weight on
the behaviors of BPSO under different scenarios. Remarks
are also given to explain the implications of the lemmas and
theorems. Then, Section IV proposes a BPSO with a linearly
increasing inertia weight scheme, based on the conclusions of
our theoretical studies. Section V carries out the experimental
studies on the 0/1 knapsack problems, which demonstrates
the efficacy of the proposed linearly increasing inertia weight
scheme. Finally, Section VI provides the conclusions and
future work.

II. THE STANDARD BPSO

The standard BPSO was originally developed by Kenndey
and Eberhart [5] in 1997. In BPSO, a particle is represented
as a bit string, in which each bit can take the value of either
0 or 1. Unlike in CPSO, the position of a particle in BPSO is
updated by switching each bit value between 0 and 1 based on
the velocity of that bit. Specifically, for the dth bit of the ith

particle, the velocity vid is transformed to a probability s(vid)
of taking the value of 1 by the following sigmoid transfer
function:

s(vid) =
1

1+ e−vid
. (1)

Based on s(vid), the bit value xid is updated as follows:

xid =

{
1, if rand()≤ s(vid),
0, otherwise, (2)

where rand() randomly samples a value from the uniform
distribution within the interval of [0,1]. In other words, xid
takes 1 with a probability of s(vid).

During the search process of BPSO, vid is updated according
to the following rule:

vid = wvid + c1r1d(pid − xid)+ c2r2d(gd − xid), (3)

where 0<w≤ 1 is the inertia weight. pid stands for the dth bit
of the personal best position of the ith particle. gd denotes the
dth bit of the global best position (i.e. the best personal best
position among that of all the particles). c1 > 0 and c2 > 0 are
the acceleration coefficients. r1d and r2d are random variables
which follow the uniform distribution between 0 and 1.

In practice, problem-dependent velocity clamping tech-
niques (e.g. [50]) are often used to prevent too large velocities.
In this paper, after being updated by Eq. (3), the velocity vid
is bounded by a threshold v̂ as follows:

vid =

{
v̂, if vid > v̂,
−v̂, if vid <−v̂. (4)

In Eq. (3), the inertia weight w was originally proposed for
CPSO [30] to encourage exploration at the start of the search,
and then gradually move towards exploitation. To this end, a
linearly decreasing inertia weight scheme was proposed [34]
as follows:

w = w− (w−w)
π
π
, (5)

where π and π stand for the number of iterations elapsed so far
and the maximal number of iterations respectively. w and w are
the predefined upper and lower bounds of the inertia weight
respectively. The above decreasing inertia weight scheme has
been widely adopted in both CPSO and BPSO, to update
the inertia weight before updating the velocity in Eq. (3).
The pseudo code of the standard framework of BPSO is
described in Algorithm 1, where xi = (xi1, . . . ,xin) (n is the
dimension) and pi =(pi1, . . . , pin) stand for the current position
and personal best position of the ith particle respectively.
g = (g1, . . . ,gn) is the global best position.

III. THEORETICAL ANALYSIS OF BPSO

In BPSO, a particle is represented as a bit string. Each bit
is updated by Eqs. (1)–(3). To simplify analysis, we adopt the
stagnation assumption, which is commonly used for analyzing
PSO. That is, all the pid’s and gd’s in Eq. (3) are fixed
throughout the process. In this case, we can safely remove
the bit index d in Eq. (3), and rewrite it as follows:

vt+1 = wvt + c1r1(p− xt)+ c2r2(g− xt), (6)

where vt and xt are the velocity and the value of the considered
bit in the tth iteration. In standard BPSO, c1, c2 and w are set
to constants.

In this section, we will analyse the behavior of BPSO under
different w, p and g values. The velocity vt is updated by Eq.

3

Algorithm 1: The standard framework of BPSO for min-
imization

1 Randomly generate an initial population;
2 Randomly generate the initial velocities within the

velocity bound;
3 repeat
4 for i = 1 to Population Size do
5 if f (xi)< f (pi) then pi = xi;
6 if f (pi)< f (g) then g = pi;
7 end
8 for i = 1 to Population Size do
9 for d = 1 to Dimension Size do

10 Calculate w using Eq. (5);
11 Update velocity with Eq. (3);
12 Update position using Eq. (1) and Eq. (2);
13 end
14 end
15 until termination criterion is met;

(6) and the distribution of the position xt is defined as follows:

Pr(xt = 1) =
1

1+ e−vt
, (7)

Pr(xt = 0) = 1− 1
1+ e−vt

. (8)

A. Behavior of v when w = 1

Lemma 1. If w = 1 and p = g = 1, then ∀ t > 0, vt+1 ≥ vt .

Proof: From Eq. (6), when w = 1, and p = g = 1,

vt+1 = vt + c1r1(1− xt)+ c2r2(1− xt). (9)

Since ∀ t > 0, xt ≤ 1, and c1 > 0, c2 > 0, r1 ≥ 0, r2 ≥ 0, then

c1r1(1− xt)+ c2r2(1− xt)≥ 0,

and thus
vt+1 ≥ vt .

Remark. Lemma 1 indicates that when w = 1 and p = g =
1, vt is monotonically non-decreasing. According to Eq. (7),
Pr(xt+1 = 1) is no less than Pr(xt = 1).

Lemma 2. If w = 1 and p = g = 1, then ∀ v > v0, ∃ T > 0, so
that ∀ t > T , E[vt]> v.

Proof: If vt−1 ≥ v, then from Lemma 1, vt ≥ vt−1 ≥ v.
Therefore, E[vt]> v holds.

If vt−1 < v, then from Lemma 1, ∀ i ∈ {0, . . . , t − 2}, vi ≤
vt−1 < v, and

1− 1
1+ e−vi

> 1− 1
1+ e−v .

From Eq. (9), we have

vt = v0 +
t−1

∑
i=0

(c1r1 + c2r2)(1− xi).

Therefore,

E[vt] = v0 +
c1 + c2

2

t−1

∑
i=0

E[1− xi]

= v0 +
c1 + c2

2

t−1

∑
i=0

Pr(xi = 0)

= v0 +
c1 + c2

2

t−1

∑
i=0

(
1− 1

1+ e−vi

)
.

Since c1 > 0, c2 > 0,

E[vt] = v0 +
c1 + c2

2

t−1

∑
i=0

(
1− 1

1+ e−vi

)
> v0 +

c1 + c2

2

t−1

∑
i=0

(
1− 1

1+ e−v

)
= v0 +

c1 + c2

2

(
1− 1

1+ e−v

)
t.

Let
T =

v− v0
c1+c2

2

(
1− 1

1+e−v

) > 0,

then ∀ t > T ,

E[vt]> v0 +
c1 + c2

2

(
1− 1

1+ e−v

)
t

> v0 +
c1 + c2

2

(
1− 1

1+ e−v

)
T = v.

Remark. Lemma 2 implies that when w = 1 and p = g = 1,
vt is expected to diverge. For any upper bound v, when t is
sufficiently large, vt is expected to be larger than v. According
to Eq. (7), Pr(xt+1 = 1) is expected to converge to 1.

Lemma 3. If w = 1 and p = g = 0, then ∀ t > 0, vt+1 ≤ vt .

Proof: From Eq. (6), when w = 1, and p = g = 0,

vt+1 = vt − c1r1xt − c2r2xt . (10)

Since ∀ t > 0, xt ≥ 0, and c1 > 0, c2 > 0, r1 ≥ 0, r2 ≥ 0, then

−c1r1xt − c2r2xt ≤ 0,

and
vt+1 ≤ vt .

Remark. Lemma 3 suggests that when w = 1 and p = g =
0, vt is monotonically non-increasing. According to Eq. (8),
Pr(xt+1 = 0) is no less than Pr(xt = 0).

Lemma 4. If w = 1 and p = g = 0, then ∀ v < v0, ∃ T > 0, so
that ∀ t > T , E[vt]< v.

Proof: If vt−1 ≤ v, then from Lemma 3, vt ≤ vt−1 ≤ v.
Therefore, E[vt]< v holds.

If vt−1 > v, then from Lemma 3, ∀ i ∈ {0, . . . , t − 2}, vi ≥
vt−1 > v, and

1
1+ e−vi

>
1

1+ e−v .

4

From Eq. (10), we have

vt = v0 −
t−1

∑
i=0

(c1r1 + c2r2)xi.

Therefore,

E[vt] = v0 −
c1 + c2

2

t−1

∑
i=0

E[xi]

= v0 −
c1 + c2

2

t−1

∑
i=0

Pr(xi = 1)

= v0 −
c1 + c2

2

t−1

∑
i=0

(
1

1+ e−vi

)
.

Since c1 > 0, c2 > 0,

E[vt] = v0 −
c1 + c2

2

t−1

∑
i=0

(
1

1+ e−vi

)
< v0 −

c1 + c2

2

t−1

∑
i=0

(
1

1+ e−v

)
= v0 −

c1 + c2

2

(
1

1+ e−v

)
t.

Let
T =

v0 − v
c1+c2

2

(
1

1+e−v

) > 0,

then ∀ t > T ,

E[vt]< v0 −
c1 + c2

2

(
1

1+ e−v

)
t

< v0 −
c1 + c2

2

(
1

1+ e−v

)
T = v.

Remark. Lemma 4 implies that when w = 1 and p = g = 0,
vt is expected to diverge. For any lower bound v, when t is
sufficiently large, vt is expected to be smaller than v. According
to Eq. (8), Pr(xt+1 = 0) is expected to converge to 1.

Lemma 5. If w = 1 and p ̸= g, then ∀ t0, t > 0,

vt0 +β1t ≤ E[vt0+t]≤ vt0 +β2t,

where

β1 =
1
2

(
min(c1,c2)−

c1 + c2

1+ e−vmax

)
,

β2 =
1
2

(
max(c1,c2)−

c1 + c2

1+ e−vmin

)
,

vmax = max
i∈{t0,...,t0+t−1}

vi,

vmin = min
i∈{t0,...,t0+t−1}

vi.

Proof: First, we assume that p = 1 and g = 0. Then

vt+1 = vt + c1r1 − (c1r1 + c2r2)xt ,

and ∀ t0, t > 0,

vt0+t = vt0 +
t0+t−1

∑
i=t0

(c1r1 − (c1r1 + c2r2)xi).

Then,

E[vt0+t] = vt0 +
t0+t−1

∑
i=t0

(
c1

2
− c1 + c2

2
E[xi]

)

= vt0 +
1
2

t0+t−1

∑
i=t0

(c1 − (c1 + c2)Pr(xi = 1))

= vt0 +
1
2

t0+t−1

∑
i=t0

(
c1 −

c1 + c2

1+ e−vi

)
.

Since ∀ i ∈ {t0, . . . , t0 + t −1}, vmin ≤ vi ≤ vmax, then

1
1+ e−vmin

≤ 1
1+ e−vi

≤ 1
1+ e−vmax

.

And c1 > 0, c2 > 0, then

vt0 +
t
2

(
c1 −

c1 + c2

1+ e−vmax

)
≤ E[vt0+t]

≤ vt0 +
t
2

(
c1 −

c1 + c2

1+ e−vmin

)
.

Similarly, if p = 0 and g = 1,

vt0 +
t
2

(
c2 −

c1 + c2

1+ e−vmax

)
≤ E[vt0+t]

≤ vt0 +
t
2

(
c2 −

c1 + c2

1+ e−vmin

)
.

Therefore,

E[vt0+t]≤ vt0 +
t
2

(
max(c1,c2)−

c1 + c2

1+ e−vmin

)
,

E[vt0+t]≥ vt0 +
t
2

(
min(c1,c2)−

c1 + c2

1+ e−vmax

)
.

That is,
vt0 +β1t ≤ E[vt0+t]≤ vt0 +β2t.

Remark. Lemma 5 implies that when w = 1 and p ̸= q,
the expectation of vt0+t is bounded by the range of [vt0 +
β1t,vt0 +β2t], which is determined by its preceding sequence
(vt0 , . . . ,vt0+t−1). Additionally, note that β1 and β2 are decreas-
ing functions of vmax and vmin respectively. This suggests the
following properties:

1) Given the same t, if the upper bound of the sequence
(vt0 , . . . ,vt0+t−1) is smaller, then the lower bound of
E[vt0+t] is larger;

2) Given the same t, if the lower bound of the sequence
(vt0 , . . . ,vt0+t−1) is larger, then the upper bound of
E[vt0+t] is smaller;

3) If vmax ≤ − ln
(

c1+c2
min(c1,c2)

−1
)
≤ 0, then β1 > 0. As t

increases, the lower bound of E[vt0+t] becomes larger.
That is, if the sequence (vt0 , . . . ,vt0+t−1) is consistently
below a non-positive value − ln

(
c1+c2

min(c1,c2)
−1

)
≤ 0,

a longer sequence leads to a larger lower bound of
E[vt0+t];

4) If vmin ≥ − ln
(

c1+c2
max(c1,c2)

−1
)
≥ 0, then β2 < 0. As t

increases, the upper bound of E[vt0+t] becomes smaller.

5

That is, if the sequence (vt0 , . . . ,vt0+t−1) is consistently
above a non-negative value − ln

(
c1+c2

max(c1,c2)
−1

)
≥ 0,

a longer sequence leads to a smaller upper bound of
E[vt0+t];

5) According to properties 3) and 4), starting from v0 = 0,
the sequence (v0,v1, . . .) is expected to fluctuate around
the area

[
− ln

(
c1+c2

min(c1,c2)
−1

)
,− ln

(
c1+c2

max(c1,c2)
−1

)]
.

When c1 = c2, which is common in PSO, the sequence
(v0,v1, . . .) is expected to fluctuate around the point
0. According to Eqs. (7) and (8), the sequences of
Pr(xt = 1) and Pr(xt = 0) (t ∈ N) fluctuate around 0.5.

The implications of Lemmas 1–5 can be summarized as
a theorem about Pr(xt = 1) and Pr(xt = 0) under different
conditions when w = 1. It is stated as follows:

Theorem 1. When w = 1,
1) if p= g, then Pr(xt = p) (Pr(xt = g)) is a non-decreasing

function of the generation t, and its expectation con-
verges to 1;

2) if p ̸= g, then under the standard parameter settings
where c1 = c2 and v0 = 0, the sequences of Pr(xt = 1)
and Pr(xt = 0) fluctuate around 0.5.

Proof: The proof can be directly derived from the remarks
of Lemmas 1–5.

B. Behavior of v when 0 < w < 1

Lemma 6. If 0 < w < 1, p = g = 1, then ∀ t > 0,

wtv0 ≤ vt ≤ wtv0 +(c1 + c2)
1−wt

1−w
.

Proof: From Eq. (6), when p = g = 1,

vt = wtv0 +
t−1

∑
i=0

wi(c1r1 + c2r2)(1− xt−i−1).

Since ∀ i ∈ {0, . . . , t − 1}, 0 ≤ xt−i−1 ≤ 1 and 0 ≤ r1,r2 ≤ 1,
c1 > 0, c2 > 0, then

wtv0 ≤ vt ≤ wtv0 +
t−1

∑
i=0

wi(c1r1 + c2r2)

≤ wtv0 +(c1 + c2)
t−1

∑
i=0

wi

= wtv0 +(c1 + c2)
1−wt

1−w
.

Lemma 7. If 0 < w < 1, p = g = 0, then ∀ t > 0,

wtv0 − (c1 + c2)
1−wt

1−w
≤ vt ≤ wtv0.

Proof: From Eq. (6), if p = q = 0,

vt = wtv0 −
t−1

∑
i=0

wi(c1r1 + c2r2)xt−i−1.

Since ∀ i ∈ {0, . . . , t − 1}, 0 ≤ xt−i−1 ≤ 1 and 0 ≤ r1,r2 ≤ 1,
c1 > 0, c2 > 0, then

wtv0 ≥ vt ≥ wtv0 −
t−1

∑
i=0

wi(c1r1 + c2r2)

≥ wtv0 − (c1 + c2)
t−1

∑
i=0

wi

= wtv0 − (c1 + c2)
1−wt

1−w
.

Lemma 8. If 0 < w < 1, p ̸= g, then ∀ t > 0,

wtv0 −min(c1,c2)
1−wt

1−w
≤ vt ≤ wtv0 +max(c1,c2)

1−wt

1−w
.

Proof: If p = 1 and q = 0, from Eq. (6),

vt = wtv0 −
t−1

∑
i=0

wi(c1r1 − (c1r1 + c2r2)xt−i−1).

Since ∀ i ∈ {0, . . . , t − 1}, 0 ≤ xt−i−1 ≤ 1 and 0 ≤ r1,r2 ≤ 1,
c1 > 0, c2 > 0, then −c2 ≤ c1r1 − (c1r1 + c2r2)xi ≤ c1. Thus,

wtv0 − c2
1−wt

1−w
≤ vt ≤ wtv0 + c1

1−wt

1−w
.

Similarly, if p = 0 and q = 1,

wtv0 − c1
1−wt

1−w
≤ vt ≤ wtv0 + c2

1−wt

1−w
.

Therefore,

wtv0 −min(c1,c2)
1−wt

1−w
≤ vt ≤ wtv0 +max(c1,c2)

1−wt

1−w
.

Remark. Lemmas 6, 7 and 8 give the range of vt under
different p and g values when 0 < w < 1. Specifically, if
p= g= 1, then vt is no smaller than wtv0. If p= g= 0, then vt
is no larger than wtv0. If p ̸= g, then the sequence (v0,v1, . . .)
fluctuates around wtv0. Without any other information, it is
reasonable to initialize v0 to 0. In this case, if p = g = 1, then
∀ t > 0, vt is non-negative, and Pr(xt+1 = 1)≥ 0.5. If p= g= 0,
then ∀ t > 0, vt is non-positive and Pr(xt+1 = 0) ≥ 0.5.
Otherwise, the sequence (v0,v1, . . .) fluctuates around 0, and
the sequence of Pr(xt = 1) (t ∈ N) is expected to fluctuate
around 0.5.

In addition, the width of the range of vt is (c1 + c2)
1−wt

1−w ,
regardless of the p and g values. Given the same t, a smaller
w leads to a narrower range of vt which is closer to 0.

Lemma 9. If 0 < w < 1, then E[vt+1 − vt] is a decreasing
function of vt .

Proof: From Eq. (6), we have

E[vt+1] = wvt +
c1 p+ c2g

2
− c1 + c2

2

(
1

1+ e−vt

)
,

E[vt+1 − vt] =

(w−1)vt +
c1 p+ c2g

2
− c1 + c2

2

(
1

1+ e−vt

)
. (11)

6

Let f (vt) = E[vt+1 − vt], then

f ′(vt) = (w−1)− c1 + c2

2

(
1

1+ e−vt

)′

= (w−1)− c1 + c2

2
· e−vt

(1+ e−vt)2 .

Since w< 1, c1 > 0, c2 > 0, and e−vt

(1+e−vt)2 > 0, we have f ′(vt)<

0. Thus, E[vt+1 − vt] is a decreasing function of vt .

Remark. Fig. 1 illustrates an example of the relationship
between vt and E[vt+1 − vt] under different w values, when
c1 = c2 = 2 and p ̸= g. The figure clearly shows that E[vt+1−
vt] is a decreasing function of vt , and a larger w leads to a
flatter slope due to the larger f ′(vt) value (closer to zero).
Another interesting observation is that E[vt+1 − vt] = 0 when
vt = 0 regardless of w. This phenomenon will be proven in
Lemma 10.

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

E[v
t+1

−v
t
]=(w−1)v

t
+(1−2/(1+e−v

t))

v
t

E
[v

t+
1−

v t]

w=0.1
w=0.5
w=0.9
E[v

t+1
−v

t
]=0

Fig. 1. The relationship between E[vt+1 − vt] and vt under w = 0.9, 0.5 and
0.1, when p ̸= g and c1 = c2 = 2.

Lemma 10. If 0 < w < 1, then there exists a finite value v∗,
so that

E[vt+1 − vt]

 > 0, if vt < v∗,
= 0, if vt = v∗,
< 0, if vt > v∗,

and v∗ satisfies

(w−1)v∗+
c1 p+ c2g

2
− c1 + c2

2

(
1

1+ e−v∗

)
= 0. (12)

Proof: First, let

f (v) = (w−1)v,

g(v) =
c1 + c2

2

(
1

1+ e−v

)
− c1 p+ c2g

2
.

Since w < 1, f (v) is a decreasing function of v. On the other
hand, it is obvious that g(v) is an increasing function of v.

Then, it is easily obtained that

lim
v→−∞

f (v)→ ∞, lim
v→−∞

g(v) =−c1 p+ c2g
2

,

lim
v→∞

f (v)→−∞, lim
v→∞

g(v) =
c1 + c2

2
− c1 p+ c2g

2
.

Therefore, limv→−∞ f (v) > limv→−∞ g(v) and limv→∞ f (v) <
limv→∞ g(v). Note that f (v) is a decreasing function of v and
g(v) is an increasing function of v, there must exist a finite
intersection −∞ < v∗ < ∞, so that f (v∗) = g(v∗). That is,

(w−1)v∗+
c1 p+ c2g

2
− c1 + c2

2

(
1

1+ e−v∗

)
= 0.

The existence of a finite v∗ has been proven.
According to Eqs. (11) and (12), we have

E[vt+1 − vt |vt = v∗] = 0.

Since E[vt+1 − vt] is a decreasing function of vt (proven in
Lemma 9), we have

E[vt+1 − vt]

 > 0, if vt < v∗,
= 0, if vt = v∗,
< 0, if vt > v∗.

Remark. In the example shown in Fig. 1, since c1 = c2 = 2,
one can assume p = 1 and g = 0 without loss of generality.
Then,

E[vt+1 − vt] = (w−1)vt +1−2
(

1
1+ e−vt

)
.

Then, when vt = 0, E[vt+1 − vt] = 0 regardless of w. In other
words, when c1 = c2 and p ̸= g, v∗ = 0 for all possible w
values.

Lemma 10 implies that for any iteration t, if vt < v∗, then the
velocity is expected to increase in the next iteration. If vt > v∗,
the velocity is expected to decrease in the next iteration. If
vt = v∗, the velocity is expected to remain the same in the next
iteration. Simply put, the sequence of E[vt] fluctuates around
v∗.

Figs. 2 to 4 show the sequences of the mean velocity vt
(t = 1,2, . . .) over 3000 independent runs (to approximate
E[vt]) under different p and g values, with w = 1, 0.9, 0.5 and
0.1. The other parameters are set to v0 = 0 and c1 = c2 = 2.
The figures clearly demonstrate that when w < 1, the mean
velocities fluctuate around the corresponding v∗’s (e.g. around
2.3 for w= 0.9 and p= g= 1, −2.3 for w= 0.9 and p= g= 0,
and 0 when p ̸= g).

The implications of Lemmas 6–10 can be summarized as
a theorem about Pr(xt = 1) and Pr(xt = 0) under different
conditions when 0 < w < 1. It is stated as follows:

Theorem 2. When 0 < w < 1, then under the standard
parameter settings where c1 = c2 and v0 = 0,

1) if p = g, then Pr(xt = p) (Pr(xt = g)) is always greater
than 0.5;

2) if p ̸= g, then the sequences of Pr(xt = 1) and Pr(xt = 0)
fluctuate around 0.5.

Proof: The proof can be directly derived from the remarks
of Lemmas 6–10.

7

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Iterations

M
ea

n(
v t)

w=1
w=0.9
w=0.5
w=0.1

Fig. 2. The curves of the mean velocity vt over 3000 independent runs with
w = 1, 0.9, 0.5 and 0.1, when v0 = 0, p = g = 1 and c1 = c2 = 2.

0 50 100 150 200 250 300
−6

−5

−4

−3

−2

−1

0

Iterations

M
ea

n(
v t)

w=1
w=0.9
w=0.5
w=0.1

Fig. 3. The curves of the mean velocity vt over 3000 independent runs with
w = 1, 0.9, 0.5 and 0.1, when v0 = 0, p = g = 0 and c1 = c2 = 2.

0 50 100 150 200 250 300
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Iterations

M
ea

n(
v t)

w=1
w=0.9
w=0.5
w=0.1

Fig. 4. The curves of the mean velocity vt over 3000 independent runs with
w = 1, 0.9, 0.5 and 0.1, when v0 = 0, p ̸= g and c1 = c2 = 2.

IV. BPSO WITH AN INCREASING INERTIA WEIGHT

Section III analyzed the effect of the inertia weight w on
the behavior of the velocity v and position x in the single-
dimensional case (i.e. a bit), when the acceleration coefficients
c1 and c2 are set to constants and p and g are unchanged over
time. Since the velocity and position updating are carried out
independently in BPSO, the lemmas and theorems derived in

Section III can be directly extended to a bit string. Specifically,
given an n-dimensional bit string, let x = (x1, . . . ,xn) be the
position vector, v = (v1, . . . ,vn) be the velocity vector, and
p = (p1, . . . , pn) and g = (g1, . . . ,gn) be the personal and
global best positions, then ∀ d ∈ {1, . . . ,n}, all the lemmas
and theorems in Section III can be applied to xd , vd , pd and
gd . In summary, for each dimension d, we have the following
properties based on the analysis in Section III:

1) If pd = gd , then a larger w is expected to lead to a larger
absolute velocity (shown in Figs. 2 and 3), and thus a
faster convergence speed of xd to pd and gd .

2) If pd ̸= gd , under the standard setting of c1 = c2 and
v0 = 0, Pr(xd = 1) and Pr(xd = 0) fluctuate around 0.5.

For the dimensions where p and g have the same values,
a larger w tends to drive the corresponding xd values towards
pd and gd quickly. For the dimensions where p and g have
different values, xd randomly fluctuates between 0 and 1
regardless of w. However, as search continues, more and more
bit values in p and g tend to converge to the same values. Thus,
in the long term, given fixed c1 and c2 values, the convergence
speed of the position x to the personal best position p of this
particle and the global best position g tends to increase as w
increases.

In a general framework of BPSO, the search starts first with
exploration, and gradually moves towards exploitation as the
search continues. Assuming that c1 and c2 are fixed, and the
exploitation capability of BPSO is strengthened as w increases,
an increasing inertia weight scheme is proposed to shift the
search process from exploration to exploitation in BPSO.

Here, a linearly increasing scheme is adopted. In each
iteration, the inertia weight w is calculated as follows:

w =

{
w+ π·(w−w)

ρ·π , if π ≤ ρ ·π,
w, if ρ ·π < π ≤ π,

(13)

where π and π stand for the number of iterations elapsed and
the maximal number of iterations respectively. w and w are
the lower and upper bounds of w. 0 ≤ ρ ≤ 1 is the parameter
to control the number of iterations to make w increase from w
to w. If ρ = 0, then w is fixed to w and there is no adaptation
during the process. On the other hand, if ρ = 1, w linearly
increases throughout the search process. Here, we set ρ = 0.9,
which is a reasonable value to achieve a good tradeoff between
exploration and exploitation according to preliminary studies.

The framework of the BPSO with the above increasing
inertia weight scheme is the same as Algorithm 1. The only
difference is that Eq. (5) is replaced by Eq. (13).

In addition, to make a fair comparison with the decreasing
inertia weight scheme, Eq. (5) is revised to the following
equation:

w =

{
w− π·(w−w)

ρ·π , if π ≤ ρ ·π,
w, if ρ ·π < π ≤ π,

(14)

where ρ is set to the same value as that in Eq. (13), which is
0.9.

8

V. EXPERIMENTAL STUDIES

In this section, the proposed increasing inertia weight
scheme is compared with the decreasing and constant in-
ertia weight schemes on the 0/1 knapsack problems, which
are commonly used benchmark problems for testing binary
optimization algorithms. For the sake of convenience, the
BPSOs with the three compared schemes are denoted as “Up”,
“Down” and “Con” respectively. Their details are given below:

• In “Up”, the inertia weight is defined by Eq. (13);
• In “Down”, the inertia weight is defined by Eq. (14);
• In “Con”, the inertia weight is set to a proper constant

value w∗, which will be determined in Section V-B by
testing a range of values and selecting the best one.

A. Experimental Settings

The single- and multi-dimensional 0/1 knapsack problems
are selected to test our algorithms. The Single 0/1 Knapsack
Problem (SKP) can be described as follows: Given n items,
each of which having a positive profit pi > 0 and a positive
resource consumption ri > 0 (e.g. size), and a knapsack with
a capacity of C, the aim is to pick a subset of items to put
in the knapsack, so that the total profit of the picked items
is maximized, while the total resource consumption does not
exceed the capacity C of the knapsack. The problem can be
formulated as follows:

max
n

∑
i=1

pixi, (15)

s.t. :
n

∑
i=1

rixi ≤C, (16)

xi ∈ {0,1}, ∀ i ∈ {1, . . . ,n}, (17)

where the decision variable xi takes the value of 1 if item i is
picked, and 0 otherwise.

In the Multi-dimensional 0/1 Knapsack Problem (MKP),
there are m (m > 1) resources to be considered. Each item
i has a set of resource consumptions ri j (j ∈ {1, . . . ,m}),
and the knapsack has a capacity C j (j ∈ {1, . . . ,m}) for each
resource. Then, MKP requires that the total consumption of
each resource does not exceed the corresponding capacity. The
problem can be formulated as follows:

max
n

∑
i=1

pixi, (18)

s.t. :
n

∑
i=1

ri jxi ≤C j, ∀ j ∈ {1, . . . ,m}, (19)

xi ∈ {0,1}, ∀ i ∈ {1, . . . ,n}. (20)

MKP has a number of applications in the real world, such
as the capital budgeting problem, allocation of processors and
databases in a distributed computer system, project selection,
cargo loading and cutting stock problems [51].

In our experiments, the SKP test dataset is obtained from
an academic web page of Michigan Technological University1,
which contains 25 randomly generated instances. For MKP, the
Sento, Weing and Weish test sets are selected from the MKP

1http://www.math.mtu.edu/∼kreher/cages/Data.html

website of University of Nottingham2, which include 2, 8 and
30 instances respectively. These datasets have been commonly
used as the test problems of knapsack problems in previous
works (e.g. [11] [52] [53] [54]).

Note that both SKP and MKP are constrained binary op-
timization problems. To tackle the constraints in BPSO, the
penalty function strategy [55] is employed to transform the
problem into an unconstrained one. Concretely, the fitness
function is defined as

f (x) =
n

∑
i=1

pixi +β ·
n

∑
i=1

m

∑
j=1

min(C j − ri jxi,0), (21)

where β is the penalty coefficient to control the tradeoff
between the objective value and the violation to the constraints.
In our experimental studies, β is simply set to 10100, which is a
sufficiently large number to eliminate the infeasible solutions.

Tabel I describes the parameter settings in the experiments
in detail. Note that the number of particles and maximal
number of iterations of the BPSO are set differently for SKP
and MKP instances. This is because the MKP instances have
larger problem sizes, and thus require more particles and
number of iterations to reach competitive results.

B. Selecting the Best Constant Inertia Weight

In order to select the best constant inertia weight for “Con”,
the values from {0.4,0.5,0.6,0.7,0.8,0.9,1.0} were tested and
compared. The range is selected based on that adopted by
the decreasing inertia weight scheme [34], which is between
0.4 and 0.9. For each tested value, 100 independent runs of
the corresponding “Con” BPSO were conducted on the Sento,
Weing, and Weish MKP instances. Tables II and III show the
mean value of the results obtained by “Con” with the tested
inertia weights. The key features of the instances are given
as well. Specifically, “m” and “n” stand for the number of
resources and items in the MKP instance, and “Opt” is the
optimal result given by the website2. In addition, the best
inertia weight (with the highest mean) was compared with
each of the other weights by the t-test with significance level
of 0.05 and Bonferroni correction. That is, the significance
level is corrected by the number of comparisons as α ′ = α/m,
where m is the number of comparisons. For each instance, if a
constant inertia weight performed significantly better than all
the others, the corresponding result is marked in bold.

From the tables, one can see that 0.9 and 1.0 are the two best
constant inertia weights in terms of the number of significantly
better results (14 for 0.9 and 15 for 1.0). In addition, it is
obvious that the best constant inertia weight depends on the
problem size n. When n ≤ 60, 0.9 is the best value in the most
cases. When n ≥ 70, however, 1.0 becomes the best value.

In addition to the number of significant better results, we
also calculated the average percentage of deviation ∆% for
each instance, which is defined as follows:

∆% =
f ∗− fmean

f ∗
, (22)

2http://www.cs.nott.ac.uk/∼jqd/mkp/index.html

9

TABLE I
PARAMETER SETTINGS OF THE EXPERIMENTS ON THE KNAPSACK PROBLEMS.

Parameter Description Value

w Upper bound of w 1
w Lower bound of w 0.4
ρ Fraction of iterations for changing w in Eqs. (13) and (14) 0.9
β Penalty coefficient in Eq. (21) 10100

N Number of particles in the BPSO 20 for SKP instances
n for MKP instances

π Maximal number of iterations 1000 for SKP instances
3000 for MKP instances

TABLE II
MEAN OF THE RESULTS OF “CON” WITH DIFFERENT INERTIA WEIGHTS OVER 100 INDEPENDENT RUNS ON THE SENTO AND WEING MKP INSTANCES.

Name m n Opt 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sento1 30 60 7.7720E+03 6.3222E+03 6.6133E+03 6.8795E+03 7.2185E+03 7.4875E+03 7.7335E+03 7.6733E+03
Sento2 30 60 8.7220E+03 8.3238E+03 8.3634E+03 8.4246E+03 8.4917E+03 8.5862E+03 8.6948E+03 8.6674E+03
Weing1 2 28 1.4128E+05 1.4091E+05 1.4108E+05 1.4120E+05 1.4127E+05 1.4128E+05 1.4127E+05 1.4022E+05
Weing2 2 28 1.3088E+05 1.3027E+05 1.3066E+05 1.3082E+05 1.3088E+05 1.3088E+05 1.3088E+05 1.2771E+05
Weing3 2 28 9.5677E+04 9.4232E+04 9.4697E+04 9.5187E+04 9.5421E+04 9.5442E+04 9.5222E+04 9.0235E+04
Weing4 2 28 1.1934E+05 1.1873E+05 1.1908E+05 1.1921E+05 1.1926E+05 1.1921E+05 1.1923E+05 1.1659E+05
Weing5 2 28 9.8796E+04 9.7227E+04 9.8141E+04 9.8501E+04 9.8651E+04 9.8766E+04 9.8577E+04 9.4803E+04
Weing6 2 28 1.3062E+05 1.2999E+05 1.3025E+05 1.3038E+05 1.3048E+05 1.3051E+05 1.3051E+05 1.2761E+05
Weing7 2 105 1.0954E+06 1.0033E+06 1.0128E+06 1.0255E+06 1.0402E+06 1.0578E+06 1.0832E+06 1.0937E+06
Weing8 2 105 6.2432E+05 1.4546E+05 2.5105E+05 3.3927E+05 4.1678E+05 4.8488E+05 5.7694E+05 6.0828E+05

Under the t-test with significance level of 0.05 and Bonferroni correction, if the mean of one result is significantly better than all the others,
then its corresponding mean value is highlighted in bold.

TABLE III
MEAN OF THE RESULTS OF “CON” WITH DIFFERENT INERTIA WEIGHTS OVER 100 INDEPENDENT RUNS ON THE WEISH MKP INSTANCES.

Name m n Opt 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Weish01 5 30 4.5540E+03 4.4779E+03 4.5025E+03 4.5294E+03 4.5499E+03 4.5533E+03 4.5510E+03 4.5035E+03
Weish02 5 30 4.5360E+03 4.4640E+03 4.4871E+03 4.5152E+03 4.5301E+03 4.5349E+03 4.5349E+03 4.4912E+03
Weish03 5 30 4.1150E+03 4.0219E+03 4.0458E+03 4.0838E+03 4.1043E+03 4.1093E+03 4.1093E+03 4.0462E+03
Weish04 5 30 4.5610E+03 4.4495E+03 4.5012E+03 4.5380E+03 4.5607E+03 4.5610E+03 4.5610E+03 4.5397E+03
Weish05 5 30 4.5140E+03 4.3795E+03 4.4278E+03 4.4850E+03 4.5108E+03 4.5140E+03 4.5140E+03 4.4582E+03
Weish06 5 40 5.5570E+03 5.3587E+03 5.4031E+03 5.4456E+03 5.4935E+03 5.5381E+03 5.5498E+03 5.5031E+03
Weish07 5 40 5.5670E+03 5.3348E+03 5.3888E+03 5.4389E+03 5.4976E+03 5.5541E+03 5.5642E+03 5.5215E+03
Weish08 5 40 5.6050E+03 5.3898E+03 5.4367E+03 5.4939E+03 5.5520E+03 5.5939E+03 5.6037E+03 5.5624E+03
Weish09 5 40 5.2460E+03 4.8578E+03 4.9662E+03 5.0887E+03 5.1661E+03 5.2280E+03 5.2445E+03 5.1912E+03
Weish10 5 50 6.3390E+03 5.6458E+03 5.7433E+03 5.9010E+03 6.0528E+03 6.2422E+03 6.3333E+03 6.2951E+03
Weish11 5 50 5.6430E+03 4.7359E+03 4.8966E+03 5.0982E+03 5.3064E+03 5.4929E+03 5.6310E+03 5.5763E+03
Weish12 5 50 6.3390E+03 5.6023E+03 5.7108E+03 5.8669E+03 6.0099E+03 6.2249E+03 6.3347E+03 6.2824E+03
Weish13 5 50 6.1590E+03 5.3972E+03 5.5157E+03 5.6411E+03 5.8484E+03 6.0470E+03 6.1545E+03 6.0931E+03
Weish14 5 60 6.9540E+03 5.8835E+03 6.0450E+03 6.1776E+03 6.3809E+03 6.6598E+03 6.9289E+03 6.9092E+03
Weish15 5 60 7.4860E+03 6.0940E+03 6.2858E+03 6.5758E+03 6.8966E+03 7.2223E+03 7.4580E+03 7.4594E+03
Weish16 5 60 7.2890E+03 6.3411E+03 6.4966E+03 6.6618E+03 6.8396E+03 7.0776E+03 7.2769E+03 7.2494E+03
Weish17 5 60 8.6330E+03 8.0783E+03 8.1598E+03 8.2361E+03 8.3520E+03 8.4967E+03 8.6218E+03 8.6152E+03
Weish18 5 70 9.5800E+03 8.6638E+03 8.7475E+03 8.8790E+03 9.0582E+03 9.2736E+03 9.5151E+03 9.5340E+03
Weish19 5 70 7.6980E+03 6.1447E+03 6.2935E+03 6.5528E+03 6.8217E+03 7.1677E+03 7.5972E+03 7.6228E+03
Weish20 5 70 9.4500E+03 8.0720E+03 8.2605E+03 8.4773E+03 8.7069E+03 9.0362E+03 9.3837E+03 9.4075E+03
Weish21 5 70 9.0740E+03 7.5268E+03 7.7440E+03 8.0049E+03 8.2594E+03 8.6040E+03 8.9957E+03 9.0291E+03
Weish22 5 80 8.9470E+03 7.0712E+03 7.2595E+03 7.4979E+03 7.7506E+03 8.1719E+03 8.7438E+03 8.8596E+03
Weish23 5 80 8.3440E+03 6.2538E+03 6.5068E+03 6.7881E+03 7.1018E+03 7.5522E+03 8.1184E+03 8.2691E+03
Weish24 5 80 1.0220E+04 9.0657E+03 9.1887E+03 9.3318E+03 9.5167E+03 9.7613E+03 1.0087E+04 1.0176E+04
Weish25 5 80 9.9390E+03 8.3582E+03 8.5302E+03 8.7430E+03 9.0253E+03 9.3687E+03 9.7981E+03 9.9088E+03
Weish26 5 90 9.5840E+03 7.1117E+03 7.4250E+03 7.6822E+03 8.0370E+03 8.5056E+03 9.2359E+03 9.5094E+03
Weish27 5 90 9.8190E+03 7.4241E+03 7.6435E+03 7.9445E+03 8.2766E+03 8.7483E+03 9.4363E+03 9.7328E+03
Weish28 5 90 9.4920E+03 6.9374E+03 7.2043E+03 7.5403E+03 7.9370E+03 8.4264E+03 9.1158E+03 9.4159E+03
Weish29 5 90 9.4100E+03 6.8325E+03 7.0784E+03 7.4160E+03 7.8180E+03 8.2937E+03 9.0303E+03 9.3073E+03
Weish30 5 90 1.1191E+04 9.5553E+03 9.7001E+03 9.9120E+03 1.0183E+04 1.0548E+04 1.1002E+04 1.1160E+04

Under the t-test with significance level of 0.05 and Bonferroni correction, if the mean of one result is significantly better than all the others,
then its corresponding mean value is highlighted in bold.

where f ∗ is the optimal (maximal) result, and fmean is the
mean value obtained by the algorithm.

Since ∆% is a normalized measure (between 0 and 1) across
different instances, we calculated the mean ∆% value for

10

each MKP set and all the MKP sets as a whole. The results
are shown in Table IV. For each dataset, the best value is
marked in bold. It can be seen that the value of 0.9 obtained
the smallest mean ∆% over all the instances, and it was
outperformed by w = 1.0 only on the Weish set (Weish18 to
Weish30 shown by Table III). Therefore, w∗ = 0.9 is selected
as the best constant inertia weight for “Con” in the subsequent
empirical studies.

TABLE IV
MEAN ∆% VALUES OF “CON” WITH DIFFERENT INERTIA WEIGHT OVER

100 INDEPENDENT RUNS ON THE MKP DATASETS SEPARATELY AND
ALTOGETHER. FOR EACH DATASET, THE BEST VALUE IS MARKED IN BOLD.

Dataset 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sento 11.6% 9.5% 7.4% 4.9% 2.6% 0.4% 0.9%
Weing 11.2% 8.7% 6.7% 4.9% 3.3% 1.2% 2.5%
Weish 12.9% 11.2% 9.1% 6.8% 4.0% 1.0% 0.8%

Overall 12.5% 10.6% 8.5% 6.3% 3.8% 1.0% 1.1%

C. Experimental Results

In this section, we compare the “Down”, “Con” and “Up”
strategies. For each test instance and each compared algorithm,
100 independent runs were conducted, and the mean and
standard deviation of the 100 corresponding results were
calculated. For each instance, the best algorithm was compared
with the other two algorithms by the t-test with significance
level of 0.05 and Bonferroni correction. If the best algorithm is
significantly better than the other two, then the corresponding
entry is marked in bold. In addition, if an algorithm con-
sistently achieved the optimal value (best known value for
the SKP instances, where the optimal value is unknown), the
corresponding entry is marked with ∗.

1) Single 0/1 Knapsack Problem: Table V shows the mean
and standard deviation of the results of the compared algo-
rithms over 100 independent runs on the SKP instances, along
with the number of items n of each instance, which ranges
from 8 to 24. Since the instances are randomly generated, the
optimal solutions for them are unknown. The column “BK”
gives the best known profit for each instance, which is the
maximal profit obtained by all the tested algorithms.

From the table, one can see that “Up” performed signifi-
cantly better than both “Down” and “Con” on 3 out of the total
25 instances. On another 9 instances (Ks 8a to Ks 8e, Ks 12a
and Ks 12c to Ks 12e), “Up” consistently reached the best
known solution along with at least one of the other algorithms.
“Up” was not significantly outperformed on any SKP instance.
Thus, the efficacy of the proposed increasing inertia weight
scheme has been demonstrated on SKP instances.

2) Multi-dimensional 0/1 Knapsack Problem: The mean
and standard deviation of the results of the compared al-
gorithms over 100 independent runs on the MKP instances
are given in Tables VI and VII. The column “Success Rate”
indicates the percentage of the runs that successfully achieved
the global optimum over the total 100 runs.

Table VI shows the results on the Sento and Weing in-
stances. From the table, one can see that “Up” obtained
significantly better results than “Down” and “Con” on 3 out of

the total 10 instances, and was statistically comparable with
the other algorithms on the remaining 7 instances. In terms
of success rate, “Up” obtaining the highest success rate on 6
instances, including the last two instances for which “Down”
and “Con” failed to find the global optimum.

Table VII shows the results on the Weish instances, in which
similar patterns can be observed. In terms of both mean profit
and success rate, “Up” performed better than both “Down”
and “Con”. The statistical test shows that “Up” performed
significantly better than “Down” and “Con” on 16 out of the
total 30 instances, and was only outperformed by “Con” on 1
instances. “Up” also achieved much higher success rate than
the other algorithms on most of the instances. Table VIII shows
that over all the MKP instances, the mean ∆% value of “Up”
is 0.2%, which is much smaller than that of “Down” (0.5%)
and “Con” (1.0%).

Note that Table III shows that the w= 1.0 is better than w=
0.9 on Weish18 to Weish30. To make a fairer comparison, we
also conducted t-test with significance level of 0.05 between
“Up” and “Con” with w = 1.0, and the results showed that
“Up” still performed significantly better than “Con” with w =
1.0 on Weish18 to Weish30. This verifies the efficacy of “Up”
on the MKP instances, especially on the large instances.

TABLE VIII
MEAN ∆% VALUES OF “DOWN”, “CON” AND “UP” OVER 100

INDEPENDENT RUNS ON THE MKP DATASETS SEPARATELY AND
ALTOGETHER. FOR EACH DATASET, THE BEST VALUE IS MARKED IN BOLD.

Dataset Down Con Up

Sento 0.6% 0.4% 0.3%
Weing 0.7% 1.2% 0.2%
Weish 0.5% 1.0% 0.2%

Overall 0.5% 1.0% 0.2%

Fig. 5 shows the boxplots of the distribution of the ∆%
values in the 100 independent runs of “Down”, “Con” and
“Up”, on some representative MKP instances in terms of
problem size. The plots clearly show that the distribution of
“Up” are below that of both “Down” and “Con” for these
instances. For Weish03 and Weish13, the median of “Up”
reached zero, indicating that “Up” is more likely to achieve the
optimal solutions than the other algorithms on these instances.

Note that when using the increasing inertia weight scheme
in the experiments, w is increased from the lower bound
w to the upper bound w during the first ρ · w iterations.
Therefore, the increasing rate of w depends on the total
number of iterations π . Specifically, when given less iterations,
the increasing speed of w is higher, and the BPSO moves
from exploration to exploitation more rapidly. Likewise, when
adopting the decreasing inertia weight scheme, w is decreased
with a higher speed under a smaller number of iterations.
To investigate the effect of π on the behavior of the BPSO
with the increasing inertia weight scheme, four different BPSO
variants with maximal number of iterations of 500, 1000, 2000
and 3000 are tested on the Weish MKP instances and their
convergence curves are compared.

Fig. 6 shows the convergence curves of the compared algo-
rithms with the maximal number of iterations of 500, 1000,

11

TABLE V
THE RESULTS OF “DOWN”, “CON” AND “UP” OVER INDEPENDENT 100 RUNS ON THE SKP INSTANCES.

Name n BK Down Con Up

Ks 8a 8 3.9244E+06 3.9244E+06(0.0000E+00)∗ 3.9228E+06(4.1371E+03) 3.9244E+06(0.0000E+00)∗
Ks 8b 8 3.8137E+06 3.8137E+06(0.0000E+00)∗ 3.8137E+06(0.0000E+00)∗ 3.8137E+06(0.0000E+00)∗
Ks 8c 8 3.3475E+06 3.3475E+06(0.0000E+00)∗ 3.3458E+06(1.6384E+04) 3.3475E+06(0.0000E+00)∗
Ks 8d 8 4.1877E+06 4.1877E+06(0.0000E+00)∗ 4.1877E+06(0.0000E+00)∗ 4.1877E+06(0.0000E+00)∗
Ks 8e 8 4.9556E+06 4.9556E+06(0.0000E+00)∗ 4.9497E+06(2.3469E+04) 4.9556E+06(0.0000E+00)∗
Ks 12a 12 5.6889E+06 5.6889E+06(0.0000E+00)∗ 5.6884E+06(3.1029E+03) 5.6889E+06(0.0000E+00)∗
Ks 12b 12 6.4986E+06 6.4948E+06(9.1792E+03) 6.4902E+06(1.2088E+04) 6.4971E+06(6.1050E+03)
Ks 12c 12 5.1706E+06 5.1706E+06(0.0000E+00)∗ 5.1694E+06(6.4341E+03) 5.1706E+06(0.0000E+00)∗
Ks 12d 12 6.9924E+06 6.9924E+06(0.0000E+00)∗ 6.9921E+06(1.0333E+03) 6.9924E+06(0.0000E+00)∗
Ks 12e 12 5.3375E+06 5.3375E+06(0.0000E+00)∗ 5.3347E+06(1.7023E+04) 5.3375E+06(0.0000E+00)∗
Ks 16a 16 7.8510E+06 7.8455E+06(9.8417E+03) 7.8382E+06(1.6408E+04) 7.8488E+06(6.6265E+03)
Ks 16b 16 9.3530E+06 9.3523E+06(3.1377E+03) 9.3509E+06(9.1346E+03) 9.3528E+06(9.0215E+02)
Ks 16c 16 9.1511E+06 9.1438E+06(1.5740E+04) 9.1350E+06(2.4331E+04) 9.1492E+06(6.7132E+03)
Ks 16d 16 9.3489E+06 9.3447E+06(7.4229E+03) 9.3370E+06(1.7258E+04) 9.3450E+06(7.7160E+03)
Ks 16e 16 7.7691E+06 7.7664E+06(6.3825E+03) 7.7630E+06(8.2523E+03) 7.7673E+06(5.2458E+03)
Ks 20a 20 1.0727E+07 1.0718E+07(1.3744E+04) 1.0720E+07(1.4229E+04) 1.0719E+07(1.3242E+04)
Ks 20b 20 9.8183E+06 9.7950E+06(2.4608E+04) 9.7978E+06(2.4051E+04) 9.8014E+06(2.3655E+04)
Ks 20c 20 1.0714E+07 1.0707E+07(1.5817E+04) 1.0705E+07(2.3827E+04) 1.0710E+07(5.8940E+03)
Ks 20d 20 8.9292E+06 8.9149E+06(1.9316E+04) 8.9160E+06(2.1221E+04) 8.9214E+06(1.3997E+04)
Ks 20e 20 9.3580E+06 9.3522E+06(1.0796E+04) 9.3518E+06(1.1703E+04) 9.3550E+06(5.7768E+03)
Ks 24a 24 1.3549E+07 1.3512E+07(2.8550E+04) 1.3524E+07(2.2450E+04) 1.3521E+07(2.7622E+04)
Ks 24b 24 1.2234E+07 1.2199E+07(2.4597E+04) 1.2216E+07(1.9263E+04) 1.2214E+07(2.0903E+04)
Ks 24c 24 1.2449E+07 1.2423E+07(2.5462E+04) 1.2434E+07(1.9286E+04) 1.2434E+07(1.8010E+04)
Ks 24d 24 1.1815E+07 1.1793E+07(2.0646E+04) 1.1798E+07(1.7061E+04) 1.1797E+07(1.6720E+04)
Ks 24e 24 1.3940E+07 1.3921E+07(2.1878E+04) 1.3928E+07(1.5814E+04) 1.3923E+07(1.7231E+04)

Under the t-test with significance level of 0.05 and Bonferroni correction, if the best algorithm performed significantly
better than all the others, then the corresponding entry is marked in bold. If an algorithm consistently achieved the
maximal value, the corresponding entry is marked with ∗.

TABLE VI
THE RESULTS OF “DOWN”, “CON” AND “UP” OVER 100 INDEPENDENT RUNS ON THE SENTO AND WEING MKP INSTANCES.

Name m n Opt Success Rate Mean(Std)

Down Con Up Down Con Up

Sento1 30 60 7.7720E+03 12 11 24 7.7095E+03(5.1993E+01) 7.7335E+03(2.5956E+01) 7.7422E+03(3.0506E+01)
Sento2 30 60 8.7220E+03 1 4 6 8.6889E+03(2.3588E+01) 8.6948E+03(1.5545E+01) 8.6992E+03(1.7186E+01)
Weing1 2 28 1.4128E+05 92 98 100 1.4126E+05(1.0175E+02) 1.4127E+05(8.8480E+01) 1.4128E+05(0.0000E+00)∗
Weing2 2 28 1.3088E+05 94 100 90 1.3087E+05(3.8189E+01) 1.3088E+05(0.0000E+00)∗ 1.3087E+05(4.8242E+01)
Weing3 2 28 9.5677E+04 16 31 29 9.5162E+04(5.8707E+02) 9.5222E+04(4.6670E+02) 9.5340E+04(4.5517E+02)
Weing4 2 28 1.1934E+05 84 97 95 1.1904E+05(9.2077E+02) 1.1923E+05(6.0109E+02) 1.1932E+05(5.4542E+01)
Weing5 2 28 9.8796E+04 58 94 98 9.8102E+04(1.3940E+03) 9.8577E+04(8.7401E+02) 9.8793E+04(2.3216E+01)
Weing6 2 28 1.3062E+05 60 70 61 1.3044E+05(2.7742E+02) 1.3051E+05(1.7962E+02) 1.3047E+05(1.9118E+02)
Weing7 2 105 1.0954E+06 0 0 2 1.0916E+06(2.1860E+03) 1.0832E+06(3.0085E+03) 1.0945E+06(1.2014E+03)
Weing8 2 105 6.2432E+05 0 0 2 6.0384E+05(1.0683E+04) 5.7694E+05(1.1157E+04) 6.1885E+05(2.2128E+03)

Under the t-test with significance level of 0.05 and Bonferroni correction, if the best algorithm performed significantly better than all the others, the
corresponding entry is marked in bold. If an algorithm consistently achieved the optimal value, the corresponding entry is marked with ∗.

2000 and 3000, on Weish03, Weish08, Weish13, Weish18,
Weish23 and Weish28. They are six representative instances in
the Weish dataset, which can cover the range of the problem
sizes of all the Weish instances. In each sub-figure, the x-
axis stands for the number of iterations, and the y-axis is the
mean profit value of the best-so-far solutions over the 100
independent runs. For each sub-figure, an inner figure showing
the zoom-in of the convergence curves is given to make a
clearer observation of the difference between them.

Clearly, the convergence curve of “Con” is not affected by
the maximal number of iterations, since w remains the same
throughout the search process. For both “Up” and “Down”, it
is obvious that a larger number of iterations allowed a more
exhaustive search within the solution space, and thus led to
a better final solution. When comparing between “Up” and

“Down”, one can see that “Up” converged more slowly than
“Down”, but finally reached a better solution than “Down”.
This is consistent with the motivation of adopting the increas-
ing inertia weight scheme. The convergence rate should be
slow during the early exploration stage, and increase over time
as the search is moving towards exploitation. The outperfor-
mance of “Up” over “Down” for all the tested numbers of
iterations shows that the maximal number of iterations does
not affect much the performance of the increasing inertia
weight scheme. Additionally, “Up” performed better than
“Con” on all the instances. However, the gap reduces as
the problem size increases. This is because that a stronger
exploitation capability of the BPSO is more desirable in a
larger solution space.

In order to illustrate the effect of the inertia weight on the

12

TABLE VII
THE RESULTS OF “DOWN”, “CON” AND “UP” OVER 100 INDEPENDENT RUNS ON THE WEISH MKP INSTANCES.

Name m n Opt Success Rate Mean(Std)

Down Con Up Down Con Up

Weish01 5 30 4.5540E+03 84 96 96 4.5455E+03(2.3441E+01) 4.5510E+03(1.5019E+01) 4.5510E+03(1.4873E+01)
Weish02 5 30 4.5360E+03 71 78 74 4.5302E+03(1.4955E+01) 4.5349E+03(2.0817E+00) 4.5336E+03(6.4193E+00)
Weish03 5 30 4.1150E+03 60 91 92 4.0937E+03(2.9322E+01) 4.1093E+03(1.8120E+01) 4.1108E+03(1.5166E+01)
Weish04 5 30 4.5610E+03 100 100 100 4.5610E+03(0.0000E+00)∗ 4.5610E+03(0.0000E+00)∗ 4.5610E+03(0.0000E+00)∗
Weish05 5 30 4.5140E+03 100 100 100 4.5140E+03(0.0000E+00)∗ 4.5140E+03(0.0000E+00)∗ 4.5140E+03(0.0000E+00)∗
Weish06 5 40 5.5570E+03 33 55 61 5.5389E+03(1.9317E+01) 5.5498E+03(8.3113E+00) 5.5502E+03(9.0321E+00)
Weish07 5 40 5.5670E+03 61 85 75 5.5563E+03(1.9244E+01) 5.5642E+03(6.6619E+00) 5.5617E+03(9.6944E+00)
Weish08 5 40 5.6050E+03 34 60 38 5.5947E+03(2.0009E+01) 5.6037E+03(2.8476E+00) 5.6017E+03(6.0944E+00)
Weish09 5 40 5.2460E+03 83 96 93 5.2387E+03(1.6689E+01) 5.2445E+03(7.3615E+00) 5.2434E+03(9.7055E+000
Weish10 5 50 6.3390E+03 45 69 65 6.3242E+03(2.2378E+01) 6.3333E+03(1.4700E+01) 6.3343E+03(1.4201E+01)
Weish11 5 50 5.6430E+03 26 54 38 5.5966E+03(5.2928E+01) 5.6310E+03(2.3622E+01) 5.6222E+03(3.3299E+01)
Weish12 5 50 6.3390E+03 51 76 62 6.3189E+03(3.7169E+01) 6.3347E+03(1.4587E+01) 6.3346E+03(1.4979E+01)
Weish13 5 50 6.1590E+03 60 90 94 6.1304E+03(4.3249E+01) 6.1545E+03(1.5011E+01) 6.1547E+03(1.9201E+01)
Weish14 5 60 6.9540E+03 61 44 74 6.9304E+03(4.1637E+01) 6.9289E+03(2.7549E+01) 6.9429E+03(2.0835E+01)
Weish15 5 60 7.4860E+03 50 27 73 7.4623E+03(2.7134E+01) 7.4580E+03(2.1533E+01) 7.4751E+03(1.9602E+01)
Weish16 5 60 7.2890E+03 14 23 26 7.2621E+03(3.4636E+01) 7.2769E+03(1.4350E+01) 7.2793E+03(1.5876E+01)
Weish17 5 60 8.6330E+03 30 23 41 8.6222E+03(1.0012E+01) 8.6218E+03(8.4226E+00) 8.6254E+03(8.0533E+00)
Weish18 5 70 9.5800E+03 7 0 24 9.5456E+03(2.6380E+01) 9.5151E+03(2.8563E+01) 9.5605E+03(1.6840E+01)
Weish19 5 70 7.6980E+03 19 4 45 7.6461E+03(4.8230E+01) 7.5972E+03(5.4987E+01) 7.6786E+03(2.7084E+01)
Weish20 5 70 9.4500E+03 26 2 38 9.4220E+03(3.7139E+01) 9.3837E+03(3.2992E+01) 9.4379E+03(1.3907E+01)
Weish21 5 70 9.0740E+03 16 2 48 9.0314E+03(3.2294E+01) 8.9957E+03(3.7999E+01) 9.0546E+03(2.3079E+01)
Weish22 5 80 8.9470E+03 10 0 25 8.8702E+03(5.0240E+01) 8.7438E+03(6.9980E+01) 8.9146E+03(2.9141E+01)
Weish23 5 80 8.3440E+03 3 0 11 8.2603E+03(5.5769E+01) 8.1184E+03(7.8012E+01) 8.3136E+03(3.5389E+01)
Weish24 5 80 1.0220E+04 3 0 27 1.0164E+04(3.0367E+01) 1.0087E+04(4.1167E+01) 1.0198E+04(2.3412E+01)
Weish25 5 80 9.9390E+03 1 0 19 9.8998E+03(2.1386E+01) 9.7981E+03(4.4962E+01) 9.9191E+03(1.3407E+01)
Weish26 5 90 9.5840E+03 4 0 15 9.4756E+03(6.5445E+01) 9.2359E+03(8.7741E+01) 9.5471E+03(2.5547E+01)
Weish27 5 90 9.8190E+03 8 0 55 9.6903E+03(8.4437E+01) 9.4363E+03(8.3036E+01) 9.7852E+03(5.5456E+01)
Weish28 5 90 9.4920E+03 4 0 45 9.3968E+03(6.9946E+01) 9.1158E+03(9.0954E+01) 9.4647E+03(3.5504E+01)
Weish29 5 90 9.4100E+03 2 0 21 9.2880E+03(6.4943E+01) 9.0303E+03(8.3109E+01) 9.3640E+03(3.7572E+01)
Weish30 5 90 1.1191E+04 2 0 25 1.1137E+04(2.5216E+01) 1.1002E+04(4.6196E+01) 1.1174E+04(1.5945E+01)

Under the t-test with significance level of 0.05 and Bonferroni correction, if the best algorithm performed significantly better than all the others, the
corresponding entry is marked in bold. If an algorithm consistently achieved the optimal value, the corresponding entry is marked with ∗.

diversity of BPSO during the search process, we calculated
the curves of the mean mutual distance between the particles
during the search process of “Up”, “Down” and “Con”. Fig. 7
shows such a diversity plot on Weish18. The other instances
showed a similar pattern. It is clear that “Con” has a standard
search process, in which the diversity drops rapidly and then
converges to a certain level (around 17). In “Up”, the mutual
distance between the particles decreases much slower, which
indicates that the search takes more effort in exploration than
“Con”. In “Down”, the mutual distance between the particles
first decreases at the very early stage of the search, since all the
particles move towards some local optima. Then, the mutual
distance starts to increase, implying that the search shifts
from exploitation to exploration again. This phenomenon is
consistent with our discussions that the exploration capability
of BPSO increases with the decrease of the inertia weight.

VI. CONCLUSION

In this paper, the effect of the inertia weight on the behavior
of BPSO is investigated both theoretically and empirically.
First, the behavior of BPSO is theoretically analyzed under
different scenarios and inertia weight settings, and it was
discovered that under the assumption of stagnation (the global
and personal best positions are unchanged over time) and when
the acceleration coefficients c1 and c2 are fixed, a larger inertia
weight w tends to encourage exploitation, while a smaller one

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

Iterations

M
ea

n
di

st
an

ce
 b

et
w

ee
n

pa
rt

ic
le

s

The instance is: WEISH18; Items: 70

Down
Con
Up

Fig. 7. The curves of the mean mutual distance between the particles during
the search process of “Up”, “Down” and “Con” with different maximal fitness
evaluations on Weish18.

tends to lead to a strong exploration capability.
Based on the above observations and the intuition that

the search should start with exploration, and then gradually
move towards exploitation, a linearly increasing inertia weight
scheme is proposed for BPSO. The experimental studies on
the 0/1 knapsack problem demonstrate that the proposed
increasing inertia weight scheme performed much better than
the decreasing and constant counterparts of BPSO for solving

13

Down Con Up

0

0.005

0.01

0.015

0.02

0.025

0.03

Δ
(M

ea
n,

O
pt

)

(a) Sento1

Down Con Up

0

0.005

0.01

0.015

0.02

0.025

Δ
(M

ea
n,

O
pt

)

(b) Weing03

Down Con Up

0

5

10

15

x 10
−3

Δ
(M

ea
n,

O
pt

)

(c) Weing07

Down Con Up

0

5

10

15

x 10
−3

Δ
(M

ea
n,

O
pt

)

(d) Weish03

Down Con Up

0

5

10

15

x 10
−3

Δ
(M

ea
n,

O
pt

)

(e) Weish08

Down Con Up

0

0.005

0.01

0.015

0.02

0.025

Δ
(M

ea
n,

O
pt

)

(f) Weish13

Down Con Up

0

5

10

15

x 10
−3

Δ
(M

ea
n,

O
pt

)

(g) Weish18

Down Con Up

0

0.01

0.02

0.03

0.04

Δ
(M

ea
n,

O
pt

)

(h) Weish23

Down Con Up

0

0.01

0.02

0.03

0.04

0.05

0.06

Δ
(M

ea
n,

O
pt

)

(i) Weish28

Fig. 5. The boxplots of the ∆% values in the 100 independent runs of “Up”, “Down” and “Con” on some representative MKP instances.

binary optimization problems.
In the future, we will extend the analysis from a single

bit to a bit string, based on which more sophisticated inertia
weight updating schemes will be designed. Currently, the w
value is unique for all the bits of the bit string, regardless of
their own situations, e.g. whether the bit values of the personal
and global best positions are the same. Furthermore, an inertia
weight vector w could be defined, so that each bit can have
its own inertia weight setting based on the particular desirable
tradeoff between exploration and exploitation for that bit.

REFERENCES

[1] J. Kennedy, R. Eberhart et al., “Particle swarm optimization,” in Pro-
ceedings of IEEE international conference on neural networks, vol. 4,
no. 2. Perth, Australia, 1995, pp. 1942–1948.

[2] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine
Learning. Springer, 2010, pp. 760–766.

[3] W.-N. Chen, J. Zhang, H. S.-H. Chung, W.-L. Zhong, W.-G. Wu,
and Y.-H. Shi, “A novel set-based particle swarm optimization method
for discrete optimization problems,” Evolutionary Computation, IEEE
Transactions on, vol. 14, no. 2, pp. 278–300, 2010.

[4] B. Jarboui, N. Damak, P. Siarry, and A. Rebai, “A combinatorial particle
swarm optimization for solving multi-mode resource-constrained project
scheduling problems,” Applied Mathematics and Computation, vol. 195,
no. 1, pp. 299–308, 2008.

[5] J. Kennedy and R. C. Eberhart, “A discrete binary version of the
particle swarm algorithm,” in Systems, Man, and Cybernetics, 1997.
Computational Cybernetics and Simulation., 1997 IEEE International
Conference on, vol. 5. IEEE, 1997, pp. 4104–4108.

[6] G. Pampara, N. Franken, and A. P. Engelbrecht, “Combining particle
swarm optimisation with angle modulation to solve binary problems,”
in Evolutionary Computation, 2005. The 2005 IEEE Congress on, vol. 1.
IEEE, 2005, pp. 89–96.

[7] M. Gong, Q. Cai, X. Chen, and L. Ma, “Complex network clustering by
multiobjective discrete particle swarm optimization based on decompo-
sition,” Evolutionary Computation, IEEE Transactions on, vol. 18, no. 1,
pp. 82–97, 2014.

[8] Y.-J. Zheng, H.-F. Ling, J.-Y. Xue, and S.-Y. Chen, “Population classi-
fication in fire evacuation: a multiobjective particle swarm optimization
approach,” Evolutionary Computation, IEEE Transactions on, vol. 18,
no. 1, pp. 70–81, 2014.

14

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Iterations

M
ea

n

The instance is: WEISH03; Items: 30

Down
Con
Up

0 1000 2000 3000
3850

3900

3950

4000

4050

4100

4150

Iterations

M
ea

n

(a) Weish03

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

Iterations

M
ea

n

The instance is: WEISH08; Items: 40

Down
Con
Up

0 1000 2000 3000

5300

5400

5500

5600

Iterations

M
ea

n

(b) Weish08

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

Iterations

M
ea

n

The instance is: WEISH13; Items: 50

Down
Con
Up

0 1000 2000 3000

5800

5900

6000

6100

6200

Iterations

M
ea

n

(c) Weish13

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iterations

M
ea

n

The instance is: WEISH18; Items: 70

Down
Con
Up

0 1000 2000 3000

9000

9100

9200

9300

9400

9500

9600

Iterations

M
ea

n

(d) Weish18

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

Iterations

M
ea

n

The instance is: WEISH23; Items: 80

Down
Con
Up

0 1000 2000 3000

7400

7600

7800

8000

8200

8400

Iterations

M
ea

n

(e) Weish23

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iterations

M
ea

n

The instance is: WEISH28; Items: 90

Down
Con
Up

0 1000 2000 3000

8400

8600

8800

9000

9200

9400

Iterations

M
ea

n

(f) Weish28

Fig. 6. The convergence curves of “Up”, “Down” and “Con” with the maximal number of iterations of 500, 1000, 2000 and 3000, on a representative subset
of Weish MKP instances.

[9] W. Hu and G. G. Yen, “Adaptive multiobjective particle swarm opti-
mization based on parallel cell coordinate system,” Evolutionary Com-
putation, IEEE Transactions on, vol. 19, no. 1, pp. 1–18, 2015.

[10] C.-J. Liao, C.-T. Tseng, and P. Luarn, “A discrete version of particle
swarm optimization for flowshop scheduling problems,” Computers &
Operations Research, vol. 34, no. 10, pp. 3099–3111, 2007.

[11] J. C. Bansal and K. Deep, “A modified binary particle swarm optimiza-
tion for knapsack problems,” Applied Mathematics and Computation,
vol. 218, no. 22, pp. 11 042–11 061, 2012.

[12] A. Ahmadi, Y. Alinejad-Beromi, and M. Moradi, “Optimal pmu place-
ment for power system observability using binary particle swarm op-
timization and considering measurement redundancy,” Expert Systems

with Applications, vol. 38, no. 6, pp. 7263–7269, 2011.
[13] S. M. Vieira, L. F. Mendonça, G. J. Farinha, and J. Sousa, “Modified

binary pso for feature selection using svm applied to mortality prediction
of septic patients,” Applied Soft Computing, vol. 13, no. 8, pp. 3494–
3504, 2013.

[14] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary pso with mutation
operator for feature selection using decision tree applied to spam
detection,” Knowledge-Based Systems, vol. 64, pp. 22–31, 2014.

[15] M. G. Omran, A. Salman, and A. P. Engelbrecht, “Dynamic clustering
using particle swarm optimization with application in image segmen-
tation,” Pattern Analysis and Applications, vol. 8, no. 4, pp. 332–344,
2006.

15

[16] J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation
for wireless sensor network using modified binary particle swarm
optimization,” 2014.

[17] A. H. El-Maleh, A. T. Sheikh, and S. M. Sait, “Binary particle swarm
optimization (bpso) based state assignment for area minimization of
sequential circuits,” Applied Soft Computing, vol. 13, no. 12, pp. 4832–
4840, 2013.

[18] B. Wei and J. Zhao, “Haplotype inference using a novel binary particle
swarm optimization algorithm,” Applied Soft Computing, vol. 21, pp.
415–422, 2014.

[19] A. Chatterjee, G. Mahanti, and A. Mahanti, “Synthesis of thinned
concentric ring array antenna in predefined phi-planes using binary
firefly and binary particle swarm optimization algorithm,” International
Journal of Numerical Modelling: Electronic Networks, Devices and
Fields, 2014.

[20] C. Blum and X. Li, Swarm intelligence in optimization. Springer, 2008.
[21] I. C. Trelea, “The particle swarm optimization algorithm: conver-

gence analysis and parameter selection,” Information processing letters,
vol. 85, no. 6, pp. 317–325, 2003.

[22] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability,
and convergence in a multidimensional complex space,” Evolutionary
Computation, IEEE Transactions on, vol. 6, no. 1, pp. 58–73, 2002.

[23] F. van den Bergh and A. P. Engelbrecht, “A study of particle swarm
optimization particle trajectories,” Information sciences, vol. 176, no. 8,
pp. 937–971, 2006.

[24] V. Kadirkamanathan, K. Selvarajah, and P. J. Fleming, “Stability analysis
of the particle dynamics in particle swarm optimizer,” Evolutionary
Computation, IEEE Transactions on, vol. 10, no. 3, pp. 245–255, 2006.

[25] J. L. Fernandez-Martinez and E. Garcia-Gonzalo, “Stochastic stability
analysis of the linear continuous and discrete pso models,” Evolutionary
Computation, IEEE Transactions on, vol. 15, no. 3, pp. 405–423, 2011.

[26] C. W. Cleghorn and A. P. Engelbrecht, “A generalized theoretical
deterministic particle swarm model,” Swarm Intelligence, vol. 8, no. 1,
pp. 35–59, 2014.

[27] Q. Liu, “Order-2 stability analysis of particle swarm optimization,”
Evolutionary computation, vol. 23, no. 2, pp. 187–216, 2014.

[28] M. r. Bonyadi and Z. Michalewicz, “Analysis of stability, local
convergence, and transformation sensitivity of a variant of particle
swarm optimization algorithm,” IEEE Transactions on Evolutionary
Computation, 2015. [Online]. Available: http://dx.doi.org/10.1109/
TEVC.2015.2460753

[29] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
Wiley, 2005.

[30] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
Evolutionary Computation Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE International Conference
on. IEEE, 1998, pp. 69–73.

[31] K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches to global
optimization problems through particle swarm optimization,” Natural
computing, vol. 1, no. 2-3, pp. 235–306, 2002.

[32] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimiza-
tion,” in Evolutionary Computation, 1999. CEC 99. Proceedings of the
1999 Congress on, vol. 3. IEEE, 1999.

[33] R. Brits, A. P. Engelbrecht, and F. van den Bergh, “Locating multiple
optima using particle swarm optimization,” Applied Mathematics and
Computation, vol. 189, no. 2, pp. 1859–1883, 2007.

[34] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm
optimization,” in Evolutionary Programming VII. Springer, 1998, pp.
591–600.

[35] J. F. Schutte and A. A. Groenwold, “A study of global optimization
using particle swarms,” Journal of Global Optimization, vol. 31, no. 1,
pp. 93–108, 2005.

[36] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[37] Y. Zheng, L. Ma, L. Zhang, and J. Qian, “On the convergence analysis
and parameter selection in particle swarm optimization,” in Machine
Learning and Cybernetics, 2003 International Conference on, vol. 3.
IEEE, 2003, pp. 1802–1807.

[38] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimizer
with an increasing inertia weight,” in Evolutionary Computation, 2003.
CEC’03. The 2003 Congress on, vol. 1. IEEE, 2003, pp. 221–226.

[39] X. Hu, Y. Shi, and R. C. Eberhart, “Recent advances in particle swarm.”
in IEEE congress on evolutionary computation, vol. 1, 2004, pp. 90–97.

[40] K. E. Parsopoulos, E. I. Papageorgiou, P. Groumpos, and M. N. Vrahatis,
“A first study of fuzzy cognitive maps learning using particle swarm
optimization,” in Evolutionary Computation, 2003. CEC’03. The 2003
Congress on, vol. 2. IEEE, 2003, pp. 1440–1447.

[41] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel particle
swarm optimization algorithm with adaptive inertia weight,” Applied Soft
Computing, vol. 11, no. 4, pp. 3658–3670, 2011.

[42] M. A. Arasomwan and A. O. Adewumi, “On the performance of
linear decreasing inertia weight particle swarm optimization for global
optimization,” The Scientific World Journal, vol. 2013, 2013.

[43] S. Mirjalili and A. Lewis, “S-shaped versus v-shaped transfer functions
for binary particle swarm optimization,” Swarm and Evolutionary Com-
putation, vol. 9, pp. 1–14, 2013.

[44] X. Jin, J. Zhao, Y. Sun, K. Li, and B. Zhang, “Distribution network
reconfiguration for load balancing using binary particle swarm opti-
mization,” in Power System Technology, 2004. PowerCon 2004. 2004
International Conference on, vol. 1. IEEE, 2004, pp. 507–510.

[45] A. Unler and A. Murat, “A discrete particle swarm optimization method
for feature selection in binary classification problems,” European Jour-
nal of Operational Research, vol. 206, no. 3, pp. 528–539, 2010.

[46] S. Pookpunt and W. Ongsakul, “Optimal placement of wind turbines
within wind farm using binary particle swarm optimization with time-
varying acceleration coefficients,” Renewable Energy, vol. 55, pp. 266–
276, 2013.

[47] N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization
for antenna designs: Real-number, binary, single-objective and multiob-
jective implementations,” Antennas and Propagation, IEEE Transactions
on, vol. 55, no. 3, pp. 556–567, 2007.

[48] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli, “A novel binary
particle swarm optimization,” in Control & Automation, 2007. MED’07.
Mediterranean Conference on. IEEE, 2007, pp. 1–6.

[49] L.-Y. Chuang, C.-H. Yang, and J.-C. Li, “Chaotic maps based on
binary particle swarm optimization for feature selection,” Applied Soft
Computing, vol. 11, no. 1, pp. 239–248, 2011.

[50] F. Shahzad, A. R. Baig, S. Masood, M. Kamran, and N. Naveed,
“Opposition-based particle swarm optimization with velocity clamping
(ovcpso),” in Advances in Computational Intelligence. Springer, 2009,
pp. 339–348.

[51] P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimen-
sional knapsack problem,” Journal of heuristics, vol. 4, no. 1, pp. 63–86,
1998.

[52] C.-Y. Lee, Z.-J. Lee, and S.-F. Su, “A new approach for solving 0/1
knapsack problem,” in Systems, Man and Cybernetics, 2006. SMC’06.
IEEE International Conference on, vol. 4. IEEE, 2006, pp. 3138–3143.

[53] J. Langeveld and A. P. Engelbrecht, “Set-based particle swarm opti-
mization applied to the multidimensional knapsack problem,” Swarm
Intelligence, vol. 6, no. 4, pp. 297–342, 2012.

[54] M. A. K. Azad, A. M. A. Rocha, and E. M. Fernandes, “Improved binary
artificial fish swarm algorithm for the 0–1 multidimensional knapsack
problems,” Swarm and Evolutionary Computation, vol. 14, pp. 66–75,
2014.

[55] D. Zou, L. Gao, S. Li, and J. Wu, “Solving 0–1 knapsack problem
by a novel global harmony search algorithm,” Applied Soft Computing,
vol. 11, no. 2, pp. 1556–1564, 2011.

