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AN ANALYSIS OF THE RAYLEIGH-RITZ METHOD
FOR APPROXIMATING EIGENSPACES

ZHONGXIAO JIA AND G. W. STEWART

ABSTRACT. This paper concerns the Rayleigh—Ritz method for computing an
approximation to an eigenspace X of a general matrix A from a subspace W
that contains an approximation to X. The method produces a pair (N, )2)
that purports to approximate a pair (L, X), where X is a basis for X and
AX = XL. In this paper we consider the convergence of (N, X) as the sine € of
the angle between X and W approaches zero. It is shown that under a natural
hypothesis — called the uniform separation condition —the Ritz pairs (N, X)
converge to the eigenpair (L, X). When one is concerned with eigenvalues and
eigenvectors, one can compute certain refined Ritz vectors whose convergence
is guaranteed, even when the uniform separation condition is not satisfied. An
attractive feature of the analysis is that it does not assume that A has distinct
eigenvalues or is diagonalizable.

1. INTRODUCTION

Many methods for finding eigenvalues and eigenvectors of a large matrix A pro-
ceed by generating a sequence of subspaces Wj containing increasingly accurate
approximations to the desired eigenvectors. There are a number of methods for
accomplishing this—e.g., the Arnoldi method, the nonsymmetric Lanczos method,
subspace iteration, and the Jacobi-Davidson method (for more on these methods
see [12] 03]).

A central problem in all these methods is how to extract approximations to
the desired eigenvalues and eigenvectors from the subspace Wg. A widely used
technique for accomplishing this is called the Rayleigh-Ritz procedure (it is also an
example of the more general Galerkin technique). In its simplest form the technique
retrieves an approximation to a simple eigenpair (A, z) as follows (here we drop the
iteration subscript).

1. Compute an orthonormal basis W for W.
(1.1) 2. Compute B = WHAW.
' 3. Let (v, 2) be an eigenpair of B, where v & \.
4. Take (v,Z) = (v, Wz) as the approximate eigenpair.
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Of course, steps 3 and 4 can be repeated to extract approximations to other eigen-
pairs.

The matrix B is called a Rayleigh quotient. The number v is called a Ritz value
and the vector £ = Wz is called a Ritz vector. The informal justification for the
method is that if € W then there is an eigenpair (), z) of B with x = Wz.
Continuity suggests that if = is nearly in W then there should be an eigenpair (v, 2)
of B with v near A and Wz near z.

When A is non-Hermitian, one of the authors (Jia [6 [7, 8, 9]) has established
a priori error bounds for Ritz values and Ritz vectors in terms of the deviation
of  from W. The results show that Ritz values converge. The Ritz vectors, on
the other hand, behave more erratically and may even fail to converge. This led
the first author to introduce certain refined Ritz vectors for which the continuity
argument is valid [5 [7, [§]. The refined Ritz vectors have been used in some other
cases [10) TT]. Unfortunately, the results just cited were proved under the restrictive
hypothesis that the eigenvalues of A are distinct or A is diagonalizable. One of the
contributions of this paper is to remove this restriction.

When A has a cluster of very close or multiple eigenvalues, the correspond-
ing eigenvectors are ill-determined, and it makes better sense to approximate the
eigenspace X spanned by the vectors instead of the vectors themselves. The
Rayleigh—Ritz procedure can be extended to do this [see (BI) below]. A second
contribution of this paper is to provide an analysis of this extended procedure. In
fact, essentially the same results hold for eigenspaces as for eigenvectors, and we
will present our results at this level of generality.

Our approach is to derive bounds in terms of the sine € of the angle between X
and the subspace W. (In practice, of course, the size of € must be established from
the properties of the underlying algorithm that determines W.) Sections Zland Blare
devoted to background material and setting the stage for our analysis. In Section[dl
we will consider the convergence of the Ritz values of the Rayleigh quotient. In
Section [5l we will establish the convergence of Ritz pairs under a hypothesis that
is computationally verifiable. In Section [6] we treat the relation of residual vectors
to the accuracy of an approximate eigenspace, and in Section [[] we consider the
convergence of the refined Ritz vectors mentioned above. The paper concludes with
a brief summary.

2. PRELIMINARIES

Background material for this paper can be found in [3| [14]. The norm || - || will
denote both the Euclidean vector norm and the subordinate spectral matrix norm.
We will denote the spectrum of a matrix A by the multiset A(A).

A subspace X is an eigenspace (or invariant subspace) of A if AX C X. If X is
a basis for X, then there is a unique matrix L such that

(2.1) AX = XL,

and conversely if X has linearly independent columns and satisfies (211), then the
column space of X is an eigenspace of A. In this case, we say that (L, X) is
an eigenpair of A, that the matrix X is an eigenbasis of A, and that L is its
corresponding eigenblock. The eigenpair is simple if its eigenvalues are distinct
from the other eigenvalues of A. It is orthonormal if XX = I, in which case its
eigenblock is given by the Rayleigh quotient L = X" AX. Throughout this paper
we will assume that eigenpairs are orthonormal.
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We will measure the deviation of a subspace X from a subspace W as follows.
Let X be an orthonormal basis for X', W an orthonormal basis for W, and W, an
orthonormal basis for the orthogonal complement of YW. Then we define

(2.2) sin Z(X, W) =sin(X, W) = [|[WHX].

This measure is a metric on any space of subspaces of fixed dimension. If the
dimension of W is greater than that of X, the measure is not symmetric in its
arguments; in fact, sin Z(W, X') = 1, although it may happen that sin Z(X, W) < 1.

We will cast our results in terms of a function sep that in some sense measures
the distance between the spectra of two matrices. Specifically, let L and M be
matrices of order £ and m, and define

(2.3) sep(L, M) = ”IngiI_ll |PL — MP].

Alternatively, let S be the Sylvester operator defined by
SP=PL—-MP.

Then S is a linear operator whose eigenvalues are

i.e., its eigenvalues are the pairwise differences of the eigenvalues of L and M. If
d = min [A(S)| > 0,

then S is nonsingular, and it follows from (Z3) that sep~!(L, M) = ||S7!|| > 4.
Hence

sep(L. M) = |87 < &

i.e., sep(L, M) is not greater than the physical separation § of the spectra of L and
M. Unfortunately, sep(L, M) can be much smaller than 4.

The function sep has an important advantage over § — it is Lipschitz continuous.
Specifically,

(2.4) sep(L, M) — [[E|| = | F|| < sep(L + E, M + F) < sep(L, M) + || E[| + || F'|.

Finally, we note that, because || - || is unitarily invariant, if U and V' are unitary,
then
(2.5) sep(UR LU, VEMV) = sep(L, M).

We conclude this section with a theorem of Elsner [2] (as improved in [I]), which
will be used to establish the convergence of Ritz values.

Theorem 2.1. Let the eigenvalues of A be Ai,...,An and let the eigenvalues of
A=A+FE be Ai,...,\y. Then there is a permutation ji,...,jn of the integers
1,...,n such that

1

Y it _1 .
i =il <4(l Al + AN BN, i=1,. 0.
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3. THE SETTING

As we indicated in the introduction, we are concerned with the approximation of
a simple eigenpair (L, X) by the Rayleigh-Ritz method applied to a subspace W.
We will consider the following generalization of the method (L)) in the introduction:

1. Compute an orthonormal basis W for W.

2. Compute B = WHAW.

3. Let (N, Z) be an eigenpair of B, where A(N) = A(L).

4. Take (N,X) = (N,WZ) as the approximate eigenpair.

For definiteness we will suppose that the dimensions of X and W are ¢ and p,

so that the eigenblock L is of order ¢ and the Rayleigh quotient B is of order p.
Denoting the column space of X by X, we will set

(3.2) e =sin Z(X, W)

and examine the behavior of the method as € — 0.

In the sequel the representation of X in the coordinate system specified by W
will play a central role. As above, let the columns of W form an orthonormal basis
for W, . Then X can be written in the form

X=WY+W.Y.,

(3.1)

where
Y =WHX and Y, =WIX.

By definition, ||Y, || =e.
The columns of Y can be orthonormalized by setting

(3.3) V=YQ, where Q= (YY) 3.
Since YHY + YHY,| = I, it follows that
1 1 1 1
I-Q|=1-——==¢> and = ~ 1+ —€%

Note that, since X — WY = WY, + WY (I — Q),
(3.4) |X = WY < e+ O().

4. THE CONVERGENCE OF RITZ VALUES

Although we will be primarily concerned with Ritz pairs, the only effective way
of choosing a pair from a Rayleigh quotient B is to examine the eigenvalues of B.
We therefore need to know when the eigenvalues of a Rayleigh quotient converge.

It is a surprising fact that the hypothesis € — 0 is by itself sufficient to insure
that B in the algorithm (B) contains Ritz values that converge to the eigenvalues
of L. We will establish this result in two stages. First we will show that if € is small
then A(L) is a subset of the spectrum of a matrix B that is near B. We will then
use Elsner’s theorem to show that B must have eigenvalues that are near those of
L.

Theorem 4.1. Let B be the Rayleigh quotient in [B:1]), and let Y and Q be defined
by B3)). Then there is a matriz E satisfying
€

(1) 120 < o=

1Al
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such that (Q*ILQ,Y) is an eigenblock of B+ E.

Proof. From the relation AX — XL = 0 we have
WH

wHA (W W) < H>X—WHXL—0.
WL

Equivalently,
BY + WHAW, Y, —YL=0.
Postmultiplying by @, we have

(4.2) BY + WHAW Y, Q- YQ'LQ = 0.
Set

(4.3) R=BY —-YQ 'LQ.

Then it follows from ({Z) that

€ €
— IWHAW, || < ——||All

(4.4) R[] < Vi s

If we now define
E = RYH,
then it is easy to verify that E satisfies ({]) and (B + E)Y =YQ'LQ. O
If we now apply Elsner’s theorem, we get the following corollary.

Corollary 4.2. Let the eigenvalues of L be A1, ... , Ay and let the eigenvalues of B
be vi,...,v,. Then there are integers ji,... ,je such that

_1 1 .
(4.5) N — vy <ACQIAI+ BN IR, i=1,... L

The right-hand side of (@5 depends only on || A|| and e. Hence we may conclude
that as e — 0 there are always Ritz values that converges to the eigenvalues of L.
The exponent 2 in (Z3H) means that in the worst case the convergence of the Ritz
values can be slow. Unfortunately, if the eigenvalues of L are defective, we will
indeed observe slow convergence. And even if they are well conditioned, without
additional conditions convergence can still be slow. One such condition will emerge
in the next section.

5. THE CONVERGENCE OF RITZ PAIRS

Having determined that there are Ritz values that converge to the eigenvalues of
our distinguished eigenspace X', we now turn to the convergence of the Ritz pairs.
The chief difficulty in establishing convergence is that an eigenspace can have any
number of eigenpairs even when the eigenpairs are required to be orthonormal. For
if (L, X) is an orthonormal eigenpair of A and U is unitary, then (U2 LU, XU) is
also an orthonormal eigenpair corresponding to the same eigenspace. If we are to
speak of convergence, therefore, we must find a way of removing the ambiguity in
the pairs.

One way is to prove convergence of the Ritz spaces directly, after which we
can choose converging bases for the spaces, whose associated Rayleigh quotients
will naturally converge. The problem with this approach is that the convergence
conditions must be phrased in terms of the eigenblock L, which is unknown before
convergence. For this reason, we will take a less direct approach.
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We will use the notation and results of Theorem [Tl and Corollary Let
(N, Z) be the eigenpair associated with the eigenvalues of B that converge to those
of L. Let (Z Zi) be unitary. From the relation BZ = ZN it follows that

ZH N H
(Gr)p e 2 =(5 ¢)
Now let E be such that (Q~'LQ,Y) is an eigenblock of B 4+ E. The following

theorem, which shows that under appropriate conditions B + F has an eigenpair
near (N, Z), is an immediate consequence of Theorem V.2.7 in [I4].

Theorem 5.1. Let
(5.1) n= 2| E] < 1.
sep(N,C) — 2| E|

Then there are an orthonormal eigenpair (N,Z) and a complementary eigenblock
C of B+ E such that

tan £(Z,7) <n
and
L+ ) Ell+nlBl
1—n?

The condition (&) of Theorem ETlis not automatically satisfied. Since the only
assumption we have made about W is that it contains a good approximation to
X, the eigenvalues of C can lie almost anywhere within a circle about the origin
of radius ||A||. In particular, it could happen that as ¢ — 0 the matrix C has a
rogue eigenvalue that converges to an eigenvalue of L so quickly that sep(N, C) is
always too small for (B.1]) to be satisfied. From now on, we will assume that there
i a constant o independent of € such that

(5.2) sep(N,C) > a > 0.

We will call this the uniform separation condition. It implies the condition (GBI,
at least for sufficiently small E. By (2H) this condition is independent of the
orthonormal bases Z and Z, used to define N and C. Note that in principle
the uniform separation condition can be monitored computationally by computing
sep(N, C) during the Rayleigh-Ritz procedure.

To see how this theorem implies the convergence of eigenblocks, recall that B+ F
has the eigenpair (Q_lLQ,Y). By construction, as ¢ — 0 the eigenvalues of N
converge to those of L, and hence by Elsner’s theorem so do the eigenvalues of the
eigenblock N , which is an increasingly small perturbation of N. But by the the
continuity of sep the eigenvalues of N are bounded away from those of C. Hence
the eigenvalues of N are the same as those of Q 1LQ; i.e., AéN) = A(L). But
a simple eigenspace is uniquely determined by its eigenvaluesll Hence for some
unitary matrix U we have Z = YU, X = WYU, and N = UR(Q 1LQ)U. Since
[N — N| — 0 and Q — I, we have the following theorem.

IN =N, lIC -l <

Theorem 5.2. Under the uniform separation condition, there is a unitary matriz
U, depending on e, such that, as € — 0, the eigenpair (UNUY, ZU®) approaches
(L,Y). Consequently, by (34)) the Ritz pair (UNU, XU™) approaches the eigenpair
(L, X).

L Although this fact seems obvious, its proof is nontrivial.
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Thus the uniform separation condition implies the convergence of Ritz pairs, up
to unitary adjustments. In the sequel we will assume that these adjustments have
been made and simply speak of the convergence of (N, X) to (L, X).

By combining the error bounds in Theorems Il and Bl and the inequality (B:4)
we can, after some manipulation, establish the following on the asymptotic rate of
convergence of the Ritz pairs.

Corollary 5.3. If the uniform separation condition holds, then

, o IV — L 1A 2
(5.3) sin Z(X, X), T4l < [1+2sep(L,C')} €+ O(e*).

Thus the convergence is at a rate proportional to the first power of e. The
main factor affecting the convergence constant is the reciprocal of the normalized
separation sep(L,C)/||A|l, which by the uniform separation condition is bounded
away from zero. The linear bound for the convergence of N to L does not imply
eigenvalues of N converge at the same rate; however, their convergence is at worst
as the %th power of €, which is better than the rate in Corollary E.2.

6. RESIDUAL ANALYSIS

Although the uniform separation condition insures convergence (in the sense of
Theorem (.2)) of the Ritz pair (N,f() = (N,WZ) to the eigenpair (L, X), it does
not tell us when to stop the iteration. A widely used convergence criterion is to
stop when the residual

R=AX - XN
is sufficiently small. Note that this residual is easily computable. For in the course of
computing the Rayleigh quotient B, we must compute the matrix V' = AW. After
the pair (IV, X) has been determined, we can compute R in the form VZ — XN.
We will be interested in the relation of the residual to the accuracy of X = WZ,

as an approximation to the eigenbasis X in the eigenpair (X, L). To do this we will
need some additional notation. Let (X X,) be unitary. Then

(6.1) (g)fx(x XQ:(S Ai)

where the (2, 1)-element of the right hand side is zero because XTAX = X{IXT =
0. The following theorem of Ipsen [4] holds for any approximate eigenpair.

Theorem 6.1. Let (i,f() be an approximate eigenpair of A, and let

p=AX - XL|.
Then
sin/(X,X)< —2 .
sep(L, M)

Proof. From (6.1) we have XA = M X', Hence if R = AX — XL, we have
XUR = xPAX - xUXT = mx"x - xIXI.

It follows that

IR

sin Z(X, X) = | XIX|| < —=—.
sep(L, M)
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In our application X = WZ and L = N. Hence the accuracy of the space
spanned by WZ as an approximation to the space X is proportional to the size
of the residual and inversely proportional to sep(N, M). If the uniform separation
condition holds, then up to unitary similarities N — L, so that by the continuity
of sep, the accuracy is effectively inversely proportional to sep(L, M). Unlike the
bounds in the previous sections, these bounds cannot be computed, since M is
unknown. Nonetheless they provide us some insight into the attainable accuracy of
Ritz approximations to an eigenspace.

7. REFINED RITZ VECTORS

When ¢ = 1, so that our concern is with approximating an eigenvector x and
its eigenvalue A, Theorem has a suggestive implication. From Theorem [ZT]
we know that there is a Ritz pair (v, Wz) = (v, &) such that v converges to .
Hence by Theorem 1], if the residual AT — vz approaches zero, Z approaches z,
independently of whether the uniform separation condition (B2 holds.

Unfortunately, if the uniform separation condition fails to hold, we will generally
be faced with a cluster of Ritz values and their Ritz vectors, of which at most one
(and more likely none) is a reasonable approximation to . Now Theorem [6.1] does
not require that (v, &) be a Ritz pair—only that v be sufficiently near A\, and that
Z have a sufficiently small residual. Since the Ritz value v is known to converge to
A, this suggests that we can deal with the problem of nonconverging Ritz vectors by
retaining the Ritz value and replacing the Ritz vector with a vector & € W having
a suitably small residual. It is natural to choose the best such vector. Thus we take
Z to be the solution of the problem

minimize  ||(4 — vI)Z|]
subject to e W, ||z|| = 1.

Alternatively, & = Ww, where v is the right singular vector of (A — vI)W corre-
sponding to its smallest singular value. We will call such a vector a refined Ritz
vector.

The following theorem shows that the refined Ritz vectors converge as € — 0.

Theorem 7.1. If
(7.1) sep(v, M) > sep(A, M) — |v — A| > 0,
then

|A—vi|e+ |A—v
V1= €eX(sep(\, M) — A —v|)

(7.2) sin Z(z, &) <

Proof. Let
L wa
Y V1—¢2

be the normalized projection of z onto W [cf. (B3)] and let

€ = (I - Pw)x
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Then
(A—vl)j = (A—vi)Pyzx
1—¢€2
_(A—vi)(z—e)
ST e
A=v)z—(A—v)e
V1—¢?
Hence
j(A—wryg) < LA=llet A= v

By the minimality of & we have
|A—vi|e+ |A—v
V1—e2 '
Since ||(A — vI)Z| is a residual norm, (T.2) follows directly from Theorem [6:1] and
O

It follows immediately from (72]) that if v — X as € — 0, then the refined Ritz
vector & converges to the eigenvector x. In particular, by Corollary this will
happen if v is chosen to be the Ritz value.

As they are defined, Ritz vectors are computationally expensive. If A is of order
n and the dimension of W is m, a Rayleigh-Ritz procedure requires O(nm?) oper-
ations to produce a complete set of m Ritz vectors. On the other hand, to compute
a refined Ritz vector requires the computation of the singular value decomposition
of (A—vI)W, which also requires O(nm?) operations. Thus in general the compu-
tation of a single refined Ritz vector requires the same order of work as an entire
Rayleigh—Ritz procedure. Fortunately, if VW is determined by a Krylov sequence,
as in the Arnoldi method, this work can be reduced to O(m?) [7, ©]. Moreover,
if we are willing to sacrifice some accuracy, we can compute the refined vectors
from the cross-product matrices WHARAW and WHAW with O(m?) work [11] B
Thus in some important cases, the computation of refined Ritz vectors is a viable
alternative to the Rayleigh—Ritz procedure for eigenvectors.

There is a natural generalization of refined Ritz vectors to higher dimensions.
Specifically, given an approximate eigenblock IV, we can solve the problem

minimize  [|[(AX — XN)]|
subject to R(X)c W, XHX =1.

The resulting basis satisfies a theorem analogous to Theorem [Tl There are, how-
ever, two difficulties with this approach. First, there seems to be no reasonably
efficient algorithm for computing refined Ritz bases. Second, for the bound on the
refined Ritz basis to converge to zero, we must have N — L. However, the only
reasonable hypothesis under which N — L is the uniform separation condition, and
if that condition is satisfied the ordinary Ritz bases also converge.

(7:3) (A = vD)]| <

2If the singular values of (A—vI)W are g1 > -+ > o4, and oy, is small, then the loss of accuracy
comes from the fact that the accuracy of the computed singular vector is around (o1/0m—1)ewm,
where e\ is the rounding unit. If we pass to the cross-product matrix, then the ratio o1/om—1
is replaced by the larger value (o1/0m—1)?. If the ratio is near one, then the squaring will have
little effect. But if the ratio is fairly large—as it will be when we are attempting to resolve poorly
separated eigenvalues — then considerable accuracy can be lost.
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8. DISCUSSION

We have considered the convergence of Ritz pairs generated from a subspace
W to an eigenpair (L, X) associated with an eigenspace X'. The results are cast
in terms of the quantity ¢ = sin Z(X, W). An appealing aspect of the analysis
is that we do not need to assume that eigenvalues of A are distinct or that A is
nondefective.

The first result shows that as e — 0, there are eigenvalues of the Rayleigh quo-
tient B that converge to the eigenvalues of L. Unfortunately, that is not sufficient
for the convergence of the eigenpairs, which requires the uniform separation condi-
tion (5.2) to separate the converging eigenvalues from the remaining eigenvalues of
B. This condition, which can be monitored during the Rayleigh—Ritz steps, insures
that the Ritz pairs (N, X) converge (with unitary adjustment) to the pair (L, X).
The asymptotic convergence bounds (B-3]) show that the convergence is linear in .

When X is one dimensional — that is, when we are concerned with approximating
an eigenpair (\, z) —the Ritz blocks, which become scalar Ritz values, converge
without the uniform separation condition. However, this condition is required for
the convergence of the Ritz vectors. Alternatively, we can compute refined Ritz
vectors, whose convergence is guaranteed without the uniform separation condition.

We have analyzed only the the simplest version of the Rayleigh—Ritz procedure.
In some forms of the method, the Rayleigh quotient is defined by VEAW, where
VHW = I. We expect that the above results will generalize easily to this case,
provided the product |V||||W]| remains uniformly bounded.
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