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We analyze, using a dynamical systems approach, the replicator dynamics for the asymmetric Hawk-Dove game in which there is
a set of four pure strategies with arbitrary payo	s. We give a full account of the equilibrium points and their stability and derive
the Nash equilibria. We also give a detailed account of the local bifurcations that the system exhibits based on choices of the typical
Hawk-Dove parameters V and �. We also give details on the connections between the results found in this work and those of the
standard two-strategyHawk-Dove game.We conclude the paperwith some examples of numerical simulations that further illustrate
some global behaviours of the system.

1. Introduction

�e Hawk-Dove game is one of the 
rst examples of a
pairwise game that was used to model the con�ict between
animals [1]. �e basic idea is that “Hawks” and “Doves”
represent two types of behaviours (actions or pure strategies)
that could be exhibited by animals of the same species [2].
In the standard Hawk-Dove game, individuals can use one
of two possible pure strategies. In one case, they can be
aggressive/a “Hawk,” which is typically denoted by H, or be
nonaggressive/a “Dove,” which is typically denoted by D.
�en, at various times, individuals in this population can have
a con�ict over a resource which has value V, where the winner
of the con�ict gets the resource and the loser pays a cost �.

�e Hawk-Dove game has been studied in the context of
replicator dynamics a number of times over the past several
years. Some examples of these studies include [3–17].

In replicator dynamics, it is assumed that individuals are
programmed to use only pure strategies from a 
nite set S =
{�1, . . . , ��}. It can be shown [2] that the dynamical evolution
of the proportion of individuals using strategy ��, ��, is given
by

�̇� = [� (��, x) − � (x)] ��, (1)

where �(��, x) is the payo	 to individuals using strategy ��,
while �(x) is known as the average payo	 and is de
ned as

� (x) =
�
∑
�=1
��� (��, x) . (2)

Further to (1), one also has the constraint

�
∑
�=1
�� = 1. (3)

In this paper, we wish to consider an asymmetric pairwise
Dove-Hawk game. Following [2], speci
cally, this is where
two individuals are contesting ownership of a territory that
one of them controls. One assumes that the value of the
territory and costs of contest are the same for both players.
Unlike the standard Hawk-Dove game described above,
players can now condition their behaviour on the role that
they occupy, which is typically denoted as owner or intruder.
So, the pure strategies now take the forms play Hawk if owner
and play Dove if intruder, which we will be denoted by HD.
�erefore, there is a set of four pure strategies:

S = {HH,HD,DH,DD} . (4)
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Table 1: �e payo	 matrix for the asymmetric Hawk-Dove game.

HH HD DH DD

HH
(V − �)
2 ,

(V − �)
2

(3V − �)
4 ,

(V − �)
4

(3V − �)
4 ,

(V − �)
4 V, 0

HD
(V − �)
4 ,

(3V − �)
4

V

2 ,
V

2
(2V − �)

4 ,
(2V − �)

4
3V
4 ,

V

4
DH

(V − �)
4 ,

(3V − �)
4

(2V − �)
4 ,

(2V − �)
4

V

2 ,
V

2
3V
4 ,

V

4
DD 0, V V

4 ,
3V
4

V

4 ,
3V
4

V

2 ,
V

2

From these arguments, it can be shown [2] that the payo	
matrix is given by Table 1.

We note that the replicator dynamics of this four-strategy
asymmetric Hawk-Dove game have not been analyzed from a
dynamical systems perspective in the literature to the best of
the authors’ knowledge. However, some examples of related
asymmetric games can be found in [18–26].

2. The Dynamical Equations

Let us denote by (�, �, 
, �) the proportion of individuals
who use strategies HH, HD, DH, and DD, respectively.�en,
from the payo	 matrix in Table 1 and (1)-(2), the replicator
dynamics are given by the following dynamical system:

�̇ = 1
4� [−� (2� + � + 
) − 4� (x)

+ V (4� + 2� + 3 (� + 
))] ,

̇� = 1
4� [−� (� + 
) − 4� (x) + V (3� + � + 2 (� + 
))] ,


̇ = 1
4
 [−� (� + �) − 4� (x) + V (3� + � + 2 (� + 
))] ,

�̇ = 1
4� [V (2� + � + 
) − 4� (x)] ,

(5)

where

� (x) = 1
2 [V − � (� + �) (� + 
)] , (6)

and, from (3),

� + � + 
 + � = 1. (7)

�is four-dimensional dynamical system can be reduced
to three dimensions if we set, via (7), � = 1 − � − � − 
.

�erefore, in what follows, we will study the following
unconstrained three-dimensional system:

�̇ = 1
4� [� (2�

2 + 2� (� + 
 − 1) + 2�
 − � − 
)

− V (2� + � + 
 − 2)] ,

̇� = −14� [V (2� + � + 
 − 1)
− � (2� + 2� − 1) (� + 
)] ,


̇ = −14
 [V (2� + � + 
 − 1) − � (� + �) (2� + 2
 − 1)] .

(8)

3. A Local Stability Analysis

From (8), we now present the equilibrium points along with
their eigenvalues and local stability. �e Jacobian matrix,
denoted by ���, corresponding to this dynamical system is a
3 × 3matrix, whose entries are listed as follows:

�11 = 1
4 (� (6�

2 + 4� (� + 
 − 1) + 2�
 − � − 
)

− V (4� + � + 
 − 2)) ,

�12 = 1
4� (� (2� + 2
 − 1) − V) ,

�13 = 1
4� (� (2� + 2� − 1) − V) ,

�21 = 1
4� (� (4� + 2� + 2
 − 1) − 2V) ,

�22 = 1
4 (� (2� + 4� − 1) (� + 
)

− V (2� + 2� + 
 − 1)) ,

�23 = 1
4� (� (2� + 2� − 1) − V) ,

�31 = 1
4
 (� (4� + 2� + 2
 − 1) − 2V) ,

�32 = 1
4
 (� (2� + 2
 − 1) − V) ,
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�33 = 1
4 (� (� + �) (2� + 4
 − 1)

− V (2� + � + 2
 − 1)) .
(9)

3.1. Equilibrium Point 1. �e 
rst equilibrium point was
found to be

�1: (�, �, 
) = (0, 0, 1) . (10)

�e corresponding eigenvalues of ��� were found to be

{�1, �2, �3} = {− V4 , −
�
4 ,

V − �
4 } . (11)

�is point is a stable node if

{V > 0} ∩ {� > V} . (12)

It is an unstable node if

{V < 0} ∩ {� < V} . (13)

It is a saddle point if

{{V < 0} ∩ {V < � < 0}} ∪ {{V < 0} ∩ {� > 0}}
∪ {{V > 0} ∩ {� < 0}} ∪ {{V > 0} ∩ {0 < � < V}} . (14)

3.2. Equilibrium Point 2. �e second equilibrium point was
found to be

�2: (�, �, 
) = (0, 12 ,
1
2) . (15)

�e corresponding eigenvalues of ��� were found to be

{�1, �2, �3} = { �8 ,
1
8 (� − 2V) ,

1
8 (2V − �)} . (16)

�is point is neither a stable nor an unstable node. However,
it is a saddle point under the following conditions:

{(V ≤ 0 ∩ � < 2V) ∪ (V > 0 ∩ � < 0)}
∪ {V > 0 ∩ 0 < � < 2V} ∪ {V < 0 ∩ 2V < � < 0} . (17)

3.3. Equilibrium Point 3. �e third equilibrium point was
found to be

�3: (�, �, 
) = (0, V� ,
V

�) . (18)

�e corresponding eigenvalues of ��� were found to be

{�1, �2, �3} = { V4 , −
V (� − 2V)

4� , 0} . (19)

�e single zero eigenvalue indicates that this equilibrium
point is normally hyperbolic, and the local stability can be
determined through the nonzero eigenvalues by the invariant

manifold theorem [27]. In particular, this point is a stable
node if

V < 0 ∩ 2V < � < 0. (20)

It is an unstable node if

V > 0 ∩ 0 < � < 2V. (21)

It is a saddle point under the following conditions:

{V < 0 ∩ (� < 2V ∪ � > 0)}
∪ {V > 0 ∩ (� < 0 ∪ � > 2V)} . (22)

3.4. Equilibrium Point 4. �e fourth equilibrium point was
found to be

�4: (�, �, 
) = (0, 1, 0) . (23)

�e corresponding eigenvalues of ��� were found to be

{�1, �2, �3} = {− V4 , −
�
4 ,

V − �
4 } . (24)

�is point is a stable node if

{V > 0} ∩ {� > V} . (25)

It is an unstable node if

{V < 0} ∩ {� < V} . (26)

It is a saddle point under the following conditions:

{V < 0 ∩ V < � < 0} ∪ {V < 0 ∩ � > 0}
∪ {V > 0 ∩ � < 0} ∪ {V > 0 ∩ 0 < � < V} . (27)

3.5. Equilibrium Point 5. �e 
�h equilibrium point was
found to be

�5: (�, �, 
) = (1, 0, 0) . (28)

�e corresponding eigenvalues of ��� were found to be

{�1, �2, �3} = {� − V

2 , � − V

4 , � − V

4 } . (29)

�is point is a stable node if

{V ∈ R} ∩ {� < V} . (30)

It is an unstable node if

{V ∈ R} ∩ {� > V} . (31)

From (29), it can be seen thatP5 is in fact never a saddle point
of the dynamical system.
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3.6. Equilibrium Point 6. �e sixth equilibrium point was
found to be

�6: (�, �, 
) = (V� , 0, 0) . (32)

�e corresponding eigenvalues of ��� were found to be

{�1, �2, �3} = {0, 0, V (V − �)2� } . (33)

One sees that since �1 = �2 = 0, this point is manifestly
nonhyperbolic. As such, its stability properties cannot be
determined through the Jacobian matrix.

3.7. Equilibrium Point 7. �e 
nal equilibrium point was
found to be

�7: (�, �, 
) = (0, 0, 0) . (34)

�e corresponding eigenvalues of ��� were found to be

{�1, �2, �3} = { V2 ,
V

4 ,
V

4} . (35)

�is point is a stable node if

V < 0. (36)

It is an unstable node if

V > 0. (37)

Further, this point is never a saddle point as can be seen from
(35).

4. Local Bifurcations

With knowledge of the equilibrium points and their local
stability as given in the previous sections, we now attempt to
describe bifurcation behaviour exhibited by this dynamical
system. Analyzing bifurcation behaviour is important as this
determines the local changes in stability of the equilibrium
points of the system.

�e mechanism for these bifurcations can be seen as
follows.

�e linearized system in a neighbourhood of �1 takes the
form

�̇ = 1
4� (V − �) ,

̇� = −14��,


̇ = 1
4� (� − 2V) +

� − V

4 � − V

4
.

(38)

We see that � destabilizes �1 when V = �, � destabilizes �1
when � = 0, and 
 destabilizes �1 when V = � = 0.

�e linearized system in a neighbourhood of �2 takes the
form

�̇ = 1
8� (2V − �) ,

̇� = 1
8� (� − 2V) +

1
8� (� − V) − 1

8V
,


̇ = 1
8� (� − 2V) −

1
8�V +

1
8 (� − V) 
.

(39)

We see that � destabilizes �2 along the line � = 2V, while �
and 
 destabilize �2 when V = � = 0.

�e linearized system in a neighbourhood of �3 takes the
form

�̇ = 0,

̇� = −V (� − 2V)4� � + V
2

4�� +
V (V − �)

4� 
,


̇ = −V (� − 2V)4� � + V (V − �)
4� � + V

2

4�
.

(40)

�erefore, �3 is destabilized by � and 
 ∀� ̸= 0, V = 0.
�e linearized system in a neighbourhood of �4 takes the

form

�̇ = 1
4� (V − �) ,

̇� = 1
4 (� − 2V) � −

V

4� +
� − V

4 
,


̇ = − �4
.

(41)

�erefore, � destabilizes �4 along the line V = �. Further, �
destabilizes �4 when V = � = 0. Finally, 
 destabilizes �4 when� = 0 for V ∈ R.

�e linearized system in a neighbourhood of �5 takes the
form

�̇ = � − V

2 � + � − V

4 � + � − V

4 
,

̇� = � − V

4 �,


̇ = � − V

4 
.

(42)

�erefore,�5 is destabilized by �,�, and 
 along the line � = V.
�e linearized system in a neighbourhood of �6 takes the

form

�̇ = V (V − �)
2� � + V (V − �)

4� � + V (V − �)
4� ,

̇� = 0,

̇ = 0.

(43)

�erefore, � destabilizes �6 whenever V = 0, or whenever V =
� (for � ̸= 0).
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�e linearized system in a neighbourhood of �7 takes the
form

�̇ = V

2�,

̇� = V

4�,


̇ = V

4
.

(44)

We see that, therefore, �7 is destabilized by �, �, and 

whenever V = 0, for � ∈ R. From these calculations, we can
therefore see that, along V = �, as one goes from � < 0 to
� > 0, �1 and �4 go from being unstable nodes to stable ones,
and vice versa, while �3 goes from being a stable node to an
unstable one. Whenever � = 0, V ∈ R, as one goes from V < 0
to V > 0, �5 goes from being an unstable node to a stable
node, while �7 goes from being a stable node to an unstable
one. Along the line � = 2V, as we go from V < 0 to V > 0, �1
and�4 go from being unstable nodes to stable nodes, while�5
and �7 go from being stable nodes to unstable nodes. Finally,
whenever V = 0, � ∈ R, as we go from � < 0 to � > 0, �5 goes
from being a stable node to an unstable one, while �1 and �4
go from being unstable nodes to stable ones.

5. Nash Equilibria

Determining the future asymptotic behaviour of the replica-
tor dynamics is of importance since, by �eorem 9.15 in [2],
if x∗ is an asymptotically stable 
xed point of the dynamical
system, then the symmetric strategy pair ["∗, "∗] = [x∗, x∗]
is a Nash equilibrium.

Following [28], we note that, 
rst, by Lyapunov’s theorem,
if all eigenvalues of the linear part of a vector 
eld V at a
singular point have a negative real part, the singular point is
asymptotically stable.

From our stability analysis of the various equilibrium
points in the preceding sections, we therefore observe the fol-
lowing Nash equilibria of the replicator dynamics depending
on the choices of V and �:

(1) V > 0, � > V ⇒ �1 is asymptotically stable ⇒
[(0, 0, 1), (0, 0, 1)] is a Nash equilibrium.

(2) V > 0, � > V ⇒ �4 is asymptotically stable ⇒
[(0, 1, 0), (0, 1, 0)] is a Nash equilibrium.

(3) V ∈ R, � < V ⇒ �5 is asymptotically stable ⇒
[(1, 0, 0), (1, 0, 0)] is a Nash equilibrium.

(4) � ∈ R, V < 0 ⇒ �7 is asymptotically stable ⇒
[(0, 0, 0), (0, 0, 0)] is a Nash equilibrium.

�e existence of these Nash equilibria shows that this
asymmetric Hawk-Dove game produces rational behaviour
in a population composed of players that are not required
to make consciously rational decisions. In other words, the
population is stable when, given what everyone else is doing,
no individual would get a better result by adopting a di	erent
strategy. �is is the so-called population view of a Nash
equilibrium,whichNash himself described as themass action
interpretation [2, 29].

Table 2: Payo	 matrix for the standard two-strategy Hawk-Dove
game.

H D

H
(V − �)
2 ,

(V − �)
2 V, 0

D 0, V V

2 ,
V

2

6. Connections with the Two-Strategy
Hawk-Dove Game

It is perhaps of interest to discuss our results found above
in connection with the standard two-strategy Hawk-Dove
game. Following [2], we note that the payo	 matrix for such
a game is given by Table 2.

In this case, the replicator dynamics are a simple con-
sequence of (1)-(2). Namely, let 
 denote the proportion of
individuals in the population that use strategy H in Table 2.
�en, the replicator dynamics are governed by the single
ordinary di	erential equation


̇ = �
2
 (1 − 
) (

V

� − 
) . (45)

Clearly, (45) has equilibrium points 
 = 0, 
 = 1, and 
 = V/�.
Let us denote by $(
) the right-hand side of (45). �en,

$� (
) = 1
2 [V − 2V
 + �
 (−2 + 3
)] . (46)

Clearly, when 
 = 0, $�(
) = V/2, which is negative when
V < 0 and positive when V > 0. �erefore, the point 
 = 0 is
a stable node when V < 0 and an unstable node when V > 0.
Further, when 
 = 1, $�(
) = (� − V)/2. In this case, the point

 = 0 is a stable node for � ∈ R and V > �. Further, it is an
unstable node for � ∈ R and V < �. Finally, when 
 = V/�, we
have that$�(
) = V(V−�)/2�.�is point is a stable node when
V < 0 and V < � < 0, or when V > 0 and � < 0 or � > V. It is an
unstable node when V < 0 and � < V or � > 0, or when V > 0
and 0 < � < V.

Comparing these cases to the Nash equilibria we found
in the full asymmetric game, we see that the case when

 = 0 corresponds to the case of Equilibrium Point 7, where
[(0, 0, 0), (0, 0, 0)] was a Nash equilibrium. �e case 
 = V/�
in this example corresponds to Equilibrium Points 1 and
4, where [(0, 0, 1), (0, 0, 1)] and [(0, 1, 0), (0, 1, 0)] were both
found to be Nash equilibria of the full asymmetric replicator
dynamics. Certainly, this shows that 
 → V/� for any initial
population that is not at an equilibrium point.

7. Some Numerical Simulations

In this section, we present some numerical simulations of the
work above. �ese simulations were completed in MATLAB
using the ODE23s solver with a variety of initial conditions
which are denoted with asterisks in Figures 1, 2, 3, 4, and 5.

In Figure 1, we assume that V = 0.1, � = 0.2; in Figure 2,
we assume that V = 0.2, � = 0.3; in Figure 3, we assume that
V = 0.2, � = 0.1; in Figure 4, we assume that V = −0.1, � = 0.2;
and in Figure 5, V = −0.2, � = −0.1.
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0.60.5
1.5

1
0
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−0.5

0.1 0.2 0.3 0.4

Figure 1: Results where V = 0.1, � = 0.2. �e red cross denotes the
equilibrium point �1: (�, �, 
) = (0, 0, 1), and the red circle denotes
the equilibrium point �4: (�, �, 
) = (0, 1, 0).

z
(t
)

x(t)

−0.2

y(
t)

0
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0.4
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0.6 0.70.5
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0
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0.4

0.6
0.8

1
1.2

Figure 2: Results where V = 0.2, � = 0.3. �e red cross denotes the
equilibrium point �1: (�, �, 
) = (0, 0, 1), and the red circle denotes
the equilibrium point �4: (�, �, 
) = (0, 1, 0).

8. Conclusions

In this paper, we analyzed, using a dynamical systems
approach, the replicator dynamics for the asymmetric Hawk-
Dove game in which there is a set of four pure strategies with
arbitrary payo	s. We gave a full account of the equilibrium
points and their stability and derived the Nash equilibria. In
particular, we found that if V > 0, � > 0, then the strategy
pairs [HD,HD] and [DH,DH] are Nash equilibria. If V ∈ R,
� < V, then the strategy pair [HH,HH] is a Nash equilibrium.
Finally, if � ∈ R, V < 0, then the strategy pair [DD,DD] is a
Nash equilibrium.We also gave a detailed account of the local
bifurcations that the system exhibits based on choices of the
typical Hawk-Dove parameters V and �. We also gave details
on the connections between the results we found and those of
the standard two-strategy Hawk-Dove game. We concluded
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1.4

x(t)
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Figure 3: Results where V = 0.2, � = 0.1. �e red circle denotes the
equilibrium point �5: (�, �, 
) = (1, 0, 0).
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Figure 4: Results where V = −0.1, � = 0.2.�e red circle denotes the
equilibrium point �7: (�, �, 
) = (0, 0, 0).
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Figure 5: Results where V = −0.2, � = −0.1. �e shaded red circle
denotes the equilibrium point �1: (�, �, 
) = (0, 0, 1). One can see
that, indeed, under these choices for V and �, �1 is indeed a saddle
point as predicted by our stability analysis.
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the paper with some examples of numerical simulations that
further illustrate some global behaviours of the system.
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