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Abstract

In this paper we present some theoretical and empirical results on the interacting
roles of population size and crossover in genetic algorithms. We summarize recent
theoretical results on the disruptive effect of two forms of multi-point crossover: n-
point crossover and uniform crossover. We then show empirically that disruption
analysis alone is not sufficient for selecting appropriate forms of crossover. How-
ever, by taking into account the interacting effects of population size and crossover,
a general picture begins to emerge. The implications of these results on implemen-
tation issues and performance are discussed, and several directions for further
research are suggested.

1. Introduction

One of the unique aspects of the work involving genetic algorithms (GAs) is the impor-
tant role that recombination plays in the design and implementation of robust adaptive sys-
tems. In most GAs, individuals are represented by fixed-length strings and recombination is
implemented by means of a crossover operator which operates on pairs of individuals
(parents) to produce new strings (offspring) by exchanging segments from the parents’ strings.
Traditionally, the number of crossover points (which determines how many segments are
exchanged) has been fixed at a very low constant value of 1 or 2. Support for this decision
came from early work of both a theoretical and empirical nature [Holland75, DeJong75].

However, there continue to be indications of an empirical nature that there are situa-
tions in which having a higher number of crossover points is beneficial [Syswerda89, Eschel-
man89]. Perhaps the most surprising result (from a traditional perspective) is the effectiveness
on some problems of uniform crossover, an operator which produces on the average (L / 2)
crossings on strings of length L [Syswerda89].

Recent work by Spears and De Jong [Spears90] has extended the theoretical analysis of
multi-point crossover with respect to disruption of sampling distributions. However, they
pointed out that disruption analysis alone is not sufficient in general to predict and/or select
optimal forms of multi-point crossover. This paper extends their analysis by showing that a
much more consistent view of the role of multi-point crossover begins to emerge if the



interacting effects of population size and crossover are taken into account.

The paper begins with a brief summary of the theoretical results on crossover disrup-
tion, together with some examples of how disruption theory alone is not sufficient to select
optimal crossover forms. An empirical study is then presented which systematically analyzes
the interacting effects of population size and crossover on performance. The implications of
these results on selecting appropriate forms of multi-point crossover are discussed.

2. Disruption Analysis

Holland provided the initial formal analysis of the behavior of GAs by characterizing
how they biased the makeup of new offspring in response to feedback on the fitness of previ-
ously generated individuals. By focusing on a particular class of subspaces of L-dimensional
spaces, namely, kth order hyperplanes characterized by schemata of the form
"***d1****d 2*** . . . ***dk**" (where k represents the number of defining positions di in the
schema string), Holland showed that the expected number of samples (individuals) allocated
to a particular kth order hyperplane Hk at time t  + 1 is given by:

m (Hk ,t +1) ≥ m (Hk ,t) * 
f
_

f (Hk)______ * (1 − Pmk  − PcPd(Hk) )

In this expression, f (Hk) is the average fitness of the current samples allocated to Hk , f
_

is the
average fitness of the current population, Pm is the probability of using the mutation operator,
Pc is the probability of using the crossover operator, and Pd(Hk) is the probability that the
crossover operator will be "disruptive" in the sense that the children produced will not be
members of the same subspace as their parents.

The usual interpretation of this result is that subspaces with higher than average payoffs
will be allocated exponentially more trials over time, while those subspaces with below aver-
age payoffs will be allocated exponentially less trials. This assumes that there are enough sam-
ples to provide reliable estimates of hyperplane fitness, and that the effects of crossover and
mutation are not too disruptive. Since mutation is typically run at a very low rate (e.g.,
Pm = 0.001), it is generally ignored as a significant source of disruption. However, crossover
is usually applied at a very high rate (e.g., Pc ≥ 0.6). So, considerable attention has been given
to estimating Pd, the probability that a particular application of crossover will be disruptive.

To simplify and clarify the analysis, it is typically assumed that individuals are
represented by fixed-length binary strings of length L, and that crossover points can occur
with equal probability between any two adjacent bits. For ease of presentation these same
assumptions will be made for the remainder of this paper. Generalizing the results to non-
binary fixed-length strings is quite straightforward. Relaxing the other assumptions is more
difficult.

Under these assumptions, Holland provided a simple and intuitive analysis of the
disruption of 1-point crossover: as long as the crossover point does not occur within the
defining boundaries of Hk (i.e., in between any of the k fixed defining positions), the children
produced from parents in Hk will also reside in Hk [Holland75]. Figure 1 represents this
graphically for a 3rd order hyperplane schema of the form "***d1****d2***d 3**" Note that
d1 , d2 , and d3 represent the 3 defining positions of the 3rd order hyperplane, while P1 and P2
indicate the two parents.
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Figure 1: A 3rd Order Hyperplane Schema

If crossover does occur inside the defining boundaries, disruption may or may not result.
Disruption will depend on where the crossover point occurs inside the defining boundaries and
on the allele values that the parents have in common on the k defining positions. Hence, Pd

can be bounded by the probability that the crossover point will fall within the defining boun-
daries of Hk . Under the assumption of uniformly distributed crossover points, this yields:

Pd(Hk) ≤ 
L −1

dl (Hk)_______

where dl (Hk) is the "defining length" of Hk, namely the distance between the first and last of
the k fixed defining positions of hyperplane Hk .

This analysis has lead to considerable discussion of the "representational bias" built into
1-point crossover, namely that crossover is much more disruptive to hyperplanes whose
defining positions happen to be far apart. It also suggests a plausible role for inversion opera-
tors capable of effecting a change of representation in which the defining lengths of key hy-
perplanes are shortened.

De Jong and Spears [DeJong75, Spears90] have extended this analysis to two classes of
multi-point crossover operators: traditional n-point crossover and uniform crossover. Their
results take two forms: a conservative lower bound on the disruption and a tighter (non-
bounding) estimate based on probabilistic estimates of the similarity of the parents involved in
the crossover operations.

The conservative lower bound is obtained by noting that no disruption can occur if there
are an even number of crossover points (including 0) between each of the defining positions of
a hyperplane. Hence, we have a bound for the disruption of n-point crossover:

Pd( n,  Hk ) ≤ 1 − Pk,even( n,  Hk )

where Pk,even is defined to be the probability that an even number of crossover points will fall
between each of the defining positions of hyperplane Hk.

The precise form that Pk,even takes is given in [Spears90]. For our purposes here, plot-
ting Pk,even for various forms of multi-point crossover provides a clear visual indication of the



relative disruption caused by these operators. Figure 2 is a typical example of such a plot gen-
erated for hyperplanes of order 3. If we interpret the area above a particular curve as a meas-
ure of the cumulative disruption potential of its associated crossover operator, then these
curves suggest that 2-point crossover is the best as far as minimizing disruption. At the same
time notice that, unlike the traditional n-point crossover, there is no representational bias with
uniform crossover in the sense that all hyperplanes of order k are equally disrupted (but at a
higher rate) regardless of how long or short their defining lengths are.
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Figure 2. Disruption of Uniform Crossover

These bounds are extremely conservative since it can be shown that there are many
"odd" crossovers which are not disruptive because both parents share common allele values on
some or all of the defining positions of Hk . Deriving an expression for the probability that
both parents will share common allele values on the defining positions of a particular hyper-
plane is difficult in general because of the complexity of the population dynamics. We can,
however, get a feeling for the effects of shared allele values on disruption by making the fol-
lowing simplifying assumption: the probability Peq of two parents sharing an allele value is
constant across all loci.

With this assumption we can generalize Pk,even to Pk,ok by including "odd" crossovers
which are not disruptive, yielding a tighter (non-bound) estimate of disruption:

Pd( n,  Hk ) ∼∼ 1 − Pk,ok( n,  Hk )

Again, the actual form of Pk,ok for the various crossover operators is not important here.
The interested reader can see [Spears90] for a more detailed derivation. However, the disrup-
tion curves generated by these forms give a clear view of the effects of counting non-
disruptive "odd" crossovers. Figures 3 and 4 illustrate this for 3rd order hyperplanes. Figure 3
assumes a value of Peq = 0.5, which is likely to hold in the early generations, when matches
are least likely. Figure 4 assumes a value of Peq = 0.75, to get a feeling of the effect as the po-



pulation becomes more homogeneous. Note that in both cases, the amount of expected disr-
uption has been significantly reduced and the relative difference in disruption among different
crossover operators is reduced as well. At the same time, note that the curves for the various
crossover operators have held their relative position with respect to one another.
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Figure 3. Pk,ok on 3rd Order Hyperplanes with Peq = 0.5

3. An Improved View of Crossover Disruption

The crossover disruption analysis in the previous section strongly suggests that cross-
over operators with only a small number of crossover points (1 or 2) minimize disruption. Yet
there are many empirical studies which show situations in which more disruptive crossover
operators such as 16-point crossover and uniform crossover actually outperform less disrup-
tive ones (see, for example, [Eschelman89] or [Syswerda89]). This leaves us in the uncom-
fortable position that the theory is not too helpful in selecting appropriate crossover operators.
It is possible that the theoretical results are themselves incorrect because of some of the sim-
plifying assumptions that were made to obtain some of the closed-form expressions for the
disruption probabilities. However, we feel that it is more likely the case that attempting to
minimize disruption is not the best way to select appropriate crossover operators.

The disruption analysis implicitly assumes that disruption of the sampling distributions
is a bad thing and to be avoided. However, it is possible that there are situations in which
disruption helps rather than hinders the adaptive search process. As we analyzed a variety of
empirical studies in which different crossover operators produced "the best" performance, we
became increasing convinced that this is in fact the case. We believe now that there are at
least two important situations in which disruption is advantageous: 1) late in the evolutionary
search process when the population is quite homogeneous, and 2) when the population size is
too small to provide the necessary sampling accuracy for complex search spaces.
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Figure 4. Pk,ok on 3rd Order Hyperplanes with Peq = 0.75

3.1. Homogeneity and Crossover Productivity

Sampling disruption is important for understanding the effects of crossover when popu-
lations are diverse (typically, early in the evolutionary process). However, when a population
becomes quite homogeneous, another factor becomes important: whether the offspring pro-
duced by crossover will be different than their parents in some way (thus generating a new
sample) or just clones.

If we try to formally compute the probability that the offspring will be different than
their parents, the computation is precisely the same as the previous disruption computations.
To see this, consider two parents whose allele values differ on only 4 loci. In order for cross-
over to produce new offspring, some but not all of those allele values must be exchanged. The
probability of this occurring is just Pd(H4). In other words, those operators that are more dis-
ruptive are also more likely to create new individuals from parents with nearly identical
genetic material.

This property of crossover has been dubbed "crossover productivity" and has been dis-
cussed elsewhere [Booker87, Spears90]. It is easy to show that long term performance can
frequently be improved at the expense of short term performance by selecting more disruptive
crossover operators. There is some evidence that one can have "the best of both worlds" by
modifying crossover operators to be less likely to produce clones without increasing disrup-
tion in the early stages. This can be achieved in a brute force manner by repeated calls to
crossover until non-clones are produced, or in a more sophisticated fashion, such as Booker’s
reduced surrogate approach [Booker87].

Having an "adaptive" crossover operator which increases its disruptive potential as
homogeneity increases is an attractive, but under-appreciated, feature that should be analyzed
further and included in GA implementations.



3.2. Population Size Interactions

As we looked more closely at the situations in which more disruptive crossover opera-
tors improved performance, it became clear that the choice of population size had a strong in-
teracting effect on the results. Part of this effect is due to the crossover productivity issues dis-
cussed in the previous section, since smaller population sizes tend to become homogeneous
more quickly. With larger population sizes the crossover productivity effects are much less
dramatic.

However, even after augmenting the crossover operators (as discussed in the previous
section) to improve productivity, there is still a strong interaction with population size. Our
feeling is that these situations occur when the population size is too small for the complexity
of a particular search space because it lacks the information capacity to provide accurate sam-
pling (see [Goldberg89] for a discussion of population size requirements). This is quite a
different phenomenon than crossover productivity. In terms of Holland’s original analysis, it
suggests that, in the face of inadequate information capacity, noisy sub-optimal sampling dis-
tributions are more robust. To test these ideas, we developed an experimental setting in which
we could systematically vary the problem complexity and population size.

4. Experimental Design and Initial Results

In order to test the relationship between search space complexity and population size,
we needed a test suite which allowed us to control problem complexity in a systematic
manner. The test suite selected was based on a class of boolean satisfiability problems studied
in [Spears90], which we refer to here as n-Peak problems. An n-Peak problem has only one
global optimum, but n  − 1 local optima. These local optima are hills on which the GA can
prematurely converge. By increasing n we can increase the complexity of the search space in
a controlled manner. The problems are:

1−Peak:  (AND  X1   . . .  X30)

2−Peak:  1−Peak  OR  (AND X1  X1

___
  . . .  X30

___
)

3−Peak:  2−Peak  OR  (AND X1  X1

___
  . . .  X15

___
 X16   . . .  X30)

4−Peak:  3−Peak  OR  (AND X1  X1

___
 X2   . . .  X15  X16

___
  . . .  X30

___
)

5−Peak:  4−Peak  OR  (AND X1  X1

___
 X2  X3

___
 X4  X5

___
  . . .  X29

___
 X30)

6−Peak:  5−Peak  OR  (AND X1  X1

___
 X2

___
 X3  X4

___
 X5   . . .  X29  X30

___
)

A boolean satisfiability problem consists of finding an assignment to the boolean vari-
ables such that the boolean expression is true. For the n-Peak problems, the boolean expres-
sion will be true if and only if each of the 30 boolean variables is true. Note that we systemati-
cally increase the complexity of the n-peak family by generating the next member from the
previous one by ORing in an additional conjunction. Each new conjunction added is not quite
satisfiable since each contains both X1 and X1

___
, resulting in the addition of another false peak.

Each boolean satisfiability problem is mapped into an equivalent function optimization
problem for the GA to solve. The mapping is done in such a fashion that any truth assignment
to the boolean variables has a corresponding function value between 0.0 and 1.0. Solutions
have a function value of 1.0. Partial solutions (i.e., local optima) will have function values less
than 1.0 (see [Spears90] for more details). For the above problems, each of the n  − 1 local op-



tima have equivalent function values less than 1.0. Thus each local optimum is equally attrac-
tive to the GA.

We constructed a set of 20 experiments for each n-Peak problem. This was accom-
plished by allowing the GA to solve each problem using four different population sizes (20,
50, 100, and 1000) and five different crossover operators (2-point, 4-point, 8-point, 16-point,
and uniform). Each of the 20 experiments were averaged over 10 independent runs. Although
there is inadequate space to include the data from all the experiments, we present representa-
tive results to provide a clear picture of the interactive effects of multi-point crossover and po-
pulation size.

Table 1 compares the relative performance of 2-point crossover with uniform crossover,
by indicating which operator resulted in better performance. A ’?’ indicates that neither
operator performed substantially better than the other. Uniform and 2-point crossover
represent the two extremes with respect to disruption. Notice the very clear effect as one
moves to the right and up, namely, the dominance of 2-point crossover. Similarly, note the
dominance of uniform crossover as one moves to the lower left-hand corner. Other pair-wise
comparisons of crossover operators (e.g., 2-point with 16-point) have similar but less dramatic
results, since the disruption differentials are smaller.

_______________________________________________
2-point vs. Uniform_______________________________________________

Population Size_____________________________________Problem
20 50 100 1000_______________________________________________

6-Peak Uniform Uniform 2-point 2-point
5-Peak 2-point 2-point 2-point 2-point
4-Peak ? 2-point ? 2-point
3-Peak Uniform ? 2-point 2-point
2-Peak Uniform 2-point ? 2-point
1-Peak Uniform Uniform ? ?_______________________________________________
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Table 1: Relative Performance of 2-point and Uniform Crossover

To get a better feeling for these results, we have included a representative set of perfor-
mance graphs which illustrate this interaction nicely. Figures 5-10 show how uniform cross-
over dominates 2-point crossover on the simpler problems with smaller populations, but just
the opposite is true for larger population sizes and more complex problems. For each figure,
the horizontal axis represents the number of generations that the GA has run. The vertical axis
indicates the performance of the GA. Since the GA is maximizing, a higher curve represents
better performance. Again, recall that the maximum value is 1.0 indicating that the solution to
the corresponding satisfiability problem has been found. Note that although a larger popula-
tion results in better solutions, the GA must be run for a greater number of generations. This
behavior is quite typical for a GA.

This suggests a way to better understand the role of multi-point crossover. With smaller
populations, more disruptive crossover operators such as uniform or n-point (n >> 2) are like-
ly to yield better results because they help overcome the limited information capacity of
smaller populations and the tendency for more homogeneity. However, with larger popula-
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tions providing sufficient sampling accuracy, less disruptive crossover operators (2-point) are
more likely to work better, as suggested by the theoretical analysis.

5. Conclusions and Further Work

The extensions to the analysis of n-point and uniform crossover presented in this paper
provide additional insight into the role and effective use of these operators. In particular, it
opens up an interesting new view of uniform crossover as being an effective operator for situa-
tions in which there are contraints on the size of the population that can be supported.

At the same time, it should be emphasized that the empirical studies presented are limit-
ed to a carefully controlled experimental setting. The authors are currently involved in ex-
tending this analysis to a much broader class of search problems. The view we are taking is
that there is very little likelihood of finding globally correct answers to questions such as the
choice of population size and crossover operators. Our goal is to understand these interac-
tions well enough so that GAs can be designed to be self-selecting with respect to such deci-
sions.
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