
The existence, public availability, and widespread ac-
ceptance of a standard benchmark for a given informa-
tion retrieval (IR) task are beneficial to research on
this task, because they allow different researchers to
experimentally compare their own systems by com-
paring the results they have obtained on this bench-
mark. The Reuters-21578 test collection, together with
its earlier variants, has been such a standard bench-
mark for the text categorization (TC) task throughout
the last 10 years. However, the benefits that this has
brought about have somehow been limited by the fact
that different researchers have “carved” different sub-
sets out of this collection and tested their systems on
one of these subsets only; systems that have been
tested on different Reuters-21578 subsets are thus not
readily comparable. In this article, we present a sys-
tematic, comparative experimental study of the three
subsets of Reuters-21578 that have been most popular
among TC researchers. The results we obtain allow us
to determine the relative hardness of these subsets,
thus establishing an indirect means for comparing TC
systems that have, or will be, tested on these different
subsets.

Introduction

The existence, public availability, and widespread accep-
tance of a standard benchmark for a given information re-
trieval (IR) task are beneficial to research on this task, be-
cause they allow different researchers to experimentally
compare their own systems by comparing the results they
have obtained on this benchmark.

The Reuters-21578 test collection, together with its
earlier variants, has been such a standard benchmark
for the text categorization (TC) task throughout the last

10 years.1 Reuters-21578 is a set of 21,578 news stories that
appeared in the Reuters newswire in 1987, which are classi-
fied according to 135 thematic categories mostly concerning
business and economy. This collection has several character-
istics that make it interesting for TC experimentation:

• Similar to many other applicative contexts, it is multilabel,
i.e., each document di may belong to more than one cate-
gory.

• The set of categories is not exhaustive, i.e., some documents
belong to no category at all.

• The distribution of the documents across the categories is
highly skewed, in the sense that some categories have very
few documents classified under them (“positive examples”)
while others have thousands.

• There are several semantic relations among the categories
(e.g., there is a category WHEAT and a category GRAIN,
which are obviously related), but these relations are “hid-
den” (i.e., there is no explicit hierarchy defined on the
categories).

This collection is also fairly challenging for TC systems
based on machine learning (ML) techniques, because sev-
eral categories have (under any possible split between train-
ing and test documents) very few positive training examples,
making the inductive construction of a classifier a hard task.
All of these properties have made Reuters-21578 the bench-
mark of choice for TC research in the past years.

Unfortunately, the benefits to TC research that Reuters-
21578 has brought about have been somehow limited by the
fact that different researchers have “carved” different subcol-
lections out of it, and tested their systems on one of these sub-
collections only. The most frequent direction for extracting a
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1While a new Reuters corpus has recently been made available for TC
research (Lewis, Li, Rose, & Yang, 2004; Rose, Stevenson, & Whitehead,
2002), its take-up has been somehow slow, and also hindered by terms of use
that are not universally acceptable by interested parties. For example, it has
been reported that some universities in the United States are not willing to
sign the license of use agreement with Reuters on the ground that the agree-
ment requires that all legal disputes be settled in England. This de facto
prevents researchers from these universities to experiment on this corpus.
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subcollection out of Reuters-21578 has been that of restrict-
ing the attention to a subset of categories only. The subsets
that have been most frequently used in TC experimentation
are:2

• The set of the 10 categories with the highest number of pos-
itive training examples [hereafter, R(10)]

• The set of the 90 categories with at least one positive train-
ing example and one positive test example [hereafter, R(90)]

• The set of the 115 categories with at least one training
example [hereafter, R(115)]

Systems that have been tested on these different Reuters-
21578 subsets are thus not readily comparable. In this
article, we present a systematic, comparative experimental
study of the three subsets of Reuters-21578 just listed. We
test the relative hardness of these subsets in a variety of ex-
perimental TC contexts, generated by two different term
weighting policies, three different feature selection func-
tions, three different “reduction factors” for feature selec-
tion, three different learning methods, and two different
experimental measures, in all possible combinations. Our
results allow us to obtain a reliable estimation of the relative
difficulty of these subsets, thus establishing an indirect
means for comparing TC systems that have, or will be, tested
on these different subsets.

This article is structured as follows. The next section
briefly introduces the TC task and the related terminology,
thus setting the stage for the description of our experimental
work. In the section that follows, we describe in some detail
the Reuters-21578 test collection and the subsets of it that
have been used most often in TC research. The section after
that presents a systematic experimental study in which we
test the relative hardness of these subsets and give theoreti-
cal justifications for these results. The conclusion is in the
final section.

Preliminaries: An Introduction to Text
Categorization

Text categorization (TC, also known as text classifica-
tion) is the task of approximating the unknown target func-
tion : D� CS {T, F} (that describes how documents
ought to be classified) by means of a function : D�
CS {T, F} called the classifier, where is a
predefined set of categories and D is a domain of documents.
If (dj, ci) � T, then dj is called a positive example (or a
member) of ci, while if (dj, ci) � F it is called a negative
example of ci.

Depending on the application, TC may be either single-
label (i.e., exactly one must be assigned to each
dj � D), or multilabel (i.e., any number of 0 � nj � 0C 0ci � C

£
£

C � 5c1, . . . , c 0C 0 6
£̂

£

categories may be assigned to each dj � D). A special case
of single-label TC is binary TC, in which, given a category
ci, each dj � D must be assigned either to ci or to its com-
plement a classifier for ci is then a function : D S
{T, F} that approximates the unknown target function :
D S {T, F}. Multilabel TC under is usu-
ally tackled as independent binary classification prob-
lems under for Multilabel (and, as a
consequence, binary) TC, rather than single-label TC, will
be the focus of this article.

We can roughly distinguish three different phases in the
life cycle of a TC system: document indexing, classifier learn-
ing, and classifier evaluation. The three following paragraphs
are devoted to these three phases, respectively; for a more de-
tailed treatment see Sebastiani (2002, Sections 5, 6, and 7).

Document Indexing

Document indexing denotes the mapping of a document
dj into a compact representation of its content that can be di-
rectly interpreted (1) by a classifier-building algorithm and
(2) by a classifier, once it has been built. The indexing meth-
ods usually employed in TC are borrowed from IR, where a
text dj is usually represented as a vector 
of term weights. Here, T is the dictionary, i.e., the set of
terms (also know as features) that occur at least once in at
least one document, and quantifies the impor-
tance of tk in characterizing the semantics of dj.

An indexing method is characterized by (1) a definition of
what a term is, and (2) a method to compute term weights.
Concerning (1), the most frequent choice is to identify terms
either with the words occurring in the document (with the
exception of stop words, which are eliminated in a prepro-
cessing phase), or with their stems (i.e., their morphological
roots, obtained by applying a stemming algorithm). Con-
cerning (2), either statistical or probabilistic techniques are
used to compute terms weights, the former being the most
common option. One popular class of statistical term
weighting functions is tf * idf, where two intuitions are at
play: (a) the more frequently tk occurs in dj, the more impor-
tant for dj it is; (b) the more documents tk occurs in, the less
discriminating it is (i.e., the smaller its contribution is in
characterizing the semantics of a document in which it
occurs). Weights computed by tf * idf techniques are often
normalized so as to contrast the tendency of tf * idf to
emphasize long documents.

In TC, unlike in IR, a dimensionality reduction phase is
often applied so as to reduce the size of the document repre-
sentations from to a much smaller, predefined number

the value is called the reduction
factor. Dimensionality reduction reduces overfitting (i.e., the
tendency of the classifier to better classify the data it has
been trained on than new unseen data), and makes the prob-
lem more manageable for the learning method, because
many such methods are known not to scale well to high
problem sizes. Dimensionality reduction often takes the
form of term selection: each term tk is scored by means of a

j �
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2As for which Reuters-21578 documents are used as training examples,
we here refer to the ModApté split, a partition of the collection into a train-
ing set and a test set that has almost universally been adopted by TC exper-
imenters. See the section on the Reuters-21578 collection and its subsets for
more details.
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scoring function f(tk, ci) that captures its degree of (positive
or negative) correlation with ci, and only the highest scoring
terms (i.e., the most highly correlated with ci) are used for
document representation. The TC literature discusses two
main policies to perform term selection: (a) a local policy,
according to which different sets of terms are
selected for different categories ci, and (b) a global policy,
according to which a single set of terms to be used
for all categories, is selected by extracting a single score
fglob(tk) from the individual scores f(tk, ci) by means of some
globalization policy.

Classifier Learning

A text classifier for ci is automatically generated by a
general inductive process (the learner) which, by observing
the characteristics of a set of documents preclassified under
ci or gleans the characteristics that a new unseen docu-
ment should have to belong to ci. To build classifiers for
C one thus needs a corpus � of documents such that the
value of �(dj, ci) is known for every In
experimental TC it is customary to partition � into two dis-
joint sets Tr (the training set) and Te (the test set). The train-
ing set is the set of documents that the learner observes in
order to build the classifier, whereas the test set is the set on
which the effectiveness of the classifier is finally evaluated.
Sometimes the engineer extracts a validation set Va from Tr
before training, for fine-tuning purposes. The learner builds
the classifier by observing only the documents in Tr � Va.
Subsequently, the engineer may fine-tune the classifier by
choosing for a parameter p on which the classifier depends
(e.g., a threshold), the value that has yielded the best effec-
tiveness when evaluated on Va. In both the validation and
test phase, evaluating the effectiveness means running the
classifier on a set of preclassified documents (Va or Te) and
checking the degree of correspondence between the output
of the classifier and the preassigned labels.

Different learners have been applied in the TC literature,
including probabilistic methods, regression methods, deci-
sion tree and decision rule learners, neural networks, batch
and incremental learners of linear classifiers, example-based
methods, support vector machines, genetic algorithms, hid-
den Markov models, and classifier committees. Some of
these methods generate binary-valued classifiers of the re-
quired form : D� CS {T, F}, but some others generate
real-valued functions of the form CSV : D� CS [0, 1]
(CSV standing for categorization status value). For these
latter, a set of thresholds ti needs to be determined (typically,
by experimentation on a validation set) allowing to turn real-
valued CSVs into the final binary decisions.

Classifier Evaluation

Both training efficiency (i.e., average time required to
build a classifier from a corpus �), classification effi-
ciency (i.e., average time required to classify a document by
means of ), and effectiveness (i.e., average correctness of£̂i

£̂i
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3The Reuters-21578 corpus is freely available for experimenta-
tion purposes from http://www.daviddlewis.com/resources/testcollections/
~reuters21578/.

’s classification behavior) are measures of success for a
TC system. However, effectiveness is considered the most
important criterion, because in most applications one is will-
ing to trade training time and classification time for correct
decisions. Also, it is the most reliable one when it comes to
comparing different learners, because efficiency depends on
too volatile parameters.

In binary TC, effectiveness is always measured by a com-
bination of precision (pi), the percentage of documents clas-
sified into ci that indeed belong to ci, and recall (ri), the per-
centage of documents belonging to ci that are indeed
classified into ci. Because a classifier can be tuned to empha-
size precision at the expense of recall, or vice versa, only
combinations of the two are significant, the most popular
combination nowadays being (Lewis, 1995)

(1)

where TPi, FPi and FNi refer to the sets of true positives wrt
ci (documents correctly deemed to belong to ci), false posi-
tives wrt ci (documents incorrectly deemed to belong to ci),
and false negatives wrt ci (documents incorrectly deemed
not to belong to ci), respectively.

When effectiveness is computed for several categories,
the results for individual categories must be averaged in
some way; here, one may opt for microaveraging (categories
count proportionally to the number of their positive test
examples—indicated by the m superscript) or for macroav-
eraging (all categories count the same—indicated by the
M superscript), depending on the application. The former
rewards classifiers that behave well on frequent categories
(i.e., categories with many positive examples), while classi-
fiers that perform well also on infrequent categories are
emphasized by the latter. Table 1 displays the mathematical
definitions of precision, recall, and F1, in both their
microaveraged and macroaveraged variants.

Measuring effectiveness requires a test collection; in
multilabel TC, this consists of a set of documents each of
which is labeled with zero, one, or several categories from a
prespecified set. The following section will discuss in detail
the test collection that is the object of study of this article.

The Reuters-21578 Collection and Its Subsets

The data contained in the “Reuters-21578, Distribution
1.0” corpus consist of news stories that appeared on the
Reuters newswire in 1987.3 The data was originally labeled
by Carnegie Group, Inc. and Reuters, Ltd. in the course of
developing the CONSTRUE text categorization system
(Hayes & Weinstein, 1990), and was subsequently collected
and formatted by David Lewis with the help of several other
people. A previous version of the collection, known as
Reuters-22173, was used in a number of published studies

F1i
�

2pi ri

pi � ri

�
2 # TPi

2 # TPi � FPi � FNi
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TABLE 1. Averaging precision, recall, and F1, across different categories.

Microaveraging (m) Macroaveraging (M)

Precision (p)

Recall (r)

F1 FM
1 �

a
0C 0

i�1

F1i

0C 0 �
a
0C 0

i�1

2 # TPi

2 # TPi � FPi � FNi

0C 0Fm1 �

2 # a
0C 0

i�1

TPi

2 # a
0C 0

i�1

TPi � a
0C 0

i�1

FPi � a
0C 0

i�1

FNi

rM �
a
0C 0

i�1

ri

0C 0 �
a
0C 0

i�1

TPi

TPi � FNi

0C 0rm �
a
0C 0

i�1

TPi

a
0C 0

i�1

(TPi � FNi)

pM �
a
0C 0

i�1

pi

0C 0 �
a
0C 0

i�1

TPi

TPi � FPi

0C 0pm �
a
0C 0

i�1

TPi

a
0C 0

i�1

(TPi � FPi)

4Note that the three subsets, although differing in the number of
categories considered, contain the same 12,902 documents.

up until 1996, when a revision of the collection resulted in
the removal of 595 duplicates from the original set of 22,173
documents, thus leaving the 21,578 documents that now
make Reuters-21578, and in the correction of several other
errors.

The Reuters-21578 documents actually used in TC exper-
iments are only 12,902, because the creators of the collec-
tion found ample evidence that the other 8,676 documents
had not been considered for labeling by the people who man-
ually assigned categories to documents (indexers). To make
different experimental results comparable, standard splits
(i.e., partitions into a training and a test set) have been de-
fined by the creators of the collection on the 12,902 docu-
ments. Apart from very few exceptions, TC researchers have
used the ModApté split, in which 9,603 documents are
selected for training and the other 3,299 form the test set. In
this article we will always refer to the ModApté split.

There are five groups of categories that label Reuters-
21578 documents: EXCHANGES, ORGS, PEOPLE,
PLACES, and TOPICS. Only the TOPICS group has actu-
ally been used in TC experimental research, because the
other four groups do not constitute a very challenging
benchmark for TC.

The TOPICS group contains 135 categories. Some of the
12,902 legitimate documents have no categories attached to
them, but unlike the 8,676 documents removed from consid-
eration they are unlabeled because the indexers deemed that
none of the TOPICS categories applied to them. Among
the 135 categories, 20 have (in the ModApté split) no posi-
tive training documents; as a consequence, these categories
have never been considered in any TC experiment, because
the TC methodology requires deriving a classifier either by
automatically training an inductive method on the training
set only, and/or by human knowledge engineering based on
the analysis of the training set only.

Because the 115 remaining categories have at least one
positive training example each, in principle they can all be
used in experiments. However, several researchers have
preferred to carry out their experiments on different subsets

of categories. Globally, the three subsets that have been most
popular are4

• The set of the 10 categories with the highest number of pos-
itive training examples, hereafter, R(10). Among others, this
has been used in Bennett, 2003; Bennett, Dumais, and
Horvitz, 2002; Dumais, Platt, Heckerman, and Sahami,
1998; McCallum and Nigam, 1998; Nigam, McCallum,
Thrun, and Mitchell, 2000; Tong and Koller, 2001.

• The set of 90 categories with at least one positive training ex-
ample and one test example, hereafter, R(90). This appears to
be the most frequently chosen subset; among others, it has
been used in Baker and McCallum, 1998; Chai, Ng, and
Chieu, 2002; Crammer and Singer, 2002; Gao, Wu, Lee, and
Chua, 2003; Joachims, 1998; Lam and Lai, 2001; Li and Ya-
manishi, 1999; Nigam, McCallum,Thrun, and Mitchell, 2000;
Sebastiani, Sperduti, and Valdambrini, 2000; Toutanova,
Chen, Popat, and Hofmann, 2001; Yang and Liu, 1999.

• The set of 115 categories with at least one positive training
example, hereafter, R(115). Among others, this has been
used in Benkhalifa, Mouradi, and Bouyakhf, 2001; Caro-
preso, Matwin, and Sebastiani, 2001; Dumais et al., 1998;
Galavotti, Sebastiani, and Simi, 2000; Nardiello, Sebastiani,
and Sperduti, 2003.

It follows from this discussion that R(10) ( R(90) (
R(115). Reasons for using one or the other subset have been
different. Several researchers claim that R(10) is more real-
istic because machine learning techniques cannot perform
adequately when positive training examples are scarce,
and/or because small numbers of positive test examples
make the interpretation of effectiveness results problematic
because of high variance. Other researchers claim instead
that only by striving to work on infrequent categories too can
we hope to push the limits of TC technology, and this con-
sideration leads them to use R(90) or R(115). The only clear
fact is that the 10 most frequent categories provide an easier
testbed than the other two sets, although it is not clear ex-
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actly how easier. Furthermore, it is not clear at all whether
R(90) is any easier than R(115). The experiments that we de-
scribe in this section are exactly aimed at answering these
two questions, and in general at establishing the relative dif-
ficulty of the three relevant Reuters-21578 subsets.

Experiments

The experiments we have conducted test the relative
hardness of the three above-mentioned Reuters-21578 sub-
sets in all experimental TC contexts corresponding to any
combination of a learning method, a term selection function,
a reduction factor, a term weighting policy, and an effective-
ness function, chosen from the following.

• As for the learning methods, we have used three different
methods that allow weighted (nonbinary) input. The first is a
standard Rocchio method (Hull, 1994) for learning linear
classifiers. A classifier for category ci consists of a vector of
weights

(2)

where wkj is the weight of term tk in document 
and 

Conforming to common practice we have set the b and
g control parameters to 16 and 4, respectively. Classification
is achieved by performing a dot product between the docu-
ment vector and the classifier and then thresholding on the
result. We have individually optimized each threshold ti on
a validation set by the proportional thresholding method
(Lewis, 1992a; Yang, 2001), according to which the thresh-
old ti is set to the value such that the proportion of validation
examples that are classified into ci is as close as possible to
the proportion of training examples that are classified into ci.

The second learning method is a standard k-NN algo-
rithm, computing the formula

(3)

where Trk(dj) is the set of the k documents dz that maximize
the dot product Classification is performed by thresh-
olding on the scores resulting from Equation 3; here too we

d
S

j
# dSz.

score(dj, ci) � a
dz�Trk(dj)

(d
S

j
# d
S

z )£(dz, ci)

NEGi � 5dj � Tr 0  £(dj, ci) � F6.Tr 0  £(dj, ci) � T65dj �
dj, POSi �

wki � b # a5dj�POSi6
wkj

0POSi 0 � g
# a5dj�NEGi6

wkj

0NEGi 0

have individually optimized each threshold ti on a valida-
tion set by proportional thresholding. The k parameter has
been set to 30, following the results in Galavotti, Sebastiani,
and Simi, 2000.

The third learning method is a support vector machine
(SVM) learner as implemented in the SVMlight package
(version 3.5; Joachims, 1999). SVMs attempt to learn a sur-
face in -dimensional space that separates the positive
training examples from the negative ones with the maximum
possible margin, such that the minimal distance between the
surface and a training example is maximum. Results in com-
putational learning theory indicate that this tends to mini-
mize the generalization error, i.e., the error of the resulting
classifier on yet unseen examples. We have simply opted for
the default parameter setting of SVMlight; in particular, this
means that a linear kernel has been used.

• As for the term selection functions, we have used a choice
among the three functions {	2, IG, GR}, whose mathemati-
cal forms are detailed in Table 2. The first two (chi-square
and information gain) are standard tools of the trade in the
term selection literature, while the third is an entropy-
normalized version of information gain whose use as a term
selection function was first proposed in Debole and Sebas-
tiani, 2003. Each of the three functions has been used
according to the global policy described in the section on
document indexing, essentially for efficiency reasons.5

Globalization has been achieved by means of the fmax func-
tion, the globalization function of choice in the TC literature,
defined as f(tk, ci).

• As for the reduction factors for feature selection, we have
used a choice among the three values � ∈{0.90, 0.50, 0.0},
where a 0.0 reduction factor means no reduction at all.

• As for the term weighting policies, we have used a choice
between a standard, cosine-normalized form of tf * idf, or a
supervised term weighting policy (Debole & Sebastiani,
2003), consisting in replacing the idf component of tf * idf
with the function that, in the same experiment, has been

fmax(tk) � maxi�1
0C 0

0T 0

TABLE 2. Term selection functions used in this work.

Function Denoted by Mathematical form

Chi-square �2(tk, ci)

Information gain IG(tk, ci)

Gain ratio GR(tk, ci)
a

c�5ci,ci6 a 
t�5tk,tk6

P(t, c) log2 
P(t, c)

P(t)P(c)

� a
c�5ci,ci6

P(c)log2P(c)

a
c�5ci,ci6 a t�5tk,tk6

P(t, c)log2 
P(t, c)

P(t)P(c)

[P(tk, ci)P(tk, ci) � P(tk, ci)P(tk, ci)]2

P(tk)P(tk)P(ci)P(ci)

5For example, recall that the k-NN learner computes, for each test doc-
ument dj, its dot product with each training document, and then ranks these
training documents in terms of the computed dot product score. This
process is extremely costly from a computational point of view. While this
process needs to be performed only once if the global policy is used, it
needs to be performed 0C 0 times if the local policy is used, because in this
case the same document has 0C 0 different representations, and similarity
scores (and rankings) thus vary across categories.
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FIG. 1. Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (rightmost) obtained with tf * idf weighting and a � � 0.90 reduction factor. Plots
indicate results obtained with Rocchio (top), k-NN (middle), and SVMs (bottom). The X axis indicates the three subsets of Reuters-21578.

previously used for term selection (this yields, e.g., cosine-
normalized tf * GR if GR has been previously used for
feature selection). The version of tf * idf we have used is

(4)

where #Tr(tk) denotes the number of documents in Tr in
which tk occurs at least once and

where #(tk, dj) denotes the number of times tk occurs in dj.
Weights obtained by Equation 4 are then normalized by
cosine normalization, finally yielding

(5)

• As for the effectiveness functions, we have considered both
the microaveraged and macroaveraged version of the F1

wkj �
t fidf(tk, dj)

2g 0T 0s�1t fidf(ts, dj)
2

tf (tk, dj) � e1 � log #(tk, dj) if #(tk, dj) 
 0

0 otherwise

tfidf(tk, dj) � tf(tk, dj) # log
0Tr 0

#Tr(tk)

function. Note that when all documents are “true negatives”
of the category ci (i.e., when, for each document dj, it is the
case that in which case F1 is
technically undefined), we have opted for a value of F1 � 1,
because in this case the classifier always returns the correct
decision (Lewis, Schapire, Callan, & Papka, 1996).

In all the experiments discussed in this article, stop words
have been removed using the stop list provided in Lewis
(1992b, pp. 117–118), punctuation has been removed, all
letters have been converted to lowercase, numbers have
been removed, and stemming has been performed by means
of Porter’s stemmer.

Experimental Results

The results of our experiments are reported in Figures 1
through 6; the six figures report results for each combina-
tion of a term weighting policy (chosen among tf * idf and

£(dj, ci) � £̂(dj, ci) � F,
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6Note that representing these results as curves is not meant to suggest
that the number of categories is a meaningful ordered variable. Rather, the
three different points of the X axis at which performance values are com-
puted are best viewed as three isolated cases. The curve representation was
only chosen for convenience; a histogram representation would have been
equally suitable.
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FIG. 2. Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (rightmost) obtained with tf * idf weighting and a � � 0.50 reduction factor. Plots
indicate results obtained with Rocchio (top), k-NN (middle), and SVMs (bottom). The X axis indicates the three subsets of Reuters-21578.

supervised term weighting) and a feature reduction factor
(chosen among � ∈{0.90, 0.50, 0.0}). Each figure in turn in-
cludes six plots: the leftmost plots report microaveraged F1

scores while the rightmost report macroaveraged F1 scores;
results obtained with the Rocchio, k-NN, and SVM learners
are displayed in the top, mid, and bottom row, respectively.
Each individual plot (with the obvious exception of Figure 3,
which corresponds to tf * idf weighting and no feature selec-
tion) includes three curves, each corresponding to a feature
selection function (chosen among IG, GR, and �2).6

Figure 7 summarizes these results by averaging them for
each studied technique. For example, the curve marked
“SVM” reports the average results of all the experiments
run with the SVM learner. This means that the average is
computed across all possible combinations of term weight-
ing policies, feature selection policies, feature selection
functions, and reduction factors for feature selection; sepa-
rate plots for microaveraged F1 and macroaveraged F1 are
given. Table 3 reports mean and standard deviation scores
obtained across all 48 different experiments, and can thus
be considered fairly representative. Finally, Table 4 reinter-
prets the results of Table 3 in terms of relative hardness of
the three Reuters-21578 subsets studied; the values
contained in the table can be used for computing the likely
performance that a given method tested on Reuters-21578
subset x could approximately have obtained if tested on
subset y.
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The fact that emerges most clearly from these experi-
ments is that R(10) is the easiest subset, regardless of the
choice of learning method, feature selection function, effec-
tiveness function, and so on. This was largely to be expected,
given that its categories are the ones with the highest number
of positive examples, and as such allow taming the “curse of
dimensionality” more effectively.

On average, the decrease in performance in going from
R(10) to R(90) is much sharper for macroaveraging
(�53.1%) than for microaveraging (�7.6%). This can be
explained by the fact that microaveraged effectiveness is
dominated by the performance of the classifiers on the most
frequent categories. To see this, note that microaveraged F1

TABLE 3. Average effectiveness and standard deviation scores averaged
across all the text classifiers tested in our experiments on the three Reuters-
21578 subsets.

Microaveraged F1 Macroaveraged F1

Avg StDev Avg StDev

R(10) 0.852 0.048 0.715 0.097
R(90) 0.787 0.059 0.468 0.068
R(115) 0.784 0.062 0.494 0.118

TABLE 4. Values of relative hardness of Reuters-21578 subsets as de-
rived from the average effectiveness values of Table 3. The value in a given
entry measures how easier the subset in the row proved with respect to the
subset in the column.

Microaveraging Macroaveraging

R(10) R(90) R(115) R(10) R(90) R(115)

R(10) — �8.2% �8.6% — �46.8% �44.6%
R(90) �7.6% — �0.3% �53.1% — �5.2%
R(115) �7.9% �0.3% — �50.5% �5.5% —

0.57

0.6

0.63

0.66

0.69

0.72

0.75

0.78

0.81

0.84

0 10 90 115

M
ic

ro
av

er
ag

ed
 F

1

Categories

Rocchio

Tf*Idf

0.26
0.29
0.32
0.35
0.38
0.41
0.44
0.47

0.5
0.53
0.56
0.59
0.62
0.65
0.68
0.71

0 10 90 115

M
ac

ro
av

er
ag

ed
 F

1

Categories

Rocchio

Tf*Idf

0.72

0.75

0.78

0.81

0.84

0.87

0 10 90 115

M
ic

ro
av

er
ag

ed
 F

1

Categories

Knn

Tf*Idf

0.4

0.43

0.46

0.49

0.52

0.55

0.58

0.61

0.64

0.67

0.7

0.73

0 10 90 115

M
ac

ro
av

er
ag

ed
 F

1
Categories

Knn

Tf*Idf

0.8
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

0 10 90 115

M
ic

ro
av

er
ag

ed
 F

1

Categories

SVM

Tf*Idf

0.37
0.4

0.43
0.46
0.49
0.52
0.55
0.58
0.61
0.64
0.67

0.7
0.73
0.76
0.79
0.82
0.85
0.88

0 10 90 115

M
ac

ro
av

er
ag

ed
 F

1

Categories

SVM

Tf*Idf

FIG. 3. Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (rightmost) obtained with tf * idf weighting and a � � 0.0 reduction factor. Plots
indicate results obtained with Rocchio (top), k-NN (middle), and SVMs (bottom). The X axis indicates the three subsets of Reuters-21578.
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FIG. 4. Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (rightmost) obtained with supervised weighting and a � � 0.90 reduction factor.
Plots indicate results obtained with Rocchio (top), k-NN (middle), and SVMs (bottom). The X axis indicates the three subsets of Reuters-21578.

is an increasing function of microaveraged precision and
microaveraged recall, and that

• Microaveraged recall is the proportion of correct positive
classification decisions that are indeed taken, and most cor-
rect positive classification decisions by definition concern
categories that have many positive test examples. In
Reuters-21578 the 10 categories that have the highest num-
ber of positive test examples are (unsurprisingly, given that
the train/test partition was obtained by a random split) the
same categories that have the highest number of positive
training examples, i.e., are the categories in R(10). Note that
the 10 categories in R(10) have altogether 2787 test exam-
ples, while the other 80 categories in R(90) have altogether
just 957 of them; this shows that the former set of categories
contributes three times as much as the latter in determining
microaveraged recall on R(90).

• Microaveraged precision is the proportion of the positive
classification decisions taken that are indeed correct, and it
can be expected that most positive classification decisions

taken concern categories that have many positive test
examples, which are, as noted above, the same categories
that have many positive training examples.7

As a result, the microaveraged performance obtained on
R(90) is heavily influenced by the performance obtained on
the 10 most frequent categories, and much less heavily by the
performance obtained on the remaining 80 categories. This
explains why the above-mentioned decrease in microav-
eraged effectiveness is not very sharp. Instead, macroaver-
aged effectiveness is, by definition, not dominated by any
category in particular. Because each of the 80 least frequent
categories counts the same as any of the 10 most frequent
ones, the fact that the former categories are more difficult

7The fact that most positive classification decisions taken concern cate-
gories that have many positive test examples, rather than being just an intu-
itively likely fact, is a fact that the proportional thresholding policy we have
adopted explicitly seeks to bring about.
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than the latter8 weighs heavily on macroaveraged effective-
ness, and the decrease in performance is more marked.

A second fact that also emerges clearly from the experi-
ments is that R(115) is not significantly harder than R(90)
when effectiveness is computed through microaveraging
(�0.3%), while it is even easier (�5.5%) if macroaveraging
is used. Both facts seem, on the surface, surprising, because
the 25 additional categories have on average much fewer
training examples (2.52 each) than the other 90 (107 each).
However, arguments similar to the ones espoused above
show that there is indeed a rationale for this. Microaveraged
effectiveness is marginally hurt by the performance obtained
on the 25 additional categories, because these categories

contain no positive test examples: this means that micro-
averaged recall is by definition unaffected, while microaver-
aged precision is (for the same reasons discussed regarding
macroaveraged precision) hurt only scarcely.

The fact that macroaveraged effectiveness even benefits
from the added 25 categories is less obvious, but can be ex-
plained by the following fact. The value of F1i is equal to 1
for each category ci on which no negative test examples are
incorrectly classified under ci (it is 0 otherwise). In order for
this to happen, the threshold � i needs to be set high enough
that for no test document dj the CSV will exceed it. This in-
deed happens frequently, because the validation set on which
� i is tuned (see the earlier section on classifier learning) also
contains very few positive examples (if any—these 25 cate-
gories have, on average, 2.52 training or validation exam-
ples); this means that, to correctly classify the validation
examples, high values for � i tend to be chosen.
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FIG. 5. Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (rightmost) obtained with supervised weighting and a j = 0.50 reduction factor.
Plots indicate results obtained with Rocchio (top), k-NN (middle), and SVMs (bottom). The X axis indicates the three subsets of Reuters-21578.

8The 10 most frequent categories have, on average, 719.3 training
examples each, while the 80 least frequent ones have, on average, 29.9
training examples each.
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FIG. 6. Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (rightmost) obtained with supervised weighting and a � � 0.0 reduction factor.
Plots indicate results obtained with Rocchio (top), k-NN (middle), and SVMs (bottom). The X axis indicates the three subsets of Reuters-21578.
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FIG. 7. Plots of micro-averaged F1 (leftmost) and macro-averaged F1 (rightmost) obtained by averaging across term weighting policies, feature selection
policies, feature selection functions, reduction factors for feature selection, and learning methods. The X axis indicates the three subsets of Reuters-21578.
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As can be seen from Figure 7, the R(115) macroaveraged
F1 value for Rocchio represents the only exception to the gen-
eral trend; this is obviously responsible for the fact that the
R(115) macroaveraged F1 entry in Table 3 is the one with the
highest value in standard deviation. The likely explanation of
the fact that Rocchio, unique among the studied learners, per-
forms better on R(90) than on R(115) can probably be found
in Rocchio’s notoriously “crude” learning method (i.e., plain,
unsophisticated generation of a centroid vector, with no at-
tempt at margin maximization), which makes it particularly
unsuitable to deal with “hard” categories comprising very
few positive training examples (2.52 on average, in our case).

A fact that emerges clearly from the low values of stan-
dard deviation reported in Table 3 is that these conclusions
are largely independent of the techniques employed, regard-
less of whether they are concerned with learning, or feature
selection, or weighting, and so on. Figure 7 tells us that,
while for macroaveraging some exceptions to the general
trend do exist (e.g., the above-mentioned macroaveraged
performance of Rocchio on R(115)), microaveraging dis-
plays little or no variance across different techniques. This
suggests that our conclusions are fairly reliable, even if this
degree of reliability cannot formally be measured.9

Conclusion

We have presented a systematic, comparative experimen-
tal study of the three most popular subsets of Reuters-21578,
itself the most popular test collection of text categorization
research. We have carried out experiments on a variety of
experimental contexts, including all possible combinations
of three learning methods, three term selection functions,
three term selection reduction factors, two term weighting
policies, and two effectiveness functions. The results we
have obtained are thus fairly representative of the relative
hardness of the three Reuters-21578 subsets, also as a result
of the fact that the design choices that we have tested are
widely different among each other and, at the same time,
widely used in the text categorization literature. We have
also presented theoretical, a posteriori justifications for
these results, in particular explaining (1) why the decrease in
performance that can be expected in going from R(10) to
R(90) is sharper for macroaveraging than for microaverag-
ing, and (2) why in going from R(90) to R(115) we may ex-
pect almost no decrease in microaveraged performance, and
even an increase in macroaveraged performance.

The cumulative results we have obtained, which are
conveniently summarized in Table 4, finally allow the com-
parison, albeit indirect, of different text classifiers, which in
individual experiments, had been or will be tested by their
proponents on different Reuters-21578 subsets.
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