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AN ANALYSIS OF THE POLE-ZERO CANCELLATIONS
IN H(R)-OPTIMAL CONTROL PROBLEMS

OF THE FIRST KIND*

D. J. N. LIMEBEERt AND Y. S. HUNG

Abstract. The aim of this paper is to study the pole-zero cancellations which occur in a class of
H-optimal control problems which may be embedded in the configuration of Fig. 1. H control problems
are said to be of the first kind if both P12(s) and P21(s) are square but not necessarily of the same size. It
is primarily this class Of problems which will concern us here. A general bound on the McMillan degree of
all controllers which are stabilizing and lead.to a closed loop which satisfies [[(s)[[o -< p (p need not be
optimal in the L-norm sense) is derived. As illustrated in Fig. 1, (s) is the transfer function relating
yl(s) to Ul(S). If the McMillan degree of P(s) in Fig. is n, we show that in the single-loop (SISO) case
the corresponding (unique) H-optimal controller never requires more than n states. In the multivariable
case, there is a continuum of optimal controllers whose McMillan degree satisfies this same bound, although
other controllers with higher McMillan degree also exist. The derivation of these bounds require several
steps, each of which is of independent system theoretic interest.

Key words, pole-zero cancellations, H-optimal control, approximation theory, Nehari’s Theorem,
degree bounds
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1. Introduction. Figure 1 represents a generalized, or abstract, regulator configur-
ation in which a large class of H-optimal control problems may be embedded. If
P12(s) and P21(s) are square, we call the associated problem a problem of the first
kind. (Problems of the second kind are characterized by having either P12(s) or P21(s)
nonsquare. If both off-diagonal blocks are nonsquare, the problem is said to be of the
third kind.) Depending on the specific design situation, the inputs ul(s) could be
references, external disturbances, sensor noise signals or the outputs of models rep-
resenting unknown plant dynamics. The outputs yl(s), on the other hand, may be plant
outputs, plant inputs or the signals driving plant perturbation models. The H control
problem for Fig. 1 is to minimize the L-norrn of (s) as K(s) is allowed to range
over the set of all stabilizing controllers. The general theory of these problems is now
well developed and we refer the reader to the expository articles of Francis and Doyle
10], Doyle et al. [6], Safonov et al. [22] and the numerous references therein for details.

u(s)

F P21(S)

---, y(s)=R(s)u(s)

y(s)

FIG. 1. Generalized regulator configuration.

* Received by the editors May 19, 1986; accepted for publication (in revised form) December 3, 1986.
t Department of Electrical Engineering, Imperial College, London, England.
$ Electronic and Electrical Engineering Department, University of Surrey, Guildford, Surrey, England.

1457



1458 D.J.N. LIMEBEER AND Y. S. HUNG

The purpose of this paper is to carry out a detailed analysis of the cancellation
phenomena which occur as a result of H-optimality in the standard regulator configur-
ation mentioned above. Although algorithms for computing these controllers already
exist [6], [22], the procedure is so involved that issues such as McMillan degree
propagation and the final controller order are obscure. A naive inspection of the
procedure may lead one to suspect that the controller degree is several times higher
than that of P(s). Since high order controllers are inevitably preceded by computations
in high dimensional state-space, expensive and unreliable computations are likely to
cause difficulty in complicated design situations. For these reasons, it is our opinion
that the complete structural analysis ofthe computational framework which is presented
here will lead to improved computational methods and will also shed light on several
aspects of the theory. Our approach is to analyse the entire calculation process in the
state-space. This has the advantage of establishing clear links between the theoretical
development and existing computer algorithms [6], [22] and also allows one to use
Glover’s explicit parametrization of all solutions to the Nehari extension problem 12].
This methodology has also been successfully employed in the analysis of cancellation
phenomena in H problems ofthe second kind. This will be reported on elsewhere 16].

The paper is organized as follows: In 2 we define notation, describe the problem
in specific terms and briefly review the relevant parametrization and optimization
theory. Theorem 2.1 is a reformulation of an existing result and it gives an explicit
state-space characterization of all the solutions of the L-norm optimization problem
in terms of bounded real type equations. In 3, we establish by way of balancing two
Riccati equations associated with the parametrization, the role of the right and left
half plane zeros of PI(S) and P21(s). In the case of some problems of the first kind,
the lowest achievable infinity norm of the closed loop can be expressed in terms, of
the solutions to these Riccati equations. Lemma 3.1 and Theorem 3.2 are new results.
In 4, we study the pole-zero cancellations which occur in the closed loop of Fig. 1
when K(s) is chosen to be H-optimal (or suboptimal in a sense to be defined later).
This will lead to a general McMillan degree bound for all these controllers. An
illustrative example is presented which shows that midcalculation model reduction
can produce undesirable effects if done in an ill-advised way. An extension of the
McMillan degree bound to the case of minimum entropy controllers is also given in
this section. The five results given in 4 are all believed to be new. Section 5 contains
the conclusions. All the proofs have been placed in a series of Appendices.

Some of the proofs involve long calculations. For the reader’s convenience, we
have written the paper so that no loss of continuity is experienced if these proofs are
not studied in the first instance.

2. Notation and background theory.
2.1. Notation.

R,C
R(s)
2m!

C+,C+

h (A), max(A)
A*
In(A)

A=>0, A>0
A=<0, A<0

fields of real and complex numbers,
field of rational functions in s with real coefficients,
set of rn x matrices with elements in z(=, C, (s) etc.),
open (resp. closed) right half plane,
open (resp. closed) left half plane,
eigenvalues of a square matrix A, largest eigenvalue of A,
complex conjugate transpose of A C"1 (transpose if A ,,1),
=(r, u, 6), the inertia of A, where zr, , and 6 are the number of
eigenvalues of A in C+, C_ and the jto (imaginary) axis,
A is positive semidefinite (resp. positive definite),
A is negative semidefinite (resp. negative definite),
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RL

RH, RH

_
F

G(s)ll,-,
Re (), g, Isl
G*(s)

space of matrices in N(s)"t which have no poles on the jto axis
(including the point at m),
L-norm of matrices in RL,
subspaces of RL of matrices which have no poles in C/ (resp. C_),
Hankel operator associated with G(s) RH,
ith Hankel singular value of G(s) (i.e. of F) in decreasing order of
magnitude,

or1(G(s)), the Hankel norm of G(s),
the real part, complex conjugate and modulus of s e C,
=G(-g)*, the parahermitian conjugate of G(s),
implies, is implied by, if and only if.

Associated with a transfer function matrix G(s)eN(s)’’ of McMillan degree n
is a state-space realization

(2.1a) G(s) O+ C(sI-A)-IB
where A e N"" B e Rn C e R"n and D eN" We will use the alternative notation
G(s) (A, B, C, D) or

In the above notation, we have G*(s)= (-A*, C*,-B*, D*) and in the case that
D is nonsingular, we also have G-l(s) (A- BD-1C, BD-1, -D-1C, D-l). If G-l(s)
G*(s), then G(s) is all-pass. G(s) is called stable (asymptotically stable) if it has no
poles in C/ (resp. C/).

If G(s) (A, B, C, D) the system matrix corresponding to the given realization is
defined as [19]

and the system zeros are defined to be the points at which the system matrix loses
normal rank. In the case when D is nonsingular, the system zeros are also given by
A (A- BD-1C). The input decoupling zeros (uncontrollable modes) are points at which
[sI-A B] loses rank. The output decoupling zeros (unobservable modes) are the
points at which [sI-A* C*] loses rank. In the sequel, the term "zero" refers to
"system zero" unless stated otherwise. Obviously, {input decoupling zeros} U {output
decoupling zeros} is a subset of both A (A) and the set of system zeros. The realization
(A, B, C, D) is minimal if it has no input/output decoupling zeros. A sufficient condition
for this is that all system zeros are distinct from A (A).

If Gl(S) (A1, B1, C1, D1) and GE(S) (AE, BE, C2, DE) then the cascade system
G1GE(S) has a realization given by

(2.2) [AIIB1][AE]BE]IA1B1CEB1D2 10 A2 BEC2 DE C2 02
C1 DICE D1D2

where we have taken the "multiplication" of two realizations to mean cascading the
two systems. This is not to be confused with ordinary matrix multiplication. The context
will always make the distinction between these two possible interpretations clear.

If a basis change T is introduced into the state-space of G(s), we will take this
to mean G(s)= (TAT-1, TB, CT-1, D). The McMillan degree of G(s) will be written
as deg (G) and the set of poles of G(s) will be denoted {poles of G}.
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(2.3)

then

Let P(s) be a partitioned matrix with a state-space realization given by

[P . IA B1 B2 1P(s)= P22|(s)= C1 Dll D12
C2 D21 D22

(2.4) Po(s) Ci(sI- A)-IBs + Dis
is a state-space realization of Po(s). A linear fractional transformation ofthe partitioned
matrix P and a matrix K is defined as

F,(P, K)-= P,1 + P12K(I- P22K)-lp21

where K is of dimension x m if P22 has dimension m x L

2.2. Prolflem descriltion. Consider the generalized regulator configuration illus-
trated in Fig. 1. From the equations governing this diagram we see that the transfer
function relating yl to u is given by

(s)= F(P, -K)

Pll- P12K (I + P22K)-1p21

We seek to bound the McMillan degrees of all the compensators K(s) which
simultaneously achieve an internally stable closed loop and minimize
Throughout this paper we will assume that P2(s) and P(s) are square (although not
necessarily of the same size). We also assume that both DiE and Dul are nonsingular
and that P1E(S) and PEl(S) have no zeros on the imaginary axis.

It is worth noting that two particular H-optimal control problems which have
already received particular attention can be posed in the above setting. The first is the
optimal sensitivity problem which has been analysed by Zames and others [3], [7],
[8], [21], [27], [28]. In this case we wish to minimize the L-norm of a weighted
sensitivity operator given by

(2.5) s(s) W2(I + GK)-1Wl](S

where G(s) is the transfer function of a square plant, and W(s) and W2(s) are
weighting matrices. If we put

(2.6) Ps(s)=[WW1 G]Wl ’l
then direct calculation shows that

s(s)= F(P(s), -K(s)).

The second problem is the optimal robustness problem which has been studied by
Glover 13] and Kimura 15]. In the case of optimal robustness with respect to additive
perturbations to the plant transfer function, we wish to minimize the L-norm of

(2.7) a(S) W2K (I + GK)-’ W1](s).

It can be readily shown that if we set

(2.8) P(s) ,
Wl

(S)



CANCELLATIONS IN H-OPTIMAL CONTROL PROBLEMS 1461

then

a(s)= Fl(Pa(s), -K(s)).

In the sequel, we will study the general class of problems of the first kind and establish
common pole-zero cancellation properties which are shared by the specific problems
just mentioned.

2.3. Review of/-/W-optimization theory. The solution of H-optimal control prob-
lems may be subdivided into two distinct steps. In the first, all the compensators which
lead to an internally stable closed loop in Fig. 1 are parametrized. The second step
then identifies a subclass of stabilizing compensators which minimize II(s){1 or else
satisfy ]](s)]]oo -< peR. In the follbwing sections, we will briefly describe the calcula-
tions involved in these two steps.

2.3.1. Parametrization of all stabilizing controllers. Let P(s) in Fig. 1 be given by
(2.3) and suppose that (A, B2, C2) is stabilizable and detectable. Under these conditions
K (s) stabilizes the feedback system in Fig. 1 if and only if it stabilizes PEE(S). Further,
such stabilizing compensators always exist [6], [22]. Let

(2.9) PEE(S) Nr(s)D-/(s)= D-f(s)Nl(s)
be right and left rational coprime fractional factorizations of P22(s) and

the corresponding Bezout identities. All the matrices in (2.10) belong to RH and the
set of all compensators which stabilize P(s), and thus also P(s), are given by [4], [26]

(2.11) K (s) Ul + DrQ)( V NQ)-’(s)

(2.12) V QN)-( U, + QD,)(s)

in which the indicated inverses are assumed to exist and Q(s). RHC. It is easy to
verify that

K(I + P22K)-’(s) U! + DQ)DI(s).(2.13)

Hence

(2.14)

(s) [P- P2K(I + P22K)-lP2,](s)
[(P,, P,2 UIDIP2,) (P12D.)Q(DIP21) (s)

[T,- T2QT2,](s)

where the To(s) are defined in an obvious way. Equation (2.14) shows that 9(s) is
parametrized linearly in Q(s). Since(s)RH if and only if Q(s) RH, we would
expect that T, T12 and T2 all belong to RH.

Since (A, B2) is stabilizable, there exists a state feedback matrix F-such that
A-B2F is stable. Similarly, since (A, C2) is detectable there exists an output injection
matrix H such that A-HC2 is stable. Given any such pair of stabilizing matrices F
and H, the right and left coprime factorizations of P22 together with the solutions of
the Bezout identities are given by [6], [18]

(2.15)
N V

(s)- -f I 0

C2- D22F D22 I
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and

(2.16)
-N!

A- HC2

Ur] (s) F
D1

-C2

B2- HD22 H’|
I 0 J-D22 I

Using (2.11) and (2.12), it can be verified by direct calculation that the family of all
stabilizing compensators can be parametrized in terms of the linear fractional transfor-
mation [6]

(2.17)

where

(2.18)

K(s) F(Ko(s), Q(s))

K,, K,](s)=[V-’UrKo(s)
K2, K22J V

v:’ ]
VT,NJ (s)

H B2 HD22 "|
0 I JI D22

A routine computation will show that the realization of Ko(s) in (2.18) is minimal if
(A, BE, C2) is minimal.

In order to simplify later calculations, it is helpful at this point to scale (2.3) by
replacing it with

A B1 B2S1
(2.19) P(s) CI DI D12S

S2C2 SED21 S2DE2S1

in which S D- and $2 DI1. From now on we will assume that P(s) has been
scaled so that both the (1,2) and (2, 1) blocks of the D-matrix are identities; we
therefore assume that the Si’s have already been absorbed into BE, C2 and DEE. Such
an assumption does not incur any loss of generality in our development because the
effect of any prescaling on the compensator to bring P(s) into the form of (2.19) may
be reversed by replacing K(s) with S1K(s)S2 at the end ,of the design process [22].
We now make the following specific choices of the pair of.stabilizing matrices F and
H, as was suggested by Doyle et al. [6]:

(2.20) F C + B*X
where X is the unique positive semidefinite stabilizing solution to the algebraic Riccati
equation

(2.21) X(A- B2C,) + (A- B2C1)*X XB2B*2X 0

and

(2.22) H B / YC*2
where Y is the unique positive semidefinite stabilizing solution to the algebraic Riccati
equation

(2.23) Y(A B1 C2)$ q- (A B, C2) Y- YC*2 CaY O.
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It can be shown that the T(s) of (2.14) are then given by

[A-oB2FB2FB1 B2

(2.24) T(s)=
T21

(s)=
F Dll I

c I 0

Note that T12(s), TEl(S) and Tl(s) belong to RH as expected. Further, F and H
have been chosen to make TE(S) and T21(s) inner [6].

2.3.2. Parametrization of all H-optimal controllers. In this section we briefly
review the parametrization of all optimal Q(s)RH which solve the minimization
problem

(2.25) min II(T..- T.2QT.)(s)II= IIT*.=T.. T*.(-s)ll.. QRH
or suboptimal Q(s) RH which satisfy

(2.26) [I( TI TIQT,)(s)II<= p

for some given p > r* T1, r2* (s)ll H-
Due to the norm-preserving properties of the inner matrices T(s) and Tl(S),

we may write [21]

(2.27) I[( TI- T12QT21)(s)II-]]( rl*2 TI r2*l Q)(s) [[.
From (2.24), we obtain

-(A- B2F)* X(BDll-B1)C2Y
(2.28) T* T,, T2*l(S) 0 -(A HC)*

B2* (F D1, C2) Y

X(B B2DI) ]
-C*
DI

which shows that T*2TIT*2(s) RH_. Setting T*12T1T*1(s) X*(s) we get

(2.29) I1( T,- T,2OT21)(s)II= IIX(s)- Q*(s) I1
which turns (2.25) into a multivariable version of the Nehari extension problem [17].
We will call any Q(s)RH which satisfies (2.26) a p-suboptimal extension. Glover
has shown that all Q*(s) which satisfy (2.25) or (2.26) may be generated by means of
a balanced realization of X(s). In [12], the characterization of all Q*(s) in the general
nonsquare case is given in terms of a linear fractional transformation of transfer
function matrices (see [12, Thm. 8.7]). We will however need a state-space version of
this characterization in order to derive the main results in 4. This is stated in the
next theorem and a proof which makes use of [12, Thm. 8.7] is given in Appendix A.

THEOREM 2.1. LetX(s) (A, B, C, D) be a stable, minimaland balanced realization
with Hankel singular values

O’1 " 0"2 0"k 0"k+l 0.k+2 0.k+r> 0.k+r+l O’n 0.

Assume that the Hankel singular values have been arranged so that the gramians are
given by

(2.30) diag (E, 0.k+llr)

where

E diag (0.,..., 0.k, 0.k+r+,
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and let (A, B, C) be partitioned conformally with (2.30)

kA21 A22J,
B--

B2
C =[C1

Also let

(2.31)

C2].

F Y_,2- o-+L
Then for any error system E (s) X (s) f (s) Q* (s) with

(a) Ilff(jw)l]oo=< o-+,;
(b) X(s) is stable ofMcMillan degree k and Q*(s) is totally unstable

there exists ,, , and D such that E (s) has a realization

(2.32) E(s)

B
B2

F-’(;B, + o-k+, C,*b)

O’k+1B
O’k+15

which satisfies both

+ PeA*e + BeB*(2.33)
-(DeS*e + CePe)

and

(2.34) [-(A* Qe + QeAe + C* Ce)
-(D* C + B* Qe)

where in the above equations

E 0

0 O’k+IrPe I 0 EF
o o

and

2 , [L*IW*],
O’k+ I DeD We

-(C*eOe+QeBe)]=[ L*ed ]W*d

E 0 -F 0

O’k+l/r 0 0

0 EF 0

0 0 d

(2.35a) L*=[00 O’k+ $C1F-10"k+l$], Lea--[00 --O’k+ Be$ d]
for some , a, , a,/3 =/S, < 0, ( (* < 0 and further
(2.355) We (Tk+l

, Wed (Tk+l Vd and PeQe o’2+,I.
Remark 2.1. Note that (2.33) and (2.34) are reminiscent of the state-space charac-

terization of bounded real matrices 1], as one would expect because of the condition
(a) on E(s). We note however that E(s) is in general not bounded real in the strict
sense since it may contain unstable poles.

Remark 2.2. When giving a bounded real type state-space characterization of
p-suboptimal extensions we make use of the idea given in [12, Remark 8.4]. In this
case (2.33) and (2.34) remain in force, F ,2-p2I replaces (2.31) (with trk> p > Ok+l)

A 0 0 B

(2.36) E(s)=
0 F-(pZA*+EAE-pC*B*) F-C* F-(EB+pC*I)
0 -pB* A p
c -(c+pbB*) p5
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replaces (2.32),

(2.37)

and

E I 0 E -F 0

Pe’-" 1 o Qe---r
o o o o Q

Le* [0 pIC’*CF-1 p*], Lea [0 -plfVaB* a ],

replace (2.35a) and We p I?V, Wea p lfVa and PeQe pI replace (2.35b).
For readers who are interested in following through the proof for the p-suboptimal

case, (A.4) in Appendix A should be replaced by

[ Hll H12]
F-(pzA*+AE) F-IB-F-C*’(2.38)

H21 H2
(s)= CE D I

-pB* pI 0

Conditions (A.5) and (A.6) remain valid but (A.7) no longer applies.
Remark 2.3. Theorem 2.1 and Remark 2.2 are more general than we need in

H-optimal control problems since they give a state-space characterization of all error
systems associated with Hankel norm approximation problems whereas we are only
interested in optimal anticausal (or Nehari) type approximations. Specifically, we will
make use of Theorem 2.1 (or Remark 2.2) with k 0 (zeroth order Hankel approxima-
tion) so that X(s)=0 and Q(s) becomes a Nehari extension (or p-suboptimal
extension) of X(s). Also IlE(s)l[ g, or IIE(s)l[ p (where p > 1) for the optimal
or p-suboptimal case respectively. U

COROLLARY 2.2. In the notation of eorem 2.1 and Remark 2.2 let k =0 and
U(s) , h, ,] (see (2.32) and the proof of eorem 2.1) en

(i) If Q(s) is a Nehari extension of X(s),

(2.39) deg (Q) deg (X)- r+deg (U)

where r is the multiplicity of the largest Hankel singular value ofX;
(ii) If Q(s) is a p-suboptimal extension of X(s),

(2.40) deg (Q) deg (X) + deg (U). U

This corollary follows immediately from an inspection of (2.32) and (2.36).
Remark 2.4. For k 0, Theorem 2.1 characterizes all

(2.41) X(s)-O*(s)

satisfying conditions (a) and (b). At ceaain points in the sequel, it is more convenient
to work with a realization for E*(s)= X*(s)-Q(s) instead of (2.41). For this purpose,
we remark here that the form of the bounded real type equations (2.33) and (2.34) is
invariant under parahermitian conjugation. It is easy to see that if E(s) E*(s), then
we only need to perform the following substitutions in (2.33) and (2.34)

A -A, n C, C -n,
DD, Pe-Qe, Qe-Pe.

3. Balancing Riccati equations. In this section we will establish some preliminary
results which will be needed in the later analysis.
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It is well known that the H-optimization problem given by (2.25), or equivalently
(2.29), is equivalent to a matrix version of the classical Nevanlinna-Pick interpolation
problem, the set of interpolation points being the right half plane zeros of T12(s) and
T21 (S). Since T12(S) and P12($), and T2(s) and Pz(s) have the same zeros, it is clear
that the set of interpolation points is

{zeros of P12(s) in C+} U {zeros of Pzl(s) in C+}.

In this section we will bring this issue into sharp focus by balancing the two
Riccati equations (2.21) and (2.23). Furthermore, we will show that the number of
right half plane zeros of P:(s) and P2(s) are given, respectively, by the ranks of the
solutions X and Y to these two equations.

Consider a change of basis T in the state-space of P(s) in (2.19). In this new
basis, P(s) becomes

P(s) C T--’ D,, I

C T- I Dz
and the algebraic Riccati equation (2.21) becomes

(3.1) X(TAT-’- TB2C1T-1)+(TAT-1- TB2CIT-’)*X-XTB2B* T*X=O
or equivalently

(3.2) T*XT(A B2C,) + (A B2C,)*T*XT- T*XTB2B*2 T*XT O.

This shows that the effect of the basis change on X is the congruence transformation

(3.3) X - T-*XT-1

where T-* denotes (T*)-. Similarly, in the new basis, equation (2.23) becomes

(3.4) T-YT-*(A-BC2)*+(A-BC2)T-1YT-*- T-IYT-*C*2C:T-YT-*=O
and hence the effect of the basis change is

(3.5) Y TYT*.

(Incidentally, in problems of the second and third kind, (3.1) and/or (3.4) have an
additional constant term. This term makes no difference to the balancing arguments.)

Combining (3.3) and (3.5) we obtain

(3.6) YX TYXT-and it is immediate from (2.20) and (2.22) that

(3.7) F FT-,
(3.8) H TH.

Condition (3.6) shows that A (YX) are invariant under basis changes in the state-space
of P(s). Conditions (3.3) and (3.5), together with X X*-> 0 and Y Y*=> 0, suggest
that we may use the construction in [12, Appendix B] to find a basis change T so that
in the new basis
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and

(3.10) X

are balanced diagonal matrices. The balancing of the positive definite solutions of
standard LQG type Riccati equations has been studied by Joncheere and Silverman
[14]. For convenience of analysis we introduce a permutation matrix J such that

0 0

0

Clearly E1 > 0 and Ez > 0.
For notational simplicity, we will absorb the coordinate transformation matrix T

into the state-space matrices and rewrite TAT-1, TB2,.’’ of (3.1) and (3.4) as
A, B2,.’..If we set M=A-B, C2 and C=(C[C22), where the partitioning is
consistent with that in (3.9), we obtain from (2.23)

rMllM* M*2J
+

LM
(3.12)

I10
The (1, 1) block of (3.12) yields

(3.13) M*I +Ml,-,C*C2, =0,

that is,
-1(3.14) MI CCI -lM

From the (1, 2) block of (3.12) one obtains

Making use of (2.22) and what has been deduced above,

MI2I [01 00]
C*. C

(3.16)

A- HC2 M YC* C2

[Mll-,ICg21C21 M12-’1C21C22]0 M22

[-1M19171 Mla-1Cg21C22].0 M22

Applying [12, Thm. 3.3(2)] to (3.13) establishes the implication

(3.17) 6(71) 0 => 0= 7r(-7)-> v(Ml).

Since we have assumed that P(s) has no zeros on the imaginary axis, t(Mll =0 and
therefore

(3.18) In (M,1) (rank (Y), 0, 0).
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Note that {A (MI)} -= {right half plane zeros of P21(s)}. Since A- HC2 is asymptotically
stable so too is M22.

^* 121B22] we obtain from (2.21)Defining Z J(A- BzC1)J* and (JB2)* B2 [/* ^*

Oo] rz,, Oo]L z,,, zJ * z*J
(3.19)

_[E2 00] [/12
By an argument similar to the one given for (3.12), we have that

(3.20) Z,1-- B,2B*2E2 -E’Z*,Ez,

(3.2) Z,2 0,

(3.22) In (Z,,)= (rank (X), 0, 0),

(3.23) J(A-B2F)J*=[ -Z#’^Z*)Z= 0]LZ_, BBE Z
and that Z22 is asymptotically stable. The eigenvalues ofZ are the right half plane
zeros of P2(s). Next, we partition the matrices

(3.24) J[BIlB2] [BIlB2]

(3.25) F= [FIlF2]
where B1 and B are partitioned conformally with (3.11) and F is partitioned confor-
mally with (3.9). Making use of (3.16), (3.23), (3.24) and (3.25), we can rewrite (2.24)
as

(3.26)

Thus

(3.27)

J(A- BF)J* JB2F
TIEl 0 A HC2
0

(s)
-B*J*JXJ* F

0 C=

JB1 JB2
YC* 0

Dll I
I 0

-EZ*E_ 0

Z21- B2B*!,2 Z22
0 0

0 0

^-B12E_ 0 Fa F
0 0 C21 C22

Bll
B21

-;C*
0

Oll

S212FIE1
-M*I

C2E

B12

0

0
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It follows from (3.13) that Y21(s has observability gramian El and controllability
gramian X-I. Similarly, T12(s) has observability gramian X and controllability
gramian 2. Equations (3.18) and (3.22), 1>0 and 5:2>0 together with [12, Thm.
3.3(5)] establishes the minimality of the realizations in (3.27). To deduce that the
realization (3.26) is also minimal, we note that the A-matrix of the inverse system of
(3.26) is similar to

(3.28) Z (B12Dl-Bll)C21
0 Mll

It follows from this that the realization (3.26) has no left half plane zeros and since
this realization is asymptotically s.table, it must be minimal as well because no pole-zero
cancellations can occur. We remark however that the realization for T(s) need not
be minimal. Replacing the realization (2.24) by (3.26) allows the realization (2.28) for
T*12TI T*(s) to be replaced by

Z11
(3.29) T2 T11T#21(s) 0

(BIDll-Bll)C2I
MI

F1 Dll C21

BI-B12DI

Dll

which need not be minimal. The results of our analysis up to this point are now
summarized in the next lemma for easy reference.

LEMMA 3.1.
(i) The number of zeros of P2(s) in C/=rank (X).
(ii) The number of zeros of P2(s) in C/ rank (Y).
(iii) The realization in (3.26) is minimal with degree (rank (X) + rank (Y)).
(iv) The realizations for Tl(S) and T21(s) in (3.27) are minimal with deg (T12)

rank (X) and deg (TI) rank (Y),
(v) deg T*2TI T2"1) --< rank (X) + rank (Y).
Early in this section we showed that A(YX) are invariant with respect to an

arbitrary similarity transformation in the state-space of P(s). It is natural to ask whether
or not these invariants contain any fundamental information pertaining to the optimal
solutions of H control problems. We conclude this section with a result which shows
that the lowest achievable L-norm for the closed loop may be expressed in terms of
Amax (YX) in the case of certain specific problems of the first kind. These problems
are: (i) The unweighted optimal sensitivity problem; (ii) the unweighted optimal
complementary sensitivity problem; (iii) the unweighted problem associated with
optimal robustness towards multiplicative perturbations at the plant input, and (iv)
the weighted optimal robustness problem.

THEOREM 3.2. If .. is the set of all stabilizing compensators, then

(3.30)

(3.31)

(3.32)

(i) inf [[(I + OK)-l(s)ll (1 +/max YX))I/2;
Ke

(ii) inf ]]GK(I+GK)-(s)[Io=(1 -"/max (YX))I/2;
K

(iii) inf IIKG(I+ KG)-l(s)ll (1 +max (YX))I/2;

(iv) If W1 s and W(s are stable and minimum phasefrequency dependent
weights with proper inverses, then

(3.33) inf W1K(I + GK) -1 W(s)ll =/max (YX) 1/2. ["]
KE
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Remark 3.1. A detailed analysis will reveal that the Riccati equations defining X
and Y in the case of problems (i) and (ii) are the same and therefore that

(3.34) inf II(Z +g )-111
K

This result was originally proved by Kwakernaak in the SISO case and Glover in
the MIMO case (private communication). In general, the (X, Y) pairs associated with
the other problems given in Theorem 3.2 are different leading to different achievable
L-norm infima. It may be shown by counterexample that the results for problems
(i), (ii) and (iii) do not carry over to the weighted case. [3

4. Main results. In this section we consider the pole-zero cancellation properties
ofthe H-optimal (or suboptimal) system of Fig. 1 and we will derive general McMillan
degree bounds for all H-optimal controllers (denoted Kopt) or suboptimal controllers
(denoted Kopt) for problems of the first kind. An outline of our development is as
follows.

Let n=deg(P), t=deg() and let m =(number of cancellations which occur
between P(s) and K(s) as a result of closing the feedback loop in Fig. 1). Then

t=n+deg(K)-m,

that is

deg (K) t+ m- n.

To obtain an upper bound for deg (K), we proceed in two steps:
(1) Theorems 4.1, 4.2 and 2.1 establish an upper bound tb for the McMillan degree

of all optimal closed-loop transfer functions (s), and
(2) Theorem 4.3 establishes an upper bound mb for the number of pole-zero

cancellations between P(s) and K(s). Given such bounds, we then have

(4.1) deg K <- tb d- mb n.

In the case of single-input-single-output (SISO) problems we will show that

(4.2) deg (Kopt) --< n 1,

(4.3) deg (Kopt) --< n.

In the case of multivariable (MIMO) problems, we will show that there is a continuum
of controllers which satisfy the bounds given in (4.2) and (4.3). These results are stated
in Theorem 4.4. We remark that a bound of this type has already been discovered by
Glover in the special case of the optimal robustness problem [13].

In an earlier paper, Zames and Francis [28] establistied that there are interpolation
constraints associated with both the right half plane poles and zeros of the plant in
the single loop optimal sensitivity problem. If the weighted sensitivity is given by

(4.4) s(s) w(s)/(1 + g(s)k(s)),

then they have shown that

(4.5) s(z,) w(z,)

at each right half plane zero zi of g(s), and that

(4.6) s(pi) =0

at each right half plane pole. These observations lead us to an interesting factorization
phenomenon which may occur in H control problems of the first kind. We will
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motivate the main idea by way of the unweighted sensitivity minimization problem
(weights are neglected for ease of exposition).

From (2.6), we have after prescaling that

I G(s)D_I
C I
C I

Substituting into (2.20) to (2.24) we get

A-BD-1F

(4.8) [ T11(s) T12(s)] 0

T21(s 0 -D-*B*X C
0 C

BD- 1I
I

YC*C
A- HC

YC* BD-1

YC* 0

I I
I 0

after the change of basis

An inspection of (4.8) shows that it can be factorized as

(4.10)
T21(s) 0 0 0 I

where

(4.11) Tll(S)= A1)_,B.X_
Consequently, (s) can be written as

(4.12) (s) ’ll(S)- T12Q(s)) T21(s)

in which we note also that {zeros of T21} {poles of G} and {zeros of T12} {zeros of
G}. At each pole of G(s) there exists a vector xi such that

(4.13) T21(pi)x, =0 for all Q(s) inRH
which implies

(4.14) (p,)x, =0.

This is a generalization of (4.6) to the MIMO case. The point we want to emphasize,
however, is that in certain H control problems, T may have natural all-pass common
factors with T2 and/or T2, as illustrated in (4.12). Theorem 4.1 gives a general
treatment of the properties of this type of all-pass common factor.

THEOREM 4.1. Let

G
(4.15)

A2

All A12
0 A22A1 (s)=-T:0 C12
0 C22

Bll B12]

in which A(s) and A2(s are assumed inner Suppose also that the realizations for Al(S)
and A2(s) given in (4.15) are minimal. Then there exists a change of basis such that
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(4.15) can be put into the form

G All (s)=(4.16) A2 0

/00 /01
0
0
0

Ao2 Ao3

0 0 A33

0 0 C C3

01 /02

B21 0

B31 0

D I
I 0

which admits the following factorizations

(4.17)

(4.18)

(4.19)
A12 B1~I A33 J31
C12 D

in which Al(S) and At(s) are inner. Consequently, we have

(4.25) l(s) Al(S)[ L,- L2Q2,](s)Ar(s).
Furthermore, a minimal realization for

[" "]T,1 TI= (s)(4.26) V21 0

The proof of this result, which is inspired by the work ofVan Dooren and DeWilde
[23], is given in Appendix C.

Theorem 2.1 shows that the realization (3.29) for T*Tll T*l(s) is controllable if
and only if T11 (s) and T12(s) have no common inner left divisors and that it is observable
if and only if T11(s) and Tl(s) have no common inner right divisors. The realization
is thus minimal if and only if neither type of factor exists. However, if such inner
common factors do exist, they may be extracted to form the cascade factorization

(4.24) Tll 2 (s)=
At(s) 0 11~ T12 (S)

At(s) 0

T21 0 I T21 0 0 I

Further
(a) Al(S), A_(s), At(s), At(s), are inner.
(b) The factorizations in (4.17), (4.18), and (4.19) are minimal in the sense that

(4.20) deg (A1) deg (A,) + deg (A1),

(4.21) deg (A2) deg (At) + deg (-2),
(4.22) deg (G) deg (At) + deg (G) + deg (At).

(c) A* GA*E(S)=* ,*(s) has a minimal realization given by

--11 z12 --[-- 1121 --b ll 12 "-bDI) IID + Jll"1(4.23) 0 -/2"2 -t2"2
-"L]12 (-12 "4- D/21 D
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will lead directly to a minimal realization for ’211 2"1(s). Hence the function to be
minimized in (2.25) or (2.26) can be written

(4.27) I1( T,,- T,=QT2,)(s)]Io= I1(,*=,1 *, Q)(s) I1.
Using Theorem 2.1 or Remark 2.2, Q(s) can therefore be obtained as a Nehari extension
or p-suboptimal extension of ’2112"1(s). It then follows from Theorem 2.1 and
Remarks 2.2 and 2.4 that the corresponding "error system"

(4.28) E(s) 12 ]11 21 Q)(s)

satisfies the bounded real type equations given in (2.33) and (2.34). These equations
form the basis of the.hypo.thesi.s of the next theorem which enables us to deduce that
the set of poles of (TI- TEQTE)(s) reduce to a subset of the poles of Q.

THEOREM 4.2. Let

G
(4.29)

A2

All A12

All (s)=
0 A22

0 ,J Cll C12
0 C22

Bll B12]

(4.30) A,(S)=lC,,
are also minimal and balanced. Then

(a)

in which Al(s) and A2(s are inner and their realizations

and A(s)
LC I

(4.31)

-A*ll -C*1( C,2+ DB*21) A12- BllB*2
A* GA(s) 0 -A*2

-Bl*2 -(C12+ DB*21)

C*llD+ Bll

D

A B

(b) for any

such that

(4.32) (A* GA*2 Q)(s) 0
c_

satisfies the bounded real type equations

(4.33) -(/5* +d tr2I -//* W
[L*[W*]

and

(4.34) [-("*( + (’+ (*() -((*/ + (/)] [La*]o’2I-/*/ W*. [LdlWd]
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in which

(4.35) (i)

(4.36) (ii)

.bO tr2Ifor some cr R, and

L* [OIL*I], Ld [OlLd21]
where the partitioning ofL and Ld is conformable with that of and in (4.32), we have

(4.37) (i) (G-AQA2)(s)=
CllQ13_ /

where P23 and Q13 are the (2,3) and (1,3) partitions of .b and t (see (D.1) in
Appendix D ).

(4.38) (ii) {poles of Q}_{poles of (G-A1QA)}.

Proof See Appendix D.
Clearly, if we substitute ll(S), ’2(s) and ’21(s) into G(s), A(s), AE(S) of the

last theorem, it follows immediately from part (b)(ii) that

(4.39) {poles of Q}
_

{poles Tll- T12QT21)}

and this together with Theorem 4.1 and (4.25) yields

(4.40) {poles of Q} (_J {poles of At} (_J {poles of AI}
_

{poles of }.

Given (4.40), it follows that an upper bound for the McMillan degree of (s) is

(4.41) -< deg (At) + deg (AI) + deg (Q) tb.

Further, we have by Corollary 2.2 that

(4.42) deg (Qopt) <= deg ]12 ’11 21) -- deg (U) r

in the case of optimal extensions (r is the multiplicity of the largest Hankel singular
value of ’’2 ’2*l(S)); and

(4.43) deg (Qsopt) _-< deg 1"_ 11 2") + deg (U)

in the case of p-suboptimal extensions. Now (3.26) and Lemma 3.1 in combination
with (4.24) and Theorem 4.1 imply that

(4.44) deg ’*lZ’l*2)=rank (X) +rank Y)-deg (A)-deg (At).

Direct substitution of this into the previous two inequalities and then into (4.41) yields

(4.45a) topt <= tb rank (X) + rank (Y) + deg (U) r

and

(4.45b) tsopt <- b rank (X) + rank (Y) + deg (U)

which provides a McMillan degree bound for the closed-loop system and completes
step 1 of our analysis.

We will now begin the second step. In order to establish a McMillan degree bound
on all Kopt(S) and Ksopt(S controllers, we need to bound the number of cancellations
between P(s) and K(s) in Fig. 1; we call this bound mb as was given in (4.1). In
Theorem 4.3, we will show that every unobservable mode of the system in Fig. 1 is
due to a cancellation with a zero of Pz(S) and every uncontrollable mode is due to a
cancellation with a zero of P:(s). (After this paper had been submitted for publication,
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it came to our attention that a result similar to Theorem 4.3 had been discovered
independently by Anderson and Linnemann [29].)

THEOREM 4.3. Let

P11(4.46)
P21 PJ

(s) C Dll D
C2 D2 D22

in which PI:z(S) Ep’xm2(s) with m2<-p and P21(S)Ep2xml(s) with p2<-_m. Suppose
also that

(4.47) K(s)= /

is a minimal realization and that the well posedness condition det (I + D22D) 0 is

satisfied. Then in the closed loop of Fig. 1
(a) every unobservable mode is a zero of P12(s) and
(b) every uncontrollable mode is a zero of Pz(S).
Proof See Appendix E.
Using this theorem, we see that the number of cancellations m between P(s) and

K(s) is bounded above by

(4.48)
m <--{number of zeros of P12(s) in C_}

+ {number of zeros of P21(s) in C_} rob.

This follows from the fact that any other cancellation (i.e. one corresponding to a right
half plane zero of P2(s) or Pz(S)) violates the proven internal stability of the closed
loop.

From (4.48) and Lemma 3.1, we have

(4.49)

mb= {number of zeros of P12(s) in C_}

+{number of zeros of P21(S) in C_}

{n rank (X)} + { n rank (Y)}

2n rank (X) rank (Y).

We are now ready to prove the main theorem by combining together the results
which have been established. Substitution of (4.45) and (4.49) into (4.1) proves the
following.

THEOREM 4.4. For any H-optimal control problem of the first kind, every H-optimal controller satisfies

(i) deg (Kopt) -< n r+ deg (U)

where r is the multiplicity of the largest Hankel singular value of ’*2’ ’2 (s), and every
p-suboptimal controller satisfies

(ii) deg (Ksopt) -< n + deg (U).

Furthermore, (4.2) and (4.3) follow from the fact that deg (U) --0 if U(s) is chosen
constant. In the SISO case only U is allowed.
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4.1. Computations. In this section we assemble together the ideas presented so

far into an algorithm style procedure for solving H control problems of the first kind.

ALGORITHM.
(1) Given P(s) as in (2.3), do a prescaling to get P(s) into the form (2.19).
(2) Solve the Riccati equations (2.21) and (2.23) and evaluate the stabilizing

matrices F and H using (2.20) and (2.22).
(3) Assemble T*2T11T*21(s) as in (2.28).
(4) Remove the hidden modes of T*2 Tll T*21(s). This can be done in a numerically

reliable way by balanced truncation methods. The result is a minimal realization for
’211 *l(s). Note the balancing process for model reduction at this step forms the
bulk of the computation required at the next step.

(5) Determine a Nehari or p-suboptimal extension Q(s) of ’2112"1(s) using
Theorem 2.i or Remark 2.2.

(6) Back substitute Q(s) into (2.17).
(7) The previous step will typically produce a nonminimal realization for the

(sub-)optimal controller K(s). Again, a minimal realization may be obtained by
balanced truncation methods; the bounds given in Theorem 4.4 must apply.

It should be noted that the model reduction performed in step 4 will simultaneously
remove all the nonminimal states in (2.28) introduced by the left half plane zeros of
P12(s) and P2l(s), and the all-pass common factors shared by Tll(s) and T12(s), and
Tll(s) and Tl(s). Although Theorem 4.1 is an essential component of the theory, it
does not need to be implemented in software. The second model reduction (step 7) is
used to remove any nonminimal states introduced by cancellations predicted by
Theoreln 4.3.

4.2. Model reduction considerations. It is natural to consider reducing the number
of controller states by model reduction methods such as those discussed in [12]. If we
suppose that A(s) is the change in M(s) produced by the model reduction error
AK(s), then the difficulty with this approach is that any general bound on
in terms of a bound on IIAg(s)ll tends to be weak. An alternative and less direct
approach is to consider the possibility of model reducing Q(s) before obtaining K (s)
by back substitution. An argument might be that if AQ(s) is the perturbation produced
by the model reduction of Q(s), then by (2.14)

(4.50) (s)+A(s)=[T,l- TI(Q+ AQ)T,](s)

leads to

(4.51) IIA(s)ll IlaQ(s)llo,
since T2(s) and T2(s) are inner. Further, if the reduced order model of Q(s) is
obtained by retaining the first k states of a truncated balanced realization, then

(4.52) IIA(s)ll 2
i=k+l

This inequality follows from 12, Thm. 9.6] and shows that it is possible to reduce the
number of states of Q(s) while simultaneously keeping track of the resulting maximum
possible increase in IIl(s)llo. However, contrary to the objective, this approach will
tend to increase the number of controller states rather than decrease it. This is because
replacing Q(s) with a lower order approximation will destroy the "built in" cancella-
tions predicted by our previous results. Since K(s) Fl(Ko(s), Q(s)) and deg (Ko) n
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we see that

deg (Kopt) deg (Ko) + deg (Q)

(4.53) -(no. of cancellations between Ko and Qopt)
_-< n- 1 (in the case deg (U)= 0 in Theorem 4.4).

If Qopt is replaced by an approximation Qa(s), then in general the cancellations no
longer occur and the corresponding controller Ka(s) has higher degree than that of
Kopt(s), specifically

deg (K) deg (K0) + deg Q _-> n.

This point is now illustrated with an example.
Example 4.1. Consider the unweighted robust stabilization problem in which we

seek

inf K (I + GK)- Iloo ( is the set of stabilizing compensators).

Referring back to (2.8) we recall that the corresponding P(s) matrix is

[0 I]P(s)=-I G(s)

and after scaling ($2 =-I and S1 I) we get

P(s) 0 I
I -D

If

G(s) {(s+ 3)}/{(s- 1)(s- 2)(s- 3)},

we get (by computer) a calculation which is based on 4.1 that

[AI)] 1-1.54049 0.89744 307.989 1QPt= C =-0.912165 -0.17001 60.1637
-0.083009 0.0159534 61.4750

which has Hankel singular values 8.2979 and 2.8229. The corresponding optimal
controller Kopt(S) has McMillan degree two and has Hankel singular values 38.084
and 8.3797.

In a second calculation, we replaced Qopt(S) with a 1-state truncated balanced
realization. In this case K(s) had McMillan degree four with Hankel singular values:
38.065, 8.3596, 0.0016269 and 0.00010428. In this example therefore, removing a state
from Qopt(S) leads to an increase of two in the McMillan degree of the controller. 1-1

4.3. Minimum entropy controllers. In a private communication N. J. Young
pointed out to us that Arov and Krein [2] had studied a class of p-suboptimal extensions,
which they called minimum entropy extensions. Assuming that II(s)ll<=p 1 (a
convenient normalization), we define the entropy of the closed loop system at some
point So C_ by

1 I Re(so)
(4.54) I(; So)= -- .- In Idet (I-*(jto)(jto))[ ijto _Sol2
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Using the fact that det (I + AB) det (I + BA), it is easy to see that inner matrices are
entropy preserving. Since Nt(s)= T12ET21(s), where E(s) is given by (4.28), it is clear
that I(; So)= I(E; So). From now on we will work with E(s) knowing that it has the
same entropy as the closed loop transfer function matrix (s).

After some introductory comments we will state the result of Arov and Krein and
thus show that (4.54) may be minimized while ensuring [[(s)[Ioo=< 1 with the aid of
an n-state controller. It will be shown that the controller which minimizes the closed
loop entropy is generated by setting U =-H*2(So) in the general parametrization of
all Nehari extensions.

From [12] we recall that

(4.55)

or alternatively,

(4.56)

in which

(4.57)

(4.58)

(4.59)

(4.60)

E*(s) (’’211 ’2"1)*(s)- Hll(s)
+ Hl(s)U(s)(I + Hz2(S)U(S))-IH21(S),

E*(s) {A(s)U(s)+ B(s)}{C(s)U(s)+ D(s)}-1

Substituting from (2.38), using p 1, we get

A 0 -2;F-1C *

a(s) B(s) ] 0 -a* F-1C *
(4.61)

C(s) D(s)J C 0 I
0 B* 0

in which we have denoted

Also, (4.61) is easily shown to be J-unitary, that is

(4.62)
C(s) O(s) 0 B*(s) D*(s) 0

From the J-unitary equations we get

A(s)A*(s)- B(s)B*(s) I,

C(s)C*(s)- D(s)D*(s) -I,

A(s)C*(s) B(s)D*(s) O.

(4.63)

(4.64)

(4.65)

Also

(4.66)

(4.67)

(4.64) =:> D-l(s)D-*(s) I H22(s)H*(s)

IIn22(s)[Ioo 1.

Glover [12] has shown that H(s)e RH_; a fact which is required in the proof of
Theorem 4.5.
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THEOREM 4.5 (Arov and Krein [2]). IfI(H22;So)<O,soC_ and
then

I(; So)= I(H22; So)+ I( U; So)+ In Idet (I + H22(So)U(so))].
Also, there exists a unique Uo such that I(; So) attains a minimum value of

I(; So)= I(H22; So)+ In Idet (I-H22(so)H*22(So))l/2.
The optimizing Uo is given by

U0 H*2(So).

A proof which mimics the disirete time proof in [2] is given in Appendix F.

5. Conclusions. Our purpose was to carry out a detailed analysis of the pole-zero
cancellations which occur in the class of H-optimal control problems described
in 2.2. If deg (P)= n, we have shown that SISO H controllers never require more
than n-1 states and that MIMO problems have a continuum of controllers whose
McMillan degree satisfy this same bound. A general bound on deg (K) has been
derived for all Nehari and p-suboptimal extensions and is given in Theorem 4.4. The
bounds in Theorem 4.4 are tight in the sense that there exist problems for which they
are met with equality. We have found in numerous examples that these bounds typically
give the actual McMillan degree of the controller.

It is our belief that state-space dimension inflation is an impoant consideration
in practical H design problems. Apa fl’om being interesting in its own right, a
complete cancellation theory is a prerequisite for the development of reliable computa-
tional software. Example 4.1 is an illustration of how a seemingly sensible, but
ill-advised intermediate model reduction step may aggravate the problem of degree
inflation rather than alleviate it.

H design problems which may be embedded in Fig. 1 but with either P2(s) or
P(s), or both, nonsquare have been studied by several researchers [6], [9], [10], [11],
[22], [25]. In this class of problems cancellation phenomena are more dicult to
analyse [16]. However, the added complexity and iterative nature of their solution
makes a cancellation theory even more essential. An additional layer of diculty is
introduced by the various scaling strategies which are introduced in the -synthesis
work of Doyle [5], Doyle et al. [6], Safonov [20] and others.

Appendix A.
Proof of eorem 2.1. By assumption, the Hankel singular values have been

ordered so that

A A 0 0 A A +(A.1)
A21 A2 0 +lI

+
+,I A A2 B

[BIB]=0

and

(A.2)
LA*. A2* 0 cr+,I o’+,I

are satisfied.

+ [c, lc:] =o
A22 C2"..]

Next, we invoke 12, Thm. 8.7] which states that all error systems with the desired
properties may be generated by

(A.3) f(s)+Q*(s)=Hll(S)-H12(s)U(s)(I+H22(s)U(s))-lH21(s)



1480 D.J.N. LIMEBEER AND Y. S. HUNG

in which

(A.4)

and

[H, s H,( s ] -C-U(s)=
H,(s)I4(s)

(A.5) U(s)eRH

_
satisfies

(A.6)

and

(A.7) C2+ U(s)B*2=O.

1-’-IB10"k+ID
-F- C* 10

I

In order that we may obtain the required state-space characterization of all
error systems we assume that an arbitrary U(s),, wjththe desired properties has a
minimal state-space realization U(s) (A, B, C, D). Since

I-U(jw) U*(jw)>-0, the bounded real lemma [1, p. 308] ensures the existence of
P * < O, Q- Q < o, L, W, Ld and Wd such that

-(AP+, PA +BB*) -(BD*+* *PC*) f_.
(A.8) -(D* +) I- DD* [/-*1

and

(A.9)

are satisfied.

I-D*D [LulWu]

(A.10) (A.7) => C2 + U(o)B*2 0 => C2+/B* 0,

(A.7) and (A.10) (sI-,)-lB*2=O
(A.11)

=>/B2*=0 (since [, ] is observable).

The condition U(jto)llo<-_ 1 implies that there exists a spectral factor A(s) such that

(A.12) I U*(s) U(s) A*(s)A(s),

(A.7) B2U*(s)U(s)B*2 C’2C2,

(A.13) (A.12) =:> BEB*2-B2A*(s)A(s)B*= C*C2.
The (2,2) blocks of (A.1) and (A.2)=> BB*2=C*2C2 and this together with (A.13)
means

(A.14) A(s)B* =0.

Multiplying (A.7) on the left by U*(s) we get

U*(s)C2+ U*(s)U(s)B*2 =O

: U*(s)C2+B*-A*(s)A(s)B*2=O (by (A.12))

(A.15) U*(s)C+B*2 =0 (by (A.14)).
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Hence

(A.16)

(A.17)

(A.18)

(A.15) => U*(c)C2+ B*= b’C2+ B2* =0,
(A.15) and (A.16) => b*(sI+fi,*)-l*c2=o

=> * C2 0 (by the controllability of [,,/]).
The state-space model (2.32) for E(s) can be obtained by deriving a state-space
realization for the linear fractional transformation (A.3) from the realizations of H(s)
and U(s).

Equations (2.33) and (2.34) are proved by simple calculations which are reminis-
cent of those in [12]. We will begin with the (1, 1) block of (2.33). The validity of
partitions (1, 1), (1, 2), (2, 1) and (2, 2) follows directly from (A.1).

partition (1, 3)= All + (tr+a +,A*E-O’k+BII*C)F-+ BI(B*+ o’k+l/ :’g cl)r-1

(A,,Z2- g+lA,, + g+,A,1 +A,E
-(A+A))F- (by (A.))

=0.

paition (1, 4) -+aB* ++BB =0.

paition (2, 3)= Aa +B(BZ++*C)F-(A21E2-+IAzl-(k+IA2+
+ (A2E + +,A,)k+,)F-’ (by (A.1, A.2, A.10))

=0.

paaition (2, 4)= k+,B* =0 (by (A.11)).

partition (3, 1) F-’{ 2 , CB+EZAI_g+IAk+lA11 +EAIE gk+

+ (ZB, ++ICD)B, }

=F-’{EAE+EA-E(AaE+ZA)} (by (A.1))

=0.

paition (3, 2) F-’{EZA +A + (EB, ++C D)B}

r-’{XA, +,a, X(+A,+
++,(+,a+ EA,)}

=0 (by(A.), (A.2), (A.0)).

paition (3, 3)= F-{(+,A+EAE-+C DB*)E
+2+,a,, +XA,-+,B,*C)
+ (XB, ++,C)(B ++,*C)

F-{ff+aaE+Ea,E ++EA +E2AE

+,(a,x +
0 (by (A.1), (A.2), (A.8)).
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partition (3, 4) F-’{cr,+,CI*t/5-
+ (EB, + O’k+lClfi)O’k+lJ* qF+1C

+1F-lc( +5* +
=0 (by (A.8)).

paition (4, 1)=-+aBB + +IBBa =0.

paition (4,2)=+BBa =0 (by (A.11)).
pa,ition (4, 3) {-+,BE ++,*C ++l(BE ++,* C1)

which has a state-space realization

(B.2) P(s)= C I D (s).
C I D

After scaling as in (2.19), we get

(a.3) P(s) =IA 0 BD- 1C I I (s).
C I I

O’+1{t3 $ -]-/}: -it- V’*} C1F-1
0 (by (A.8)).

partition (4, 4) O’k+(AP+* + BB* + LL*)
0 (by (A.8)).

The (2, 1) and therefore also the (1, 2) blocks of (2.33) are verified next.

partition (1, 1) O’k+,B* + C,E- CE-O’k+IB* =0.

partition (1, 2) O’k+l(DB2 + C2) 0 (by (A.10)).
partition (1, 3) {o’k+lD(Bl*; + o’k+lD C1)+ C1E2- r,+,C1

--(Cl q-o’k+l/B1") q-o’+ I* C1}F-1

o’+1 {tiff* I + I*}C
=0 (by (A.8)).

partition (1 4)= r,+l{//}* + + If*} 0 (by (A.8)).
The (2, 2) block of (2.33) follows immediately from (A.8); (2.33) is thus proven.

The validity of (2.34) is established in the same waymin this case use is made of
equations (A.1), (A.2), (A.9), (A.16) and (A.18). Since the calculations are very similar
to those used to establish (2.33), these details are omitted.

Appendix B.
Proof of Theorem 3.2. As one would expect, the proofs associated with problems

(i) to (iii) are similar. We will therefore only prove the result in the case of (i); the
sensitivity proof being marginally more intricate than the others.

Equation (2.6) shows that the P(s) matrix associated with the unweighted sen-
sitivity problem is

(B.1) P(s)
I
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(B.4)

(B.6)

(B.7)

We have already established that the interpolation points are the right half plane
zeros of G(s) and that the left half plane zeros play no part. For simplicity, we will
assume that G(s) has all its zeros in C+. If this is not the case, the Riccati equation
balancing theory of this section may be used to reduce the general problem to one in
which Re [A(A-BD-’ C)]> 0. We leave the details to the reader.

If we now substitute the various partitions of (B.3) into (2.20) to (2.23) we obtain

X(A- BD-’ C) + (A- BD-1C)*X XBD-’D-*B*X O,

YA* 4-AY- YC*CY O,

F C + D-*B*X,
H= YC*.

Since Re [A(A-BD-1C)]>O by assumption, the stabilizing solution X to (B.4)
is nonsingular.

Next, we use (B.3) and (B.4) to (B.7) in (2.28) to obtain

-{A- BD-I(c + D-*B*X)}* XBD-’CY
(B.8) TI*2Tll T2*l- 0 -{A- YC*C}*

D-*B* -D-*B*XY

XBD- 1C*
I

Introducing the basis change

(B.9) T-
0

gives

(B.10)
-{A- BD-’(C + D-*B*X)}* 0

T* T,, T*,= 0 -{A YC* C}*
D-*B* 0

X(BD-1

C*
I

t-{A- BD-I(C + D-*B*X)}*
D-*B* X(BD-I-I YC*)].

YC*) 1
The fact that the (1,2) block of the A-matrix in (B.10) is zero may be proved

using (B.4)Y and X(B.5).
The equation defining the observability gramian of T*2T T2*,(s) is

-{a- BD-’(C + D-*B*X)}Q Q{A- BD-(C + D-*B*X)}*
(B.11)

+ BD- D-*B O.

Comparison of (B.11) with X-I(B.4)X- =0 reveals that

(B.12) Q=-X-’<0.
The equation defining the controllability gramian of T*2T T*z,(S) is

{A- BD-’(C + D-*B*X)}*P + P{A- BD-’(C + D-*B*X)}
(B.13)

-X(BD-I- YC*)(D-*B*- CY)X =0.

Substituting pX-I(B.4) and (B.4)X-1p into (B.13) we get

X(A- BD-’C)X-Ip + PX-’(A- BD-’C)*X
(B.14)

+X(BD-1- YC*)(D-*B*- CY)X =0.
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(B.15)
whence

Substitution of (B.4) and (B.5) into (B.14) now shows that (B.13) is satisfied by

P= -X(I + YX) < O,

and

PQ= I+XY

II( Tl*2 Tll T*21(s)IIH Amax (pQ),/2 1 + Ama YX)] 1/2.

Finally, we know (from the discussion of 2) that

inf II(t + GK)-(s)II I1(T*12TIT2*,)*(s) II,-,,
K..

and this concludes the proof of (i). Parts (ii) and (iii) and the unweighted version of
(iv) can be proved using similar calculations. To prove the weighted version of (iv),
one may invoke the ideas in [13] whereby a weighted optimal robustness problem can
be transformed into an equivalent unweighted problem. These details are left to the
interested reader. F1

Appendix C.
Proof of Theorem 4.1. We may assume without loss of generality that the

realizations for Al(S) and A2(s) are balanced. Since they are minimal also, the following
six all-pass equations [12] are satisfied.

(C.1) All + al*l + B2B*2 0,

(C.2) 311 /A* + CI*ICI 0,

(C.3) C1+ B*2 0,

(C.4) Az2+ A*2z+ B:IB*2, 0,

(C.5) A22+ A’22+ C’22C2 O,

(C.6) C22+ BI 0.

The first part of the proof will be concerned with the extraction of a maximal
degree all-pass left factor A(s) from AI(S and G(s). Let us consider

0 A22 B21AI G(S)-- L-B12 I
Cll C12 D

(C.7)
-A*I C 1*1 C11 C 1*1 C12 C*ID
0 All A12 Bll
0 0 A22 BE1

-Bl*2 CI C12 D

Introducing the change of basis
I I 01T= 0 I 0

0 0 I

and then making use of (C.2) and (C.3) we obtain

(c.8)
-A*I A12+ CI C12

A*G(s) 0 A22
-Bl*2 C12

CD+ B11
B
D
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Our purpose now is to show that all the uncontrollable modes in A*G(s) are the poles
of A*(s). Since (A22, B21) is controllable by assumption, every uncontrollable mode
in (C.8) is an eigenvalue of-A*I. First, we observe that without loss of generality, we
may assume that the state-space basis of the realization in (4.15) has been chosen so
that in addition to (C.1)-(C.6), we have

(C.9) A,2+ C*, C12 0.

To show that this is so, consider the following change of basis in (4.15)
I -T]

(c. [c c] [Cl G] o
We now demonstrate that T may be chosen to make

(C.12) 12 "+" 1112 0.

From (C.10) and (C.11), (C.12) is equivalent to

(C.13) (A,2+ TA22-A,,T)+C*1,(C,2-C,,T)=O.
Using (C.2), (C. 13 becomes

(C.14) A* r+ TA22+ (A12 + C* C,2) 0.

Since AI and A22 are stable, (C.14) always admits a unique solution in T. Such a T
ensures that the transformed state-space matrices satisfy (C.12). For notational
simplicity, we assume that this basis change has been carried out initially and we revert
to the original notation. In view of (C.9), (C.8) becomes

-A*ll 0 C*ID+ Bll
(C.15) A*l G(S) 0 322 B2

-BI*2 C12 D

If the realization (C.15) has any uncontrollable modes (which must be eigenvalues of
-A*) we may introduce a basis change

(C.16) T--[ U10 I0]
in which U is orthogonal, to transform (C.15) to [24]

-io*o o o ,*oD+ o,
A*G(s) -1 -i11 0 (*ID + Bll

0 0 A22 B21
--J02--12 C12 D

in which all the uncontrollable modes are eigenvalues of-Ao*o. That is

l*oD+o, =0(C.17)

and thus

(C.18)
-,i,*, 0

A* G(s) 0 A22
-*,

*ID + B, 1B21D
is a controllable realization.



1486 D.J.N. LIMEBEER AND Y. S. HUNG

Introducing the basis of (C.18) into (4.15) allows us to write

Aoo Aol Ao2 Bol Bo2
0 All A12 Bl! B2(C.19) G A1](s)=
0 0 A22 /21 0

to tll C12 D I

in which we have by (C.9)

(C.20) /12
"4- l,lj C12 O.

Noting that orthogonal transformations map balanced realizations into balanced
realizations in the case of minimal realizations of inner matrices gives

(C.21)

(C.22) 10l11] + 212] 0.

Substituting foro from (C.21), o2 from (C.20),o from (C.17) and2 from (C.22)
into (C. 19) we get

(C.23) [G All(S) Bll B12
B21 0

D I

LClo I -"1 C,2 D I

(C.25) At(s)[t
where A(s) and ,l(S) are as given in (4.17) (note that /o2=-t*o). It follows
immediately from (C.21) and (C.22) that A(s) and hence also A(s) are inner.

By using dual arguments, we can extract a maximal degree all-pass right factor
At(s) from G(s) and A2(s). We begin this calculation with the change of basis

in the state-space of

(C.27)

A12 Bll
C

(s)=
A2 [011 C12

/

D ]
where $ is the unique solution of

(C.28) AllS+ SA*z:- A12- t,lB2l O.

The purpose of this basis change is to transform the realization (C.27) to

C



CANCELLATIONS IN H-OPTIMAL CONTROL PROBLEMS 1487

in which

(C.30) 12 +/11B2*1 O.

Next, a second orthogonal transformation

together with arguments which are duals of those invoked previously (see equations
(C.15) to (C.25)) allow us to write

(C.31)

(C.32) , (s)A,(s)

in which both A2($ and At(s) are inner. Further,

(C.33)

A* (s) * (s)

is an observable realization.
Equations (4.17), (4.18), (4.19) and parts (a) and (b) of the theorem have now

been established and it remains for us to prove (c). Multiplying (C.33) on the left by
/* (s) and using (C.21) and (C.22) we get

(C.34) /1" t/2* (s)

The minimality of the realization in (C.34) is established by first showing that it is
observable. Using (C.21) and (C.22) we have that

sI + ,*, -,,- ,,*, *l,(,_+ D*,) "].
0 sI+,*2 J

0 I 0 0 sI+,’22
o o

Since the [A, C] pair in (C.33) is observable, and because the polynomial matrices on
both sides of (C.35) have the same Smith form, the realization in (C.34) is also
observable 19].
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The minimality of the realization in (C.34) can now be established by showing
that it is controllable. We note that

[sI+,*l, --A12- 112"1- 1"1(12+ D2"1)1"1D +/11 ]0 sI+fii*22 -’22
(C.36)

0 01(*D+~/] 0 I 0
B21 0 -/}2" I

(C.37)

and thus

(C.38)

Hence

(C.39)

ll

[8 A,(s)]= o_
11 12

/}2 0

D I

BI -Js* I
D

This cascade realization is system similar (in the sense defined in 19]) to the controllable
realization in (C.18) and thus both realizations in (C.39) are controllable. This shows
that the realization of (C.38) is controllable as required. The controllability and thus
minimality of (C.34) now follows. This completes the proof of the minimality of
(4.23).

Appendix D.
Proof of Theorem 4.2. Since the realizations for AI(S) and A2(s) in (4.30) are

assumed to be minimal and balanced, equations (C.1) to (C.6) are again satisfied. The
proof of part (a) follows by a direct calculation which is similar to the analysis contained
in the proof of Theorem 4.1 and is consequently omitted.

To prove part (b), we will need a number of equatio,ns which can be deduced
from various partitions of (4.33) to (4.36). Since P and Q in (4.33) and (4.34) are
symmetric, we may introduce the notation

P1, P,2 P13 O,1 Q12 Q,
(D.1) /5= n*2 P22 P23 0--Q*2 Q22 Q23

P.* P* P. Q.* Q* Q.

where the partitioning is conformable with A of (4.32) in which _A is partitioned as in
(4.31). The (2,2) partition of the (1, l) block of (4.33) gives

(D.2) -A2*2P22- P22A22+ C2"2C22 0

and this together with (C.5) P22-- _jr. The (3, 2) partition of the (1, 1) block of (4.33)
gives

(D.3) AP23- P*23A22 + BC22 O.

The first matrix on the right of (C.36) is the [sI A, B] pair of a controllable realization
of ,*(s). To show this we assemble from (C.34), (C.31) and (C.32)
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The (1, 1) partition of the (1, 1) block of (4.34) gives

(D.4) -All Qll QI1A*I / B12B*12 0

and this together with (C.1) QI =-I. The (1,3) partition of the (1, 1) block of
(4.34) gives

(D.5) -AI Q13 / QlaA + B12C O.

Making use of (C.3), the (1, 1) partition of the (1, 2) block of (4.34) gives

(D.6) B12/- BI / Q1_C’22+ Q13/ 0.

The (2, 1) partition of (4.35) gives

(D.7) QIaP*23 P2/

If we make use of (C.6), the (1, 2) partition of the (2, 1) block of (4.33) yields

(D.8) -/C22- B*EP2+ C12- P*3 0.

Finally, the (1, 2) partition of the (1, 1) block of (4.34) together with (C.3) gives

(D.9) -AIQE+A2+ BIB*E- QI2A*2=O.

By direct calculation we obtain

(D.10)

A, B,2/C22 B12 B,2/

(G-A1QA2)(s)= 0 A22 .B21- 0 /C22 ACll C12 D
Cll bC22 C D

The rest of the proof is based on detailed manipulations of the state-space realizations
of AQA2(s) in (D.10). First, we introduce the change of basis

I 0 Q13
(D.11) T= 0 I 0

0 0 I

and this together with (D.5) yields

A,1 (B12b + Q13/) C22 0

(D.12) A1QA(s)=
0 A22 0

o A
Cll DC22 C Cll Q13

B12b+O13
B2

15
Next, the coordinate transformation

(D.13) T= 0 I 0

0 -P*3 I

together with (D.3) gives

A (B12/ + Q3)C2

O0 A22(D.14) A1QA2(s)--
0

Cll /C22+ P*3 Cll QlaP*3

0

0-- CllQ13

B12D/Q13B

BI- P2321
D
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A third change of basis

(D.15)
I -Q12 01T= 0 I 0

0 0 I

leads to

(D.16)

AQA2(s)

A,1 (B12)+Q3)C22-Q12A22+AQ2 0

0 A22 0

o o
C,, 5C22+P*23-C1,Q,3P*23+C,,Q,2 -C,,Q,3

B12b+QI3-QI2B21
B21- P*2B:,

Substituting (D.6)C22 and (D.9) into the (1, 2) block of the A-matrix in the above
realization together with (C.5) and (C.6) gives

(D.17) (B12b / Q13]) c22 Q12A22/ A,, Q,2 A,.

Substituting (D.6) and (C.6) into the (1, 1) block of the B-matrix in (D.16), we obtain

(D.18) B12b+ Q,a-Q,2B21 Bll.

Finally, (D.7), (D.8) and (C.3) will verify that

(D.19) /C22/ P2"3 Cll QlaP2*3 + Cll Q12 C12.

Thus

(D.20) A,QA2(s)

All A12 0

0 A22 0

o o
Cl, C12 CllQ1,3

Bll
B21

lO- P*EaB2i

Consequently

(D.21) (G-AIQA2)(s)= ’
A /} P2*3B21 ]D-D

and this proves (b)(i). Part (b)(ii) is obvious.

Appendix E.
Proof of Theorem 4.3. The equations describing the closed loop of Fig. 1 are

Ax + Bltl + B2u2,

Yl CIX / D11u1 + D12u2,

Y2 C2x / D2//1 / D22u2,

= Ax + By2,

1,12 --(C / Dy2).
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Eliminating the variables u2 and Y2 leads to the following state-space model ,for

the closed loop

E. 1)
A B2,, DMC2

BMC:

(E.2) [Yl] C,- D12MC2

-B2[I B1 B2DMD21, MD2C J
+ MD:: [ u, ],

-D,2[I-MD_]] [] +[DI,- D,.MD,][u,]

in which

(E.31 M:=(I+D22D)-

If So is an unobservable mode of the closed loop state-space model (E.1)-(E.3),
then there exists a vector [w*w*2]* 0 such that

(E.4)

Defining

SoI A + B2JMC2

C-DDMC
sol ft+ MD22C.^ w2W1 O.

-D12[I DMD22]

Z2 := DMC2w I DMD22]Cw2

we have from (E.4) that

(E.5) 0.
C1 Z2

The proof of the (a) part is concluded by establishing that [W1W2] 0 :: [WlZ2$] 0,

Suppose for contradiction that w*z*] 0. This implies that

I -/MD221w2 0

(E.6) Ca (I +/DI)-’w2 0

Ca CW2-’O.
We also.have from (E.4) that

(E.7) sol A) wa O.

Equations (E.6) and (E.7) taken together contradict the assumed minimality of the
realization in (4.47) which proves the (a) condition. The (b) part may be established
by a parallel sequence of arguments.

Appendix F.
Proof of Theorem 4.5. We begin by pointing out that

(F.1) (4.66) =:> I(H22; So) _1 foo [In [det D(jo)lRe (So)/{ljw-Sol2}a dro.

Next, by invoking the system of J-unitary equations (4,63) to (4.65), one may verify
that (note that if G(s) is J-unitary, so also is G*(s))
(F.2) I- E(s)E*(s) (D+ CU)-*{I- U*U}(D+ CU)-’(s)
so that

(F.3)

det (I-E*E)(s)= {det(D + CU)}-2 det (I- U’U)

{det (D(I+ D-’CU))}- det (I- U’U)

{det (D)}-Z{det (I + H2z U)}- det (I- U* U).
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Therefore

I(E; So) -- {-21nldet(D)l-21nldet(I+H22U)l

(F.4) +In Idet (I + U* U)

I(H:2; So)+ I( U; So)

(F.5) +lTr fo [In Idet (I + H22U)I Re (So)/{ljto Sol2}]

Since SoeC_, H22(s)e RH

_
and U(s)e RH

_
we have by Poisson’s integral formula

(F.6) lr f_ [In ]det (I + H:2 U)] Re (So)/{ljto So12}] alto In Idet [I + n2_(So) g(so)]l.

Hence

(F.7) I(E;so)=I(H22;So)+I(U;so)+lnldet[I+H22(so)U(so)]]
which proves the first part.

We now need to prove that

(F.8) I( U; So)+ In Idet (! + H22(So)U(so))]
attains a minimum at Uo -H2*2(So). This is obvious when H22(So) 0 since I( U; So) -> 0
and I(0; So)=0. Let us now suppose that H22(So)# 0 and consider the constant linear
fractional map"

(F.9) 190(U(s))-- (Oll U(s)-]--O12)(O21U(s) -- O22) -1

where the O ij are sub-blocks of the J-unitary matrix O given by

(F.IO) O= 011 012] (Ira-XX)-l/2 -(Ira-XX) XO 1
021 022J -(In XoXo )l/2Xo _n XoXo 1/2 J

where

Xo := -H(So) e C

By applying (F.7) to (F.9) we get

(F.11) I(Oo; So)-I(Xo; so)+I(U; so)+lnldet(I+n(so)U(so))l
and substituting (F.11) into (F.7) we get

(F.12) I(E; So) I(H2:; So)+ 1(19o; So)- I(Xo; So).

Since I(Oo(U(s)); So)>-O and I((R)o(Xo*); So)=0 we have that the minimum value of
I(E; So) is given by

I(E; So)= I(H22; So)-I(Xo; So)

I(H)_2; So)+1/2 In ]det (I-H2:(so)H*2(So))] (by (F.1))

which completes the proof.
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