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AN ANALYSIS OF THE" PRACTICAL DPG METHOD 

J. GOPALAKRISHNAN AND W. QIU 

ABSTRACT. We give a complete error analysis of the Discontinuous Petrov Galerkin (DPG) 
method, accounting for all the approximations made in its practical implementation. Specifi­
cally, we consider the DPG method that uses a trial space consisting of polynomials of degree 
p on each mesh element. Earlier works showed that there is a "trial-to-test" operator T, 
which when applied to the trial space, defines a test space that guarantees stability. In DPG 
formulations, this operator T is local: it can be applied element-by-element. However, an 
infinite dimensional problem on each mesh element needed to be solved to apply T. In prac­
tical computations, T is approximated using polynomials of some degree r > p on each mesh 
element. We show that this approximation maintains optimal convergence rates, provided 
that r 2: p + N, where N is the space dimension (two or more), for the Laplace equation. 
We also prove a similar result for the DPG method for linear elasticity. Remarks on the 
conditioning of the stiffness matrix in DPG methods are also included. 

1. INTRODUCTION 

In this paper we prove error estimates for the discontinuous Petrov-Galerkin (DPG) 
method applied to the Laplace equation and the equations of linear elasticity. The approach 
is applicable more generally to other equations as well. An error analysis of an "ideal" DPG 
method was provided in [5]. Although the ideal method is not practically implementable, 
a number of important theoretical tools for analysis were developed in [5]. We extend this 
analysis using a few new lemmas to provide a complete analysis of the fully implementable 
"practical" DPG method. The distinction between the ideal and practical methods will be 
clear in the next few paragraphs. 

Both methods are easy to describe in a general context. Suppose we want to approximate 
0/1 E U satisfying 

b(o/I,l') = l(l'), \11' E V. (1.1) 

Here U is a Hilbert space with norm II· Ilu and V is a Hilbert space under an inner product 
(', ')v with corresponding norm 1I·llv. (All spaces are over JR.) We assume that the bilinear 
form b(·, .) : U x V I--t JR is continuous and the linear form l ( .) : V I--t JR is also continuous. 
Define T : U I--t V by 

(TYf/,l')v = b(Yf/,l'), \11' E V. (1.2) 
Then, the DPG approximation to 0/1, lies in a finite dimensional trial subspace Uh C U (where 
h denotes a parameter determining the finite dimension). It satisfies 

b(o/Ihll') = l(l'), \11' E Vh, (1.3) 
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2 J. GOPALAKRISHNAN AND W. QIU 

where Vh = T(Uh). Since Uh =I Vh in general, this is a Petrov-Galerkin approximation. The 
method (1.3) is the ideal DPG method. The excellent stability and approximation properties 
of this method are well known [4, 5]. 

The main difficulty of the ideal method is that in order to compute Cfth, one needs a basis 
for Vh , which must be obtained by applying T. This is infeasible, as seen from (1.2), if 
V is infinite dimensional, unless a solution to (1.2) can be written out in closed form. In 
certain one-dimensional problems, and in some multi-dimensional problems like the transport 
equation, the application of T can be exactly written out in closed form (see [3, 4]). But for 
the vast majority of interesting problems, this is not possible. 

Yet, one may approximate T by Tr, defined as follows. Let vr be a finite dimensional 
subspace of V (where r is a parameter determining the finite dimension). Then Tr YJI in vr 
is defined by 

(Tr YJI, "f/) V = b(YJI, "f/), V"f/ E Vr. (1.4) 

One can then reconsider the DPG method (1.3) with V{ = Tr(uh ) in place ofVh , i.e., 

b(Cfth' "f/) l("f/), V"f/ E V{. (1.5) 

This yields an implementable method that is very generally applicable. We refer to this 
method as the practical DPG method. 

A serious difficulty still remains when these ideas are applied to standard variational 
problems. Namely, one application of Tr requires inverting a Gram matrix in the V-inner 
product. This is prohibitively expensive for most standard variational formulations. For 
instance, if V is Hl(D), where D is the computational domain, then inverting the Gram 
matrix is as expensive as solving the Laplace's equation. 

This difficulty can be overcome by hybridization, as shown in the earlier DPG papers [4, 5]. 
Namely, given a boundary value problem, introducing certain interelement fluxes and traces 
as new unknowns, we can design an ultraweak well-posed variational formulation involving 
a space V that contains functions discontinuous across mesh element interfaces. This then 
implies that the Gram matrix becomes block diagonal, with one block per mesh element 
(since vr may now be chosen to be a DG subspace). The application of Tr is thus reduced 
to an easy block diagonal inversion, i.e., the action of the operator Tr is local. 

Such an ultraweak variational formulation has been developed for the Poisson equation 
in [5], where its wellposedness is also proved. We will heavily rely on such wellposedness 
results in this paper. An ultraweak formulation for the linear elasticity system is also avail­
able now [2]. Both these works analyzed the ideal DPG method (1.3) for the respective 
ultraweak formulations. The aim of the present paper is to provide an error analysis for the 
corresponding practical DPG methods (1.5). 

In the next section we will present an approach to the analysis of the practical method, 
continuing in the general context and using the abstract notations introduced above. In 
Section 3, we perform the error analysis for the practical DPG method for the Laplace 
equation. We also provide a condition number estimate. In Section 4, we consider a second 
example of linear elasticity and provide an error analysis. 

2. THE APPROACH TO ANALYSIS 

The purpose of this section is to point out a simple functional analytic route to proving the 
discrete stability of the practical DPG method (1.5). This discrete stability will follow from a 
discrete inf-sup condition on the space V{. However, in applications, it is often inconvenient 
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to work directly with this space. We prefer to work with vr, which will be some standard 
polynomial space in most applications (as seen in the examples later). The next theorem 
shows that the existence of a Fortin operator into this more standard space vr is a sufficient 
condition for the convergence of the practical DPG method. 

Before we give the result, let us state the assumptions that we shall verify for each of our 
examples. We assume that 

{rf/ E U: b(rf/,~) 0, V~ E V} = {O} (2.1) 

and that there is a positive constant C1 such that 

C111~llv ~ sup b(rf/,~) V~ E V. (2.2) 
"/liEU 11rf/llu ' 

Above and throughout, we will tacitly assume that the suprema such as the above are taken 
over nonzero functions. Let C2 ~ 0 be such that 

b(rf/,~) ~ C211rf/llull~llv, Vrf/ E U, ~ E V. (2.3) 

Clearly, such a C2 exists due to the continuity of b(·, .). Finally, assume that there exists a 
V rlinear operator II : V H such that for all ~ E V, we have 

b(rf/, ~ - [J~) = 0, Vrf/ E Uh , (2.4a) 

IIII~llv ~ CIIII~llv. (2.4b) 

Theorem 2.1. Suppose the assumptions (2.1), (2.2), (2.3), and (2.4) hold. Then the prob­
lem (1.1) is well-posed and 

•C2CII 
116U - 6U~llu ~ -C Inf 116U rf/llu. (2.5) 

1 "/IIEUh 

Proof. We apply Babuska's theory [1, 11]. Accordingly, if we prove the discrete inf-sup 
condition 

C1 b(rf/,~) 
Vrf/ E Uh , (2.6)

C 1Irf/llu:::; sup II II ' 
II -rEV; ~ V 

then (2.5) will follow. We prove (2.6) in three steps, the first two of which are fairly standard 
(but included for readability). 

As the first step, we prove that the following inf-sup condition holds: 

Ib(rf/, ~)I 
Vrf/ E U. (2.7)C111rf/llu :::; sup II II ' 

-rEV ~ V 

This follows from the other inf-sup condition (2.2). Define a linear operator B : U -+ V* 
by Brf/ b( rf/, .) E V*, for all rf/ E U. It is well known [12] that (2.2) holds if and only if 
B* is injective and the range of B* is closed in U*. Additionally, by (2.1), B is injective. 
Therefore, by the Closed Range Theorem, B*(V) U*, so (B*)-l : U* -+ V exists. Hence 
B-1 : V* -+ U also exists and is continuous. This proves that problem (1.1) is well-posed. 
We obviously also have liB-III = II(B- l )*11 = II(B*)-III, Le., 

. f Ib(rf/,~)I II -111- 1 II(B*)-111-1 . f Ib(rf/,~)I
In sup II rf/ II II II = B = = In sup II rf/ II II ~ II V ' "/liEU -rEV U ~ V -rEV "/liEU U 

which proves (2.7). 
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As the second step, we prove the following inf-su p condition. 

GC1 Ilwllu::::: sup Ib(w,l')1 VYfI E Uh . (2.8) 
n i/EV r 1I1'1Iv ' 

Note that this differs from (2.6) only in the space in which the supremum is sought. To 
prove (2.8), we use (2.7) and assumption (2.4) as follows: 

b(YfI, 1') b(YfI I Jll') 
C1 11Yf111u ::; sup II II ::; sup C-1 11 II'"f'EV l' V YEV II IIl' V 

Now, since IIl' is in Vr, the last supremum may be bounded by the supremum over all Vr, 
so we obtain (2.8). 

As the third and final step, we prove that if 81 is the supremum in (2.8) and 82 is the 
supremum in (2.6), then 81 = 82' Obviously, 81 2 82 as vr :2 V{. To prove the reverse 
inequality, observe that 81 = IITrYflllv, by (1.4). Since Tr Yfl is in V{, we have 

(TrYfl,TrYfl)v (Tr Yfl ,l')v 
SI = IITrYflllv ::; :~eh 1I1'1Iv = S2' 

Therefore, the inf-sup condition (2.6) follows from (2.8). o 
Remark 2.2 (Test basis). The above proof also shows that under the assumptions of Theo­
rem 2.1, the operator Tr : Uh M vr is injective: indeed, if Tr Yfl = 0, then b(YfI,l') = 0 for all 
l' in Vr, so by the inf-sup condition (2.8), we conclude that YfI = O. Note that the injectivity 
of Tr implies that 

dim(V;) = dim(Uh ). 

It also implies that a basis for V; can be computed by applying Tr on any basis for Uh . 

Remark 2.3 (Conditioning). Suppose (fBi is a basis for Uh . Then, under the assumptions 
of Theorem 2.1, Tr(fBi is a basis for V{, as seen in Remark 2.2. The ij-th entry of the 
stiffness matrix of the DPG method with respect to this basis is given by Sij = b((fBj, yr(fBi) = 
(Tr(fBj, Tr(fBi)V. Clearly, S is symmetric. The above mentioned injectivity of Tr implies that 
S is also positive definite. To understand the conditioning of S, let us first note that 

g: Ilwllu ::::: liT'"wllv ::::: G2 l1wllu, VYfI E Uh • (2.9) 

This follows from the inf-sup condition (2.8) in the proof of Theorem 2.1 and the continuity 
property (2.3). Next, suppose x = L:i Xi(fBi is the basis expansion of any x in Uh , and Ao, Al 
are positive numbers such that 

Aollxll~ ::; II xllb ::; Alllxll;2, Vx E Uh • (2.10) 

Since xtSx = IITr xll~, these estimates imply that the Rayleigh quotient xtSx/xtx is at most 
A1C~ and at least Cr Ao / C~. Hence 

(S) < Al C~C~ (2.11 ) 
/1; - AD Cr ' 

where /1;(S) is the spectral condition number of S. This gives condition numbers comparable 
to other methods, as we shall see later in our examples. 
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3. FIRST EXAMPLE: LAPLACE EQUATION 

The ideal DPG method for the Laplace equation was developed and analyzed in [5]. In 
this section, we will set the abstract forms and spaces of the previous section to those from [5] 
and verify the hypotheses required to apply Theorem 2.1. Roughly speaking, our main result 
shows that if polynomials of degree p are used to approximate the solution of the Laplace 
equation, then a sufficient condition for optimal convergence is that T is approximated by 
polynomials of degree p + N, where N ~ 2 is the space dimension. In the wording of [5], this 
means the "enrichment degree" should be chosen to be N. Ample numerical evidence, in 
support of the choice of 2 as enrichment degree, was presented in [5, § 6.1], but all numerical 
experiments were in the two-dimensional case. 

In the remainder of this paper, we let [2 be a Lipschitz polyhedron in }RN. We denote by 
{[2h}hEI a family of conforming shape regular simplicial finite element triangulations of [2. 
The index h now stands for the maximal diameter of simplexes in [2h. 

3.1. Infinite dimensional spaces. Let V = }RN. We use L2([2, V) to denote the set of 
vector-valued functions whose components are square integrable. We set the trial and test 
spaces by 

U = L2([2; V) X L2([2) x H~/2(8[2h) x H- 1/ 2(8[2h), 

V = H(div, [2h) x H1 ([2h), 

where the "broken" Sobolev spaces (admitting interelement discontinuities) are defined by 
H(div,[2h) = {7: 71K E H(div,K), VK E [2h} and H 1([2h) = {v: VIK E Hl(K), VK E 
[2h}. They have the natural norms 

Ilvll~l(nh) = (v, v)nh + (grad v, grad v)nh' 

IIqll~(div,nh) (q,q)ilh + (divq,divq)nh' 

The derivatives above, and in such notations throughout, are calculated element by element 
and 

(r, s)nh = L (r, S)K' (w, f)ailh = L (w, fh/2,aK. 
KEnh KEilh 

and (', fh/2,aK denotes the action of a functional f in H-l/2(8K). We will also use IIrllnh 

to denote the norm (r, r)~:. The spaces of traces and fluxes are defined by H~/2(a[2h) = 

{"l E IlK Hl/2(8K) : 3w E HJ([2) such that "llaK WlaK VK E [2h}, and H-l/2(8[2h) = 
{"l E IlK H-l/2(8K) : 3q E H(div, [2) such that "llaK = q. nlaK VK E [2h}, with respective 
norms 

IIuIlH~/2(anh) = inf {IIw llHl(n) : Vw E HJ([2) such that UlaK = WlaK}, (3.1) 

IlanIlH-l/2(anh) = inf {lIqIlH(div,il) : Vq E H(div, [2) such that aniaK q. nlaK}. (3.2) 

The spaces U and V are endowed with product norms, i.e., 

II(cr, u, u, an)ll~ = Ilcrll~ + lIull~ + Ilull~1/2(anh) + Ilanll~-1/2(anh)' 
11(7, v)ll~ = 11711~(div,nh) + Ilvll~l(nh)' 
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3.2. Forms. The ultraweak formulation of the Laplace equation derived in [5] reads as 
follows: Find %' == (a, u, u, an) E U satisfying (1.1) for 11 == (T, v) E V where the forms b(·, .) 
and l(·) are set by 

b(%', 11) = (a, T)n (u, div T)nh + (u, T . n)Dnh - (a, grad v)nh + (v, an)anh ' 
l(1I) = (j, v)n, 

for some j in L 2(ft). The u-component of %' solves the Laplace equation with zero Dirichlet 
boundary conditions on 8ft. For details, consult [5]. 

3.3. Discrete spaces. Let us first establish notation for a few polynomial spaces that we 
will use here and throughout. Let Pp(K) denote the space of polynomials of degree at most 
P on a simplex K. We write Pp(K; V) for vector valued functions whose components are in 
Pp(K). Let L::.m(K) denote the set of all m-dimensional sub-simplices of K. Define 

Pp(K) = {pp E Pp(K) : PplDK = O}, 

Pp(8K) = {I-l: I-lIF E Pp(F), VF E L::.N-l(K)}, 

Pp(8K) = Pp(8K) n eO(8K), 

where eO(D) denotes the set of continuous functions on any domain D. 
Using these notations, we set the trial approximation space for the DPG method by 

Uh = {(a, u, u, an) E U: O'IK E Pp(K; V), UIK E Pp(K), 

UIDK E Pp+1(8K), aniaK E Pp(8K), VK E fth }. 

The discrete test space is defined by Vh = Tr(uh ), so to complete the prescription of the 
practical DPG method, we only need to specify vr. Set 

V r = {(T, v) E V: TIK E Pr(K; V), VIK E Pr(K), VK E fth }. (3.3) 

where the degree r ~ P + N. Clearly, the application of Tr, as defined by (1.4), can proceed 
locally, element by element, since vr has no interelement continuity constraints. 

3.4. Verification of the assumptions. To apply Theorem 2.1 to the above setting, we 
need to verify its assumptions. 

• Assumption (2.1) is verified by [5, Lemma 4.1J. 
• Assumption (2.2) is verified by [5, Theorem 4.2J. 
• Assumption (2.3) is easy to verify. For example, to show the continuity of the term 

(u, T' n)anh' we let w E Hl(ft) be any extension of u and observe that 

(U,T' n)anh = (gradw,T)nh + (w,divT)nh ~ IlwIIHl(n)IITIIH(div,nh)' 

Taking the infimum over all such extensions w, we obtain 

(u, T . n)anh ~ lIuIIH~/2(anh) IITIIH(div,fh)' 

The other terms in the bilinear form are similar or simpler. 
• Assumption (2.4) is verified below. 

An operator JI satisfying (2.4) will be constructed in the form JI1I = (JI;!:2T, JI;rad v ). 
We construct the operator JI;rad in Lemma 3.2 below, and we construct the operator JI;!:2 
in Lemma 3.3. But first, we need the following intermediate result. Let B~rad(K) {Pr E 

Pr(K) : PrlE = 0, VE E L::.N-2(K)} and hK = diam(K). Hereon we use c and C to denote 
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generic constants (whose value at different occurrences may differ) independent of hK' but 
possibly dependent on the shape regularity of K and the polynomial degree p. We also let 
(', -)8K denote the L 2(8K)-inner product. 

Lemma 3.1. Let r = p+ N. Then, for every v E Hl(K), there is a unique l1~v E B;rad(K) 
satisfying 

(l1~v - v, qp-dK 0, Vqp-l E Pp-1(K), (3.4a) 

(l1~v V,{Lp)8K = 0, V{Lp E Pp(8K), (3.4b) 

1I11~v1lK + hK11 grad l1~vllK :::; C (IIvIIK + hK11 grad vIIK)' (3.4c) 

Proof. First, to see that the number of the equations in (3.4a)-(3.4b) equal dim Bfad(K), 
observe that 

dim B;rad(K) dim Fr(K) + L dim Fr(F). (3.5) 
FE6N~dK) 

Let bK and bF denote the product of all barycentric coordinates that do not vanish everywhere 
on K and F, resp. Then Fr(K) = bKPr-N-1(K) and Fr(F) = bFPr-N(F). Therefore, by 
our choice of r, we have dim Fr(K) = dimPp_1(K) and dimFr(F) = dimPp(F). It then 
follows from (3.5) that (3.4a)-(3.4b) is a square system for l1~v. 

Hence, to prove that (3.4a)-(3.4b) has a unique solution, it suffices to prove that if v = 0, 
then l1~v = O. Since l1~v E B;rad(K), on any face FE L::.N-l(K), we may write (l1~V)IF = 
bFwp for some wp E Pp(F). But then, (3.4b) implies that l1~v must vanish on 8K, so 
l1~v = bKzp- 1 for some Zp-l E Pp-1(K). Then (3.4a) implies that l1~v = 0 on K. 

Finally, one can prove (3.4c) using a standard affine mapping argument. 0 

Lemma 3.2. Letr =p+N. Define 11;radv = lI~(v-v)+v, wherevlK = IKI- 1 JKV. Then 

(l1;radv - v, qp-l)K = 0, Vqp-l E Pp- 1 (K), (3.6a) 

(l1;radv - v, {Lp)8K = 0, VjLp E Pp(8K), (3.6b) 

1111;radvIIHl(K) ~ Cllv IIHl(K), Vv E H1(K). (3.6c) 

Proof. Obviously, l1;radv - v = (11~ - I)(v - v). Hence, (3.6a) and (3.6b) follows from (3.4a) 
and (3.4b) of Lemma 3.1. It remains to prove (3.6c). By (3.4c) and the Poincare-Friedrichs 
inequality, 

1111;radv II K :::; IlvilK + 1111~(v - v)IIK 

~ IIvllK + C (11v - vllK + hK11 grad(v - v)IIK) 

:::; C (11v11K + hK11 grad vIIK), and 

hKII grad l1;radv ll K hKII grad l1~(v - v)IIK 

S C (11v - vilK + hK11 grad(v - v)IIK) 

::; ChK II grad vl\K' 

Canceling out hK and adding, (3.6c) follows. o 

http:3.4a)-(3.4b
http:3.4a)-(3.4b
http:3.4a)-(3.4b
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Lemma 3.3. There is an operator JI;!;2 H(div, K) I---t Pp+2(K; V) such that for every 
T E H(div, K), we have 

(JIdiv )p+2T,qp K (T, qp)K, 'Vqp E Pp(K; V), (3.7a) 

(JI;!:2T . n, /Lp+l)8K (/Lp+l) T . n)1/2,8K 'V/Lp+l E Fp+l (8K), (3.7b) 

IIJI;~2TIIH(div,K) ~ GIITIIH(div,K). (3.7c) 

Proof. We will first construct the operator on the unit simplex K in JRN. Recalling the 
notations in §3.3, define p;(ak) to be the L2(ak)-orthogonal complement of Fp(ak) in 

pp(ak) , and 
n

B;!:2(K) = {f E Pp+1(K;V) +xPp+1(K): (p1.,f· n)8k = 0, VP1. E Pp

1. 
+1(8K)}. 

We construct an operator fI;!;2 mapping H(div, K) into B~!:2(K) by 

(fI:;2f,qp)k (f,qp)k, 'Vqp E Pp(I<;V), (3.8a) 

(fI;!:2 f . n, jLp+l)8k ({lp+l, f· nh/2,8K 'V/lp+1 E Fp+1(8K). (3.8b) 

We claim that (3.8a)-(3.8b) uniquely determine fI;!:2f E B~!:2(1<). Indeed, if their right 

hand sides vanish, then since fI;!;2f is in B~!:2(K), we find that fI;!;2 is a function in the 
Raviart-Thomas space whose canonical degrees of freedom vanish (see e.g., [10, Definition 5]), 
so fI~!:2f = O. Hence (3.8a)-(3.8b) uniquely defines fI;!;/f. 

Now, we define JI;!:2 on any general simplex K by mapping fI~!;2 f from I< using the 

Piola transform, as follows. Let CK be the affine homeomorphism from K onto K and let 
A denote its Frechet derivative. Given any T E H(div, K), let f(x) in H(div, K) be defined 
by TO CK = (det A)-l Af. Then, define 11~!:2T by 

A 

with xJIdivp+2T(X) det 
A 

A JI;!:2 f (x) , = CK(x). 

We will now show that this 11~!;2T satisfies the three properties in (3.7). 
First, observe that (3.8a) and (3.8b) imply the corresponding identities on K, namely, 

(l1div A-t n C- 1) 0 'Vqp E Pp(l<; V),p+2T - T, qp 0 K K = , 

(l1div ~ C-1) (A c- 1 )
p+2T ' n, /Lp+l 0 K 8K= /Lp+l 0 K' T . n 1/2,8K 'V{lp+l E Fp+l (81<). 

This implies (3.7a) and (3.7b). 
It only remains to prove (3.7c). We do this in two steps. First, we prove an L2(K) bound 

using the Piola map's well-known estimates for shape regular meshes, namely 

IKII/2 
ellfllk ~ IITIIK~ ~ Gllfllk' 

ell divi-Ilk ~ II divTIIKIKI1/2 ~ Gil divfllk' 

Together with the fact that fI~!:2 is a continuous operator on H (div, 1<), we obtain 

1111;~2TIIK + hK11 div JI;!:2TIIK ~ G (IITIIK + hK11 div TIIK)' (3.9) 

In particular, this proves the L2(K)-bound 1111~!:2TIIK ~ GIITIIH(div,K). 

http:3.8a)-(3.8b
http:3.8a)-(3.8b
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Next, we prove a better bound on the divergence norm II div 1I;f2r11K by showing that 

div(1I;';2r) = IIp+l div r 

where IIp+l is the L2(K)-orthogonal projection onto Pp+ 1(K). Indeed, for any Wp+l E 
Pp +1(K), we have, due to (3.7a) and (3.7b), that 

(div(1I;';2r ),Wp+l)K -(1I;';2r ,gradwp+l)K + ((1I;';2 r ). n,wp+l)aK 

-(r, gradwp +l)K + (WP+l' r . nh/2,aK 

= (div r, Wp+l)K' 

Hence, 
II div(1I;';2 r) 11K = Il1Ip+l divrllK ::; II divrllK' (3.10) 

Estimates (3.9) and (3.10) prove (3.7c). 

Now we are ready to apply Theorem 2.1 to obtain a convergence result for the practical 
DPG method for the Laplace equation. 

Theorem 3.4. Let r 2:: p + N. Then the exact and discrete solutions for the DPG method 
for the Laplace's equation, namely o/t = (0', U, u , an) and o/th = (O'hl Uh, Uh, an,h), satisfy 

110' O'hIlL2(n) + Ilu - uhIlL2(n) + Ilu - uhIIH~/2(anh) + lIan - an ,hIlH-l/2(anh) 

::; C ipfA (110' - PhIlL2(n) + Ilu whIlL2(n)
(Ph,Wh,Wh,T/h)EUh 

+ 1111 - whIIH~/2(anh) + Ilo-n - iln,hIIH-J/2(anh»)' 

Proof. As already observed, we have verified the first three assumptions of Theorem 2.1. To 
verify Assumption (2.4), let "f' = (r, v) and set 1I"f' = (1I;f2r, lI;radv). The continuity esti­

. mates of 1I;f2 and lI~rad of Lemmas 3.2 and 3.3 (namely (3.6c) and (3.7c)) show that (2.4b) 
holds. To see that (2.4a) also holds, observe that the identities of these lemmas also imply 

(Ph, r - 1I;!;2r)n = 0, (Wh' div(r - 1I;';2r))nh 0, 

(Wh, (r - 1I;';2r ) . n)anh = 0, (Ph, grad(v - lI;radv))nh = 0, 
A) ­(v - lIrgradv, 'f/h anh -

0 
, 

for all (Ph, Wh, Wh, i}h) E Uh. While the identities above on the left follow from the identities 
of (3.6) and (3.7), those on the right are proved by integration by parts. Together these 
identities imply that b(1f/, "f' - 1I"f') = 0 for all1f/ E Uh , so Assumption (2.4) is satisfied. 0 

Remark 3.5 (Enrichment degree). The above arguments point to the potential of choosing 
different enrichment degrees for the scalar and flux components of the test space. We have 
in fact proved that if, in place of the vr set in (3.3), we revise our choice of vr to 

V r = {(r, v) E v: rlK E Pp+2(K; V), VIK E Pp+N(K), VK E [2h}, 

then, we obtain the same convergence result. Obviously, the revised V r defines a smaller 
space if N 2:: 3. The present DPG software packages are set to approximate all components 
of T by polynomials of the same degree r. Our results indicate that this is unnecessary. 

As an example of how Theorem 3.4 implies h-convergence rates, we state the following. 
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Corollary 3.6 (Convergence rates). Let h max:KESh diam(K), N = 2 or 3, and let the 
assumptions of Theorem 3.4 hold. Then 

Iia - ahllL2(st) + lIu - uhllL2(st) + IIu - uhllH~/2(8sth) + Ilan - an ,hIlH-l/2(asth) 

s 
~ Ch (1IuIIHs+l(st) + IlaIIHs+l(st») , 

for all 1 / 2 < s ~ p + 1. 

Proof. The proof proceeds by bounding the infimum over (Ph, Wh, Wh, ~h) E Uh in Theo­
rem 3.4. It is standard to bound the first two terms in the infimum, so we will only explain 
how to bound the next two terms. It is well-known (see, e.g., [8, Theorem 8.1]) that there 
are interpolants Ilgradu E HJ(rl) and Ildiva E H(div, rl), such that IlgradulK E Pp+l(K), 
IldivalK E xPp(K) + Pp(K)3 for all K E rlh' and the interpolation errors satisfy 

Ilu - Ilgrad U IlHl(st) ~ ChsluIHs+l(st), (1/2 < s ~ p + 1), (3.11a) 

lIa - IldivaIIH(div,st) ~ ChslaIHB+l(fI), (0 < s ~ p + 1). (3.11b) 

Let th denote the trace of Ilgradu on arlh. Then, 

irtf IIu - whllHl/2(8st ) ~ Ilu ihIl Hl/2(ast) ~ Ilu IlgraduIIHl(st).
Wh 0 h 0 h 

The last inequality is obtained by observing that u is the trace of u on arlh and bounding the 
infimum in definition (3.1). In a similar fashion, we can estimate the last term in Theorem 3.4 
by lIa - IldivaIIH(div,st). The interpolation error estimates (3.11) then finish the proof. 0 

To conclude this section, we prove that the condition number of the stiffness matrix of the 
DPG method is no worse than other standard methods - see Remark 2.3 for the definition 
of the stiffness matrix with respect to a basis {~i}' Consider, for definiteness, the three­
dimensional tetrahedral case. We tacitly assume that the basis functions ~i are local, and 
obtained, as in usual finite element practice, by mapping from the (reference) unit simplex. 
For example, a basis for the trial space for the numerical traces is built using a local basis 
{ej} for Pp+l (8K), which in turn is obtained by mapping over a basis {ej} for Pp+l (8k) 
(where ej = ej 0 Gi/ and we use the other mapping notations in the proof of Lemma 3.3). 
Consequently, if s = I:j sjej is the basis expansion for any s E Pp+l (8K), then by the 
equivalence of norms in finite dimensional spaces 

c L: ISjl2 	~ inf. Ilell~l(k) ~ CL: ISjI2. (3.12) 
j 	 e~Pf+l (K), j 

(e-s)1 8 k=0 

Such arguments will be used in the following proof without further explanation. 

Theorem 3.7 (Conditioning). Suppose rlh is a quasiuniform tetrahedral mesh and the as­
sumptions of Theorem 3.4 hold. Then the spectral condition number of the stiffness matrix 
S of the DPG method satisfies 

K,(S) ~ Ch-2 
. 

Proof. Let us apply (2.11). We have already shown above that Cl , C2 and Cn are independent 
of h. Hence it only suffices to find the dependence of Ao and Al on h in (2.10). 
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Let :r = (p, w, z, ij) in Uh , As a first step to bound the norm of Z, we recall that the 
existence of an Hl(K) polynomial extension [7] implies that for any S in Fp+l (aK), 

A Ainf Ilepll~ + II grad epll~ ~ C i~f Ilell~ + II grad ell~· 
epEPp+l(K), eEH (K), 

eplak=S elak=S 

Mapping to K using the affine homeomorphism GK and scaling both sides by IKI, we obtain 

inf lIepll~ + h~11 gradepll~ ~ C inf Ilell~ + h~11 grad ell~. (3.13)
epEPp+l(K), eEHl(K), 


eplaK=S elaK=S 


where s = S 0 Gi/, Let us denote the function which achieves the left infimum by Egrad s. 
Applying the above inequality, element by element, with s replaced by Z, and using hK ~ 
diam fl, we have proved that 

IIE:radzll~ ~ C max(l, diam fl)2 inf (1Iell~ + II grad ell~) ~ Cllzll~1/2(EJft )'
eEH1(ft), 0 h 

(e-z)18K=0 

Thus, 

cIIE:radzll~ ~ IlzlI~~/2(EJfth) ~ "E:radzll~l(ft), 

where the upper inequality is obvious from the definition of the H~/2(aflh)-norm, By an 
inverse inequality, 

cilEgrad zl1 2 < 112112 < Ch-21lEgradzl12 (3 14)p ft - H~/2(EJfth) - p ft' . 

A similar argument using the H(div, K) polynomial extension in [8], gives 

cIIE~iVrJll~ ~ IlrJlI~-1/2(EJfth) ~ Ch-2I1E~ivrJll~· (3.15) 

Combining (3.14) and (3.15), we have 

cll:rll~ ~ 1I:rllb ~ Ch-211:r1l~, 'if:r E Uh, (3.16) 

where 1I:r1/5 = IIpll1J + Il wll1J + II Efadz ll1J + IIE~iYi/II1J· 
To prove (2.10), consider the coefficients in the basis expansion of:r. If z/s denote the 

coefficients in a basis expansion of the 2IEJK) then using (3.12) and the minimization property 
of EgradZ, we obtain 

c L IZjl2 ::; III (1IEfadzll~ + h~11 gradEradzll~) ::; C L IZjl2, 
J J 

By an inverse inequality, 

c L IZjl2 ::; 1~I"Efadzl~ ::; CL IZjl2, 
J J 

A similar estimate holds for E;ivi/. Combining these with the obvious estimates for the 
coefficients in the expansion of p and w, we find that 

cllxll;2 min IKI ~ 11:r11~ ~ Cllxll;2 max IKI· (3.17)
KEfth KEfth 

Clearly, inequalities (3.17) and (3.16) imply (2.10) with Ao = c minKEfth IKI and Al = 
Ch-2 maxKEfth IKI, thus completing the proof. 



12 J. GOPALAKRISHNAN AND W. QIU 

4. SECOND EXAMPLE: LINEAR ELASTICITY 

Two ideal DPG methods for the linear elasticity equation were developed and analyzed 
in [2]. The two methods are equivalent for homogeneous isotropic materials. Among their 
many interesting properties is their robustness with respect to the Poisson ratio, i.e., the 
method is locking-free. In this section, we will consider the practical version of one of these 
two methods and prove its optimal convergence. We proceed as in the previous example, by 
first setting the abstract forms and spaces to those specific to this method then proceed to 
verify the hypotheses required to apply Theorem 2.1. In this section, we restrict to N = 2 
or 3. The results and the analysis are similar to those in Section 3, so we will be brief. 

4.1. The spaces. We set the trial and test spaces by 

U = £2(f.?; M) x £2(f.?; V) x H~/2(8f.?h; V) x H-I /2(8f.?h; V) x IR, 

V = H(div, f.?h; §) x HI (f.?h; V) x £2(f.?; IK) x IR, 

IRNxNwhere M = , § consists of symmetric matrices in M, and IK consists of skew-symmetric 
matrices in M. The trial and test spaces are normed by 

II(a, u, u, an, a)llb = lIall~ + Ilull~ + lIull~1/2(anh) + lIanll~ 1/2(anh) + lal 2
, 

II(T, v, q,,B)II~ = IITII~(diV,nh) + IIvll~l(nh) + IIqll~ + 1,812. 

4.2. The forms. The (second) ultraweak formulation derived in [2] reads as follows: Find 
CEf (a, u, u, an, a) E U satisfying (1.1) for all "1/ == (T, V, q,,8) E V where the forms b(-,') and 
l (.) are set by 

b(CEf, "1/) = (Aa, T)nh+ (u, div T)nh - (u, T n)anh+ Qo1(aI, AT)n 

+ (a, grad v)nh+ (a, q)[j (v, an)anh 

+ Qo1(Aa, ,8I)n 


l("I/) = (/, v)n, 


for some / in £2(f.?; V). Here, A is the generalized compliance tensor (see e.g., [2, Re­
mark 2.1]) and Qo is the essential infimum of the trace of the matrix A(x)I over x E f.? 
Throughout, we assume that A is element-wise constant. We note that above and through­
out, the inner products of matrix-valued functions, such as (a, T)K, are computed by inte­
grating the Frobenius product of the two matrices. 

It is easy to see that the resulting a and u satisfies Aa = £(u), where £(u) = (grad u + 
(grad u),)/2, and diva = / on f.?, and u = 0 on af.?, and a = O. For details, consult [2]. 

4.3. Discrete spaces. Symmetric, skew-symmetric, and general matrix-valued functions 
whose entries are in Pp(K) are denoted by Pp(K; §), Pp(K; IK), and Pp(K; M), resp. Using 
these notations, we set the trial approximation space for the DPG method by 

Uh = {(a, u, il, an, a) E U: alK E Pp(K; M), UIK E Pp(K; V), 

illaK E Pp+1(8K; V), aniaK E Pp(8K; V), a E IR, VK E f.?h}. 
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The discrete test space is defined by V'; = Tr(Uh), so to complete the prescription of the 
practical DPG method, we only need to specify vr. Set 

V r = {(7, V, q,,8) E V: 71K E Pr(K; §), VIK E Pr(K; V), 

qlK E Pp(K; IK), ,8 E JR., VK E flh }, 

for some integer r ~ p + N. 

4.4. Verification of the assumptions. To apply Theorem 2.1 to the above setting, we 
need to verify its assumptions. 

• Assumption (2.1) is verified by [2, Lemma 5.2]. 
• Assumption (2.2) is verified by [2, Lemma 5.3]. 
• Assumption (2.3) can be easily verified, as in the case of the Laplace equation. 
• Assumption (2.4) is verified next. 


Let "j/ = (7, V, q,,8) E V. The operator JI satisfying (2.4) will take the form 


- (JI(div,§) JIgrad JIK /Q) (4 1)JI "j/ - p+2 7, r V, p q, fJ • • 

We set JIradv to be the one defined in Lemma 3.2, but applied component by component, to 
the vector valued function v. The operator JI: is simply the L2-orthogonal projection onto 

{q E L2(fl; IK) : qlK E Pp(K; IK), VK E flh }. It remains to construct the operator JI~~;'§). 
We do so, based on a set of degrees of freedom given in [9], in the next lemma. 

Lemma 4.1. There is an operator JI~~;'§) : H(div, K; §) -t Pp+2(K; §) such that for every 
7 E H(div, K; §), we have 

( JI(div,§) ) ( )p+2 7,qp K = 7,qp K, Vqp E Pp(K; §), (4.2a) 

(diV,§) ) ( )
(JIp+2 7' n, /Lp+1 aK /Lp+1, 7 . n 1/2,aK, V/Lp+1 E Fp+1 (8K; V), (4.2b) 

IIJI~~;'§)71IH(diV.K} ~ CI171IH(div,K}. ( 4.2c) 

Proof. We only give the proof for N 3 as the proof for N 2 is similar. As in the proof 
of Lemma 3.3, we will first construct the operator on the unit simplex K in JR.N. Define 
Pp\1 (8K; V) = L2(8K; V)-orthogonal complement of FP+1 (8K; V) in Pp+1(8K; V) and set 
P~+2(K; §) {f E Pp+2(K; §): (8, fn- . n+)e = 0, Vs E Pp+2(e), Ve E 6 1(K)} where, 
for each edge e E 61 (K), n+ and n- are the normal vectors of the two faces sharing e. 
Let B:¥2(K; §) = {f E P~+2(K; §) : (v, fn)ak = 0 for all v E Pp\1 (8K; V)}. We define 
A(div,§) H(d' KA §) Bdiv (KA §) bJIp+2: IV,; I---t p+2 ; Y 

( iI(diV,§)" ") ("" )p+2 7, qp k 7, qp k' Vqp E Pp(K; §), (4.3a) 
A(diV,§)" A A) (A "A)

(JIp+2 7' n, /Lp+1 ak = /Lp+1, 7 . n 1/2,aK, Vjlp+1 E Fp+1(8K; V). (4.3b) 

By [9, Theorem 2.1], these equations are uniquely solvable, so iI~~;'§) is well defined. 

Next, we define JI;~;'S) on any general simplex K by mapping iI;~;'§) from K using the 

Piola transform for symmetric matrix-valued functions. Recalling the mapping G K from K 
onto K and its derivative A, we define 

JI(div,§) ( ) = _1_AJI"(div,§) "( A )At
p+2 7 x det A p+2 7 x , 
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for any 7 E H(div, K; S). Here, given 7 on K, the function f on k is defined by (det A)7(X) = 
Af(x)At, with x GK(x). As in the proof of Lemma 3.3, it is now easy to see that JI~~;,S)7 
satisfies (4,2a) and (4.2b). 

Next, we observe that the commutativity property 

dIV ' JI(div,S)p+2 7 IIp+l d' (4 4) IV 7, 	 . 

holds, where JIp+1 denotes the L2(K; V)-orthogonal projection onto Pp+1 (K, V). Let Wp+l E 
Pp+1(K; V), Then 

(d' (JI(div,S) ) ) (diV,S) d ) I(JI(div,S)) )
IV p+2 7 ,Wp+l K - (JIp+2 7, gra Wp+I K + \ p+2 7 . n, Wp+I 8K 

(JI (div,s) ( )) I(JI(div,S») )- p+2 7,e Wp+I K + \ p+2 7 . n,Wp+I 8K 

= -(7, e(Wp+I))K + (Wp+I' 7' nh/2,8K, (by (4.1)), 

(7, gradwp+dK + (Wp+l, 7' nh/2,8K, 

( di V 7, Wp+1)K . 

which proves (4.4). 
It only remains to prove the estimate of (4.2c). This can now be done as in the proof of 

the estimate (3.7c) of Lemma 3.3, in two steps, using (4.4) in place of the commutativity 
property used there. D 

The main result of this section is the following. 

Theorem 4.2. Suppose that r ~ p + N and suppose that the compliance tensor A is 
element-wise constant. Then, the difference between the discrete solution of the practical 
DPG method, "'It'h = (ah' Uh, ilh, an,h, ah), and the exact solution "'It' = (a, u, il, an, a) satisfies 

Iia - ahIIL2(st) + Ilu - uhIIL2(J.?) + Ilil- ilhIlH6/2(8J.?h) + Ilan - an ,hIIH- 1/2(8sth) + la - ahl 

~ C iAnf. (ila PhIIL2(st) + Ilu - whIIL2(J.?)(Ph,Wh,Wh,Tlh,)EUh 

+ 11ft fthll H~/2(8Ih) + Ilan-	an,hllwl/2(8Ith)) . 

Proof. As mentioned above, we only need to verify Assumption (2.4) for the JI in (4.1) and 
apply Theorem 2.1. By the inequalities of previous lemmas, the estimate (2.4b) is obvious. 
To prove (2.4a), namely b(1P', r - JIr) = 0 for all1P' E Uh, it suffices to prove the following 
eight identities 

(div,S) ) - 0 	 d· JI(div,s»))(APh,7 - JIp+2 7 J.? - , (Wh, IV
(
7 - p+2 7 sth = 0 , 

(\Wh,7-I '" JI(div,S»))p+2 7 ·n 8J.?h 	 0 , (Ph, grad(v - JI;radv)) sth = 0, 

0 Q-I( . I A(I n r 
gradv, 'f/hA) 8J.?h - , 	 n(div,S»)) 0

\ V - o rh, 7 p+2 7 J.? = 
(Ph) q - JI:q)st = 0, QoI(Aph, ((3 - (3)I)J.? = 0, 

for all 1P' (Ph, Wh, Wh, TJh' rh) E Uh. The first five are proved exactly as in the proof of 
Theorem 3.4 but using the new lemma. The sixth is obvious from (4.2a). To see the 
seventh, denoting by skw Ph the skew-symmetric part of Ph, observe that (Ph, q - JI:q)st = 
(SkW(Ph) , q JI:q)st = 0, by the definition of JI:. 



15 AN ANALYSIS OF THE PRACTICAL DPG METHOD 

Therefore, applying Theorem 2.1, we obtain a quasi optimality estimate. This yields the 
estimate of the theorem after observing that in the infimum over 1/1' == (Ph, Wh, Wh, i7hl rh) in 
Uh, we may choose rh = n. D 

We conclude by noting that results similar to Corollary 3.6 and Theorem 3.7 can be 
established for this example as well. The arguments are very similar. 
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