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An analysis of the strength-latency relationship

BENNET B. MURDOCK, JR.
University of Toronto, Toronto, Ontario, Canada

To account for latency in recognition memory, strength theory assumes that latency decreases
symmetrically on both sides of the yes-no criterion. Some of the standard criticisms of the theory
are presented. To evaluate these criticisms, explicit expressions for the latency distribution and
its mean and variance were obtained. On analysis, the criticisms seem to be unwarranted.
However, a satisfactory version of strength theory is not simple, and as many as a dozen or so
parameters may be required to account for the data.

Figure 1. Diagram of the basic strength-latency relationship. The

old- and new-item strength distributions are shown at the top, and

the transfer function is shown below for correct rejections (CR),

misses, false alarms (FA), and hits.

lag for both hits ("yes" responses to old items) and cor­

rect rejections ("no" responses to new items). Below

memory span, the linearity occurs when set size is varied

over a range of 1-6 items and the probe is a single old

or new item (Sternberg, 1966). Above memory span, the
linearity occurs for a wide range of lags (old items) or

test positions (new items) when a study-test procedure is

used (Murdock & Anderson, 1975). Strength theory can

clearly predict the increase in reaction time. As set size

or lag increases, the average strength of old items will

decrease, so more observations will be near the criterion

and reaction time will be slower. The question is whether

strength theory can predict that the increase in reaction

time should be linear.

The second problem is the error variance. The relation­

ships among hits. false alarms, correct rejections, and

misses are shown in Figure I. It would seem that the

strength distributions for errors, being more truncated than

the distributions for correct responses, should have less

variable latency distributions. In a study-test procedure,

Murdock and Dufty (1972) found that the latency vari­

ance for false alarms was generally greater than for hits

Strength theory (Norman & Wickelgren, 1969; Wick­

elgren & Norman, 1966) has been one of the major the­

ories of recognition memory. Derived from signal­

detection theory, it assumes that recognition-memory de­

cisions are based on memory-trace strength. The trace

strengths of old and new items are normally distributed,

and a yes-no criterion partitions the space. Observations

(i.e., trace strengths) falling above the criterion (hits for

the old-item distribution; false alarms for the new-item

distribution) lead to "yes" responses, and observations

falling below the criterion (misses for the old-item distri­

bution; correct rejections for the new-item distribution)

lead to "no" responses. For a fuller account, see McNicol

and Stewart (1980) or Murdock (1980).

To account for latency data, it is necessary to assume

a transfer function that maps strength into latency. That

is, for every particular strength value there has to be an

associated latency. It generally is assumed (e.g., McNicol

& Stewart, 1980; Murdock & Dufty, 1972; Norman &

Wickelgren, 1969; Pike, 1973) that latency decreases

symmetrically on either side of the yes-no criterion. These

relationships are illustrated in Figure I. The most reason­

able transfer function is exponential (Murdock, 1974,

p. 282).

Figure 2 provides a detailed view of the strength-latency

transfer function. This figure shows a single strength dis­

tribution (in this case, the new-item distribution), the

latency transfer function t=f(s), and the resulting latency

distribution f(t). Every point on the transfer function is

weighted by a strength density to obtain the resulting

latency distribution.

There are at least five problems that this model encoun­

ters. The first problem is the linearity problem. Reaction­

time functions should be a linear function of set size or
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a

Figure 2. Detailed picture of the strength-latency transfer func­
tion. Strength (s) is normally distributed with criterion a. An ex­
ponential transfer function maps strength into latency (t), and the
resulting latency distribution f(t) is shown by the large dots.

and the latency variance for misses was generally greater

than for correct rejections. These results seem to becoun­

ter to the theory.

The third problem is the distributional problem. Evi­

dence from a variety of studies (see, e.g., Hockley, 1982;

Murdock, 1980) shows that latency distributions are well

fit by a convolution of a normal and an exponential dis­

tribution (Hohle, 1965; Ratcliff & Murdock, 1976). The

latter authors claim that' 'it is difficult, if not impossible,

to get reasonable looking distributions [from strength the­

ory] for both error and correct responses with the same

parameter values" (p. 207).

The fourth problem is a variant of the second problem.
It may be called the "dominant-no" problem. As noted

by Pike (1973), when "no" responses are dominant, false

alarms are faster than hits. As Figure 1 should make clear,

regardless of criterion location, the model would seem

to predict that hits should be faster than false alarms.

The fifth and final problem deals with the relationship

between accuracy and latency. As argued in Aube and

Murdock (1974) and in Pike, Dalgleish, and Wright

(1977), ability to fit accuracy and latency data simultane­

ously is a strong test of a model. One of the real strengths

of strength theory is that, in principle, it can be applied

simultaneously to accuracy and latency data. Unfor­

tunately, there is at least some evidence (Murdock, 1974,

p. 283) that parameter values which do in fact quite nicely

characterize latency functions for the study-test procedure

are well off the mark when applied to accuracy data.

However, none of these problems is as definitive as one

might wish. Explicit expressions or extensive computer

simulations are necessary if one is to make a convincing

analysis. It turns out that explicit expressions for the first

two moments (mean and variance) of the latency distri­

bution can be derived. Thus, one can compute predicted

mean latency and variability for hits, correct rejections,

false alarms, and misses. Also, an expression for the

latency distribution itself can beobtained. In the next sec­

tion, the analysis is presented. In the following section,

the problems noted above are reconsidered.

ANALYSIS

The underlying strength distributions are assumed to

be normally distributed. The parameters of the old-item

distribution are p,o (the mean of the old-item distribution)

and ao (the standard deviation of the old-item distribu­

tion); the new-item distribution is assumed to have mean

zero with standard deviation aN. For reasons given above,

the strength-latency transfer function for "no" responses

is assumed to be a decreasing exponential function of the
form t= ceb(s - a), where a is the cutoff on the strength dis­

tribution partitioning "yes" and "no" responses, c is the

intercept, and b is the rate constant of the transfer func­

tion. The transfer function for "yes" responses is
t=ceb(a - s) (see Figure 3). The latency distribution f(t)

is the distribution whose moments we want; these mo­

ments are its mean p,± (t) and its variance a;' (t). As

Figure 2 shows, f(t) is obtained by multiplying each point

on the transfer function by the corresponding strength

density.

The mean latency p, ± (t) is:

p, ± (t) = c<l>(C)(z ±u) exp (.5u 2 ± uz)/<I>(C)(z), (1)

where u = ba and z = (a -u)/a. The symbol" ±" is to

be interpreted as "+" for positive responses (hits and false

alarms) and "-" for negative responses (correct rejec­

tions and misses). In the expression for u and z, p, and

a refer to the mean and standard deviation of the relevant

Figure 3. Strength-latency transfer function for old items.



strength distribution (old or new, as the case may be).

The symbol <p(e)(Z) should be read as <p(z) for negative

r~sponses and as <pe(z), where <pe(z) = l-<p(z), for posi­

tive responses. By <p(z), I mean the area under the unit

normal curve from-oo to z, and it may be found from

tables of the normal curve.

The variance a;(t) is Tl(T2-T3), where

Tl = c2exp(u2±2uz)/<p(e)(z),

T2 = <p(e)(z±2u)exp(u 2
) , and

T3 = <p(e)(z±u)/<p(c)(z), (2)

where the same conventions apply. The derivations are
presented in the Appendix.

The results for a numerical example are shown in Ta­

ble 1. For this example, a=l.1 b=1.5 c=l 3 P-N=O a
aN=0.9, p-o= 1.8, and ao=0.8'. The th'ree 2 ~i tables' i~
~able 1 show proportions (proportion of correct rejec­

nons and false alarms for new items; proportion of misses

and hits for old items), p-±(t), and a; (t).

The latency distribution f ± (t) is:

f±(t) = exp{-.5[z±u-1( - f n(t/c)W }1

.yz.;;.ut<P(C)(z), O:5t:5c. (3)

Sample distributions for correct rejections for five values

ofa (0, 0.5,1.0,1.5, and 2.0) and four values ofb (0.5,

1.0, 1.5, and 2.0) are shown in Figure 4. In all cases,

P-N =0, aN= 1.0, and c = 1.0. As can be seen, the shapes

of the distributions vary considerably depending upon the
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Table 1
Predicted Proportions, I' ± (t), and u~ (t)

for a Given Set of Parameter Values

Proportions I' ± (t) u~ (t)

Response Response Response

Items No Yes No Yes No Yes

New .889 .111 .314 .791 .088 1.134

Old .191 .809 .753 .430 .356 .104

Note-sav tL, b=1.5, c=1.3, I'N=O, uN=O.9, 1',=1.8, and u,=O.8.

values of a and b. The modal value [i.e., that value of
t at which f(t) is maximum] is ce _u

2

± uz (again, + for

positives, - for negatives).

A blowup of three of these distributions is shown in

Figure 5. In all three cases, b= 1.0. The purpose of

Figure 5 is to show that the front end of the distribution

drops back to zero for very small values of 1. This is al­

ways the case, although it is not apparent in Figure 4 for

reasons of scale. Thus, although sometimes f ± (t) is a very

good approximation to an exponential or waiting-time dis­

tribution, it is not perfect. For the last column in Figure 4

(i.e., b=2.0), the modal values are .018, .007, .002,

.0009, and .0003 for a=O.O, 0.5, 1.0, 1.5, and 2.0,

respectively .

DISCUSSION

The five specific problems listed in the introduction are

essentially different aspects of a more general problem:

whether strength theory can fit all aspects of the data at

O '0a-
,0

'0

a-tO lO

'0
,°

'0

'0

0-1.5 '0

'0

s.to b-l.5 b:2.0

Figure 4. Latency distributions f(t) for five values of a and four values of b.
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Figure 5. Detailed view of three latency distributions differing in

the location of the criterion a. In all three cases, b = 1.0.

a quantitative level. These data would be accuracy and

latency data for old and new items for different set sizes

or list lengths from different serial positions or test posi­

tions. The accuracy data would be proportions of correct

and incorrect responses under all possible conditions; the

latency data would be means, variances, and distributions

for all types of responses under all possible conditions.

At our present stage of knowledge, it seems unlikely

that strength theory, or any theory, can do all this per­

fectly. However, it is worth making the attempt because

we will find out just how complex strength theory must

be to do a reasonable job, and we will also find out just

where and how the theory breaks down. Only in this way

can we hope to make any theoretical progress. The data

are solid and reliable enough to justify the expenditure

of effort, and having the necessary analytic expressions

available makes the whole enterprise feasible.

Table 2
Predicted Latency for Old and New Items

by Set Size and Serial Position

Serial Position Old Items

Set Size I 2 3 4 5 6 Mean New Items

I 738 738 (735) 781 (785)

2 774 760 767 (770) 819 (820)

3 818 803 788 803 (805) 856 (855)

4 863 849 834 819 841 (840) 892 (890)

5 903 891 878 865 851 878 (875) 926 (925)

6 935 926 916 905 893 881 909 (910) 956 (960)

Note-Fitted data in parentheses.

as set size increased. In general, it does not; it either stays

the same or increases slightly.

However, there are more complicated versions of

strength theory which do a much better job. In fact, it

is quite possible to have a version of strength theory that

generates linear and parallel functions for old and new

items with reasonable error rates. An example is shown

in Table 2. Predicted reaction time for new items is shown

in the last column, and predicted mean reaction time for

old items is shown in the next-to-last column. The data

I fitted were ideal data; slopes of 35 msec/item for both

old and new items, an intercept for old items of 700 msec,

and an intercept for new items of 750 msec. Although not

shown, the mean accuracy at each set size was at least

95 % and the highest error rate was 12% at Serial Posi­

tion 1 of Set Size 6. Essentially, this is "error-free" per­

formance when averaged over serial position.

To achieve these results, it was necessary to let five

parameters vary across conditions. These parameters were

IJ-o and os, the mean and standard deviation of the old­

item distribution; on, the standard deviation of the new­

item distribution; b, the rate constant of the exponential

transfer function; and the intercept c, whose value was

higher for negatives than for positives, although this did

not vary with set size.

For those who are interested, here are the numerical

values. The mean of the old-item distribution was 6.15

for the last serial position in each set size, and decreased

exponentially with rate constant .084 with each earlier

item. The old-item variance was always a constant propor­

tion of the mean, and this proportion was .440. The new­

item variance increased with set size as the sum of the

geometric series 1, ci, a4
, • • • , a

2p
for Set Size p. The

parameter a is the same a as in Equation 1 of Murdock

(1982, 1983) and is the serial position constant cj in An­
derson (1973); the value of a here was .706. The slope

of the transfer function b decreased exponentially with set

size. The value of b at Set Size 1 was. 706, and the rate

constant for the exponential decay was .314. The loca­

tion of the criterion a was the same for all set sizes; the

value of a was 2.44. The value of c, the intercept of the

strength-latency transfer function, was 306 msec for posi­

tives and 367 msec for negatives. The predicted values

from Equation 1 for the parameter values were augmented

C

0=15

C 0
t

0=1.0

C 0
t

0=05

Sternberg Paradigm
Let us start with the Sternberg paradigm, since it is sim­

pler than the study-test paradigm. It is quite clear that a

simple strength model will not work. By a simple strength

model, I mean a model in which there is one new-item

distribution and p (for set size) old-item distributions, a

single criterion, and the same strength-latency transfer

function for all set sizes. Following strength theory (Wick­

elgren & Norman, 1966), there would be exponential de­

cay of d'; the mean strength of the last item would be

greatest, of the next-to-last item next greatest, and so on,

with an exponential decline. Also, equal variances would

be assumed.

Why will this simple strength theory not work? If the

criterion stayed constant as set size varied, then the mean

reaction time for negatives would not vary with set size,

and this is clearly false. Suppose the criterion decreased

as set size increased. This is not impossible; in either a

fixed-set or a varied-set procedure, subjects know the set

size before the probe is presented, so the location of the

criteria could be adjusted accordingly. This adjustment

could produce an increase in reaction time for negatives,

but then there would be a problem for positives. The mean

reaction time for the last item in the list would decrease



by 700 msec as a "time for other stages" (TOS), so this

fit characterized the comparison process only. Overall,

the fit was excellent; the standard error (root-mean-square

value, the square root of the mean sum of squared devia­

tions between predicted and observed data points) was

only 2.4 msec.

This particular version of strength theory is by no means

the only version which will give a good fit. I have found

a number of others that are almost as good, if not as good,

in fitting the set size functions. The problem is the serial­

position effects. This model does not do a very good job

fitting serial-position data, but the other versions are

worse. The predicted serial-position curves for this ver­

sion of strength theory are also shown in Table 2.

In case it is not clear, the parameter estimation program

(SIMPLX; Nelder & Mead, 1965) optimized the

parameters for the ideal set-size functions. The old- and

new-item values are shown in parentheses in Table 2.

These parameters were used to generate the predicted

serial-position effects for old items; these are the serial­

position data shown in Table 2.

Basically, there seem to be two problems. First, the

serial-position curves are are not bowed enough. Second,

the increase in the predicted latency for the last serial po­

sition as set size increases is too great. These problems

may be due to the fact that we fit the set-size functions

directly and then used the obtained parameter values to

predict the serial-position functions. The remedy would

seem to be to fit the serial-position curves directly.

A brief comment is in order before describing this at­

tempt. In modeling (and thinking about) data from the

Sternberg paradigm, one generally tries to explain the

linear set-size functions and then cope with the serial­

position effects as best one can. An alternative approach

may be suggested. Perhaps one should try to explain the

serial-position effects directly, then derive the linear set­

size functions from the serial-position effects. This ap­

proach was suggested by Murdock (1971), and is explicit

or implicit in many other accounts of Sternberg data. We

shall apply the same reasoning to strength theory. Can

it explain the serial-position effects? If so, then the set­

size functions must necessarily follow (Franklin, 1980).

As a test, we took the data from Murdock and Frank­

lin (1984), which shows very substantial serial-position

effects. Because there were primacy effects as well as

recency effects in these data, we decided to let /lo vary

with both distance from the beginning and distance from

the end of the list. That is, the first component of /lo

decreased with the number of prior items and, thus,

represented a proactive inhibition (PI) effect. The second

component of /lo decreased with the number of subsequent

items and, thus, represented a retroactive inhibition (RI)

effect. Specifically,

/lo(p,j) = a, exp( -blj) +

a.exp] -b2(p-j)]' j = 1,2, ... ,p, (4)

where a, and b, are the intercept and rate constant of the
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PI component, a, and b2 are the intercept and rate con­

stant of the RI component, and j denotes serial position

in Set Size p. Although to some extent, Equation 4 is ar­

bitrary, it essentially formalizes PI and RI effects which,

must be represented in any serious model.

In some preliminary fits, bl was consistently quite large,

so to save a parameter we arbitrarily set it to seven times

a.. This results in a very abbreviated (essentially one-item)

primacy effect. The other free parameters were the old­

item variance ratio (the ratio of the variance to the mean),

the location of the criterion a, the starting value and rate

constant for b, the slope and rate constant of the strength­

latency transfer function, its intercept c, and TOS. The

intercept c was the same for positive and negative

responses, but a constant "extra time for negatives"

(ETFN) was added to the predicted latency to account for

the intercept difference. ETFN was a fixed parameter and

was the same for all set sizes.

In computing the standard error, we weighted each set

size equally and, within each set size, positives and nega­

tives equally. This followed the experimental design, in

which each set size was tested equally often. Within each

set size, the probability of an old- or new-item probe was

always .5, and the serial position of old-item probes was

randomly selected.

Also, we fit both accuracy and latency data simultane­

ously. To compute an overall goodness-of-fit measure,

we had to establish some correspondence between ac­

curacy and latency. Initially we used an accuracy-to­

latency (ATL) scale value of 1.0 where 1 error in 1,000

was equal to 1 msec. In the final fit, this was changed

to .1, as subjects in the experiment were required to main­

tain a high level of accuracy. It is probable that errors

often resulted from extraneous factors. Admittedly, any

ATL is arbitrary, but some value has to be used if one

is to fit accuracy and latency simultaneously.

Table 3
Predicted Latency and Accuracy for Old and New Items

by Set Size and Serial Position

Serial Position

Set Size 2 3 4 5 6 New Items

Latency
2 455 462 588

(462) (480) (554)

4 512 540 510 485 629
(521) (552) (526) (477) (658)

6 631 690 643 598 558 523 691
(611) (697) (641) (609) (521) (496) (687)

Accuracy
2 .011 .016 .022

(028) (.026) (008)

4 .031 .048 .029 .016 .022

(.090) (060) (008) (.024) (.050)

6 .069 .116 .077 .049 .029 .016 .022

(.080) (.040) (.006) (.013) (.013) (.000) (.050)

Note - Obtained results in parentheses. Data from Murdock andFranklin

(/984).
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Table 4
Mean Latency for Hits as a Function of J1.. and

Hits and False Alarms as a Function of a

Study-Test Paradigm
How well does strength theory work when applied to

the study-test procedure? In this procedure, accuracy and

latency covary, and errors range from 0 to 25 % depend-

For the best-fitting parameter values, the latency com­

ponent of the standard error was 21 and the accuracy com­

ponent was 29. Thus, the fits are good to within about

20 msec and 3% error. Observed and predicted results

(latency and accuracy) are shown in Table 3. The best­

fitting parameter values were at=.753, a2=4.971,

b, = .097; the old-item variance ratio was .384; the

criterion a was 2.013; the starting value of b was 2.44;

the rate constant was .166; the intercept c was 941 msec;

and TOS was 433 msec. As a fixed parameter, ETFN was

set to 94 msec, the intercept difference in the set-size func­

tions for positives and negatives.

To summarize, the best fit showed that RI is both much

larger and more persistent than PI, although both are re­

quired to explain the bow-shaped serial-position curve.

The old-item variance changed with serial position, but

the new-item variance was set to 1 for all set sizes. The

criterion seems to be constant across set size. (It did not

help the fit to let the criterion vary with serial position.)

Finally, the slope of the strength-latency transfer func­

tion decreased exponentially with set size.

What does it mean to say that the slope of the transfer

function decreased with set size? Unfortunately, no ready

answer is forthcoming. All I can say is that the slope of

this function is one of the parameters of the model, and

a decrease in its value affects both the mean and variance

of the latency distribution. What it means from the point

of view of a psychological process is not clear, as strength

theory is an analytic model, not a process model.

One of the problems with strength theory is the

dominant-no problem. If "no" responses are dominant,

how can the latency for hits be greater than the latency

for false alarms? There is at least one answer; namely,

Uo must be less than UN. As shown in Table 4, for a= 1.8

and for a=2.0, when Uo=.25, hits are slower than false
alarms. Other parameter values here were lto=2.0,

b = 1.0, and c = 1.0. Of course, strength theory must ex­

plain why the variances are the way they are, but that is

another matter.

3

2

1
0.5

0.25

0.125

False Alarms

Note-p..=2.0. b=c=l.O.

a=1.8

.267

.319

.494

.652

.760

.812

.777

Hits

a=2.0

.284

.333

.524

.697

.828

.908

.853

ing upon study position, test position, and lag. The very

fact that accuracy, as well as latency, must be included

makes this a much more challenging problem than the

Sternberg paradigm.

One needs two criteria if one is to accommodate

confidence-judgment data: a, a lower criterion for high­

confident correct rejections and misses, and b, an upper

criterion for high-confident hits and false alarms (see

Figure 1 in Murdock & Anderson, 1975). With the new­

item variance fixed at 1.0, it was necessary to let the lower

criterion a decrease over trials to accommodate the

decrease in the proportion of high-confident correct re­

jections. For serial-positioneffects, I still used Equation 4,

but the RI component let study and test interference vary

separately. There is conflicting evidence here (Norman

& Waugh, 1968), and I was not sure what to do. For

study-test data, I selected the data from Table 3 of Mur­

dock and Anderson (1975), as this was representative data

from a few practiced subjects given intensive testing.

Altogether there were 14 parameters. Nine [a.. b.. a2,

b2s (study), b2t(test), the old-item variance ratio, a (start­

ing value), a (rate constant), and b] were sufficient to de­

termine the accuracy. Five (the starting value and rate

constant of b, the slope of the strength-latency transfer

function, its intercept c, TOS, and ETFN) affected latency

but did not affect accuracy. Because our version of

SIMPLX allows only 9 free parameters, I did some ex­

ploratory estimations and, as a result, fixed 5 of these

parameters in advance and did the final estimation on only

9 free parameters. These were a.. b., b2s, the old-item

variance ratio, the starting value and rate constant of a,

the lower criterion, the starting value of b, the slope of

the transfer function, its intercept c, and TOS. The

parameters I fixed in advance were a2= 8.3 - a..

b2t=b2s/4, the upper criterion b=4.9, and the rate of

change of the slope of the transfer function equal to 1/16th

of its starting value. Admittedly these are arbitrary, but

some way had to be found to reduce 14 free parameters

to 9 free parameters.

The best-fitting parameter values were 5.245, .059,

.353, .178, 1.239, .041, 2.706,284, and 635 for a.. b..

b2s, the old-item variance ratio, the starting value and rate

constant for the lower criterion a, the starting value for

the slope b of the transfer function, its intercept c, and

TOS, respectively. The fit was really quite good, espe­

cially considering that 120 data points were fit by nine

free plus five fixed parameters. The standard error was

17 msec for latency and 1.9% for accuracy. Observed and

predicted latencies and proportions are shown in Table 5,

broken down by study and test position (blocks of three)

for old items and by test position for new items.

With one exception, these parameter values were com­

parable to those from the Sternberg paradigm. The ex­
ception was bt. In the Sternberg paradigm, it was very

large; in the study-test paradigm, it was almost zero. The

implication is that, in the Sternberg paradigm, the primacy

effect is due to some special status ofthe first item. Even

the second item does not share this benefit. In the study-
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Table 5
Predicted and Observed Latencies and Proportions for High-Confident Hits

and Correct Rejections by Input and Output Blocks

Output Block

Input Block 2 3 4 5 6 7 8 9 10

Observed Latency
1 723 671 664 675 727 728 721 769 787 866

2 733 668 693 704 748 730 756 792 798 817

3 714 685 683 673 704 754 766 764 807 790

4 668 646 657 693 703 739 763 745 768 800

5 637 634 657 674 678 715 730 768 785 797

New Items 931 720 729 736 773 787 796 807 809 840

Predicted Latency
1 670 680 692 705 719 734 750 766 781 796

2 670 681 693 707 723 739 756 772 789 804

3 665 676 689 704 721 739 757 775 792 808

4 656 666 679 694 712 731 751 771 789 807

5 645 652 663 677 694 715 736 758 779 799

New Items 716 725 735 747 760 775 791 807 823 839

Observed Proportion
1 .848 .840 .848 .877 .807 .826 803 .729 .780 .739

2 .857 .856 .828 .821 .792 747 .753 .693 .700 .672

3 .880 .874 .828 839 .790 .775 .687 .721 .671 .718

4 .931 904 .896 .876 .820 812 .794 .731 .693 .698

5 .976 .981 .951 .931 .900 .889 .815 .780 .820 .759

New Items .908 .878 .870 .847 .833 .838 .830 .852 .811 .817

Predicted Proportion
I .854 .841 .828 .816 .804 .793 .782 .772 .762 .753

2 .857 .838 .820 .801 .783 .766 .749 .733 .718 .703

3 .887 .864 .841 .816 .792 .767 .743 .720 .697 .675

4 936 .915 .891 .864 .836 .806 .775 744 .713 .683

5 .979 .967 951 .930 .905 .877 844 .810 .773 .736

New Items .892 .883 .873 .863 .853 .843 .833 .824 .814 804
..- .._-----,_._-'-----_. - - - - - ~ , -

test procedure, by contrast, there is a special status af­

forded to every study item, and it does not diminish with

number of prior items. Strength of an item, then, has two

components. The first component results only from list

presentation, and persists unchanged throughout the study

and test phase. The second component, slightly smaller

in magnitude, falls off the more items that follow. The RI

effect is greater for study than for test items.

It would seem, then, that strength theory can fit ac­

curacy and latency data with the same set of parameters

and, moreover, can do so very well. The standard errors

are really quite small. Admittedly, this is a more com­

plex version of strength theory than is usually considered.

but rather than abandon a theory that has weaknesses, it

is sometimes better to try to fix it up. Perhaps the proper

conclusion to the original problem is to realize that a sim­

ple version of strength theory indeed cannot handle ac­

curacy and latency with the same set of parameter values,

but a more complex version of the theory can.

Another of the problems of strength theory mentioned

in the introduction was the error variance. It was claimed

in Murdock and Dufty (1972) that, according to strength

theory, errors should be less variable than correct

responses. This claim is wrong. There are parameter

values such that errors should be less variable. but there

are other parameter values such that errors should be more

variable. To illustrate, Table 6 presents the results of a

four-parameter grid search. There were three levels of

a (1.0, 1.5, and 2.0), three levels ofb (0.5, 1.0, and 1.5),

three levels of 0 0 (0.5, 1.0, and 1.5), and four levels of

/1-0 (1.0, 1.5, 2.0, and 2.5). In all cases, !-tN=O

and ON= 1.0. Table 6 shows the variance of correct re­

jections and the variance of misses over this four­

parameter space.

To summarize these results, the number of cases where

the variance of correct rejections was less than the vari­

ance of misses increased with a, b, and 0 0 , but decreased

with !-to. The effect of 0 0 seems particularly clear. For

0 0 = I .5. in 35 out of 36 cases the variance of correct re­

jections was less than the variance of misses. Thus, one

of the conclusions of Murdock and Dufty (1972) must be

retracted. The fact that, in the data. errors were more vari­

able than correct responses does not constitute negative

evidence for strength theory.

Another problem with strength theory is the distribu­

tion analysis. Empirically, many reaction-time distribu­

tions are well represented by the convolution of a normal

and an exponential distribution (Ratcliff & Murdock,

1976). Can strength theory accommodate this result?

Given the parameter values we find, it seems likely that

the decision state must represent the exponential compo­

nent (see Figure 4). Thus, if the other stages are normally

distributed. then the distribution analysis is not a problem

for strength theory.

It has been mentioned that the distribution f(t) always

drops back to zero for low values of 1. Thus. f(t) could
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not be a pure exponential distribution. However, this im­

perfection could be obscured by criterion variability. If

the location of a, the criterion, varied somewhat from trial

to trial, then the leading edge of f(t) would be blurred.

This possibility was investigated by Monte Carlo methods,

and sample distributions are shown in Figure 6. Here the

criterion was centered on a and its variability (standard

deviation) is 'YJ. In the two left-hand panels 'YJ =0, so there

was no criterion variability; however, in the two right­

hand panels 'YJ =1, so the criterion variability was the same

as that of the new-item distribution.

This Monte Carlo simulation was based on 1,000 trials,

and the bin width for these frequency polygons was

25 msec. These distributions (polygons) were for correct

rejections, and both band c were set to I. The values

of both a and 'YJ affect the resulting distribution, but the

important point to note is that criterion variability seems

to obscure the initial rise in f(t) at very low values of 1.

Thus, even some of the dubious exponentials in Figure 4
might be better if criterion variability existed.

CONCLUSIONS

The problems noted in the introduction turn out not to

be problems at all. Strength theory can fit the data, and

it does an excellent job. It can fit accuracy and latency

simultaneously with the same set of parameter values; it

can generate linear set-size functions and very respect­

able serial-position and study-test functions. Error vari­

ability is no problem, and the latency distributions seem

to be generally exponential. Although the fits to the data

are not perfect, they are limited by noise in the data and

it seems unlikely any other theory can do appreciably
better.

The advantages of strength theory should not be

minimized. It allows one to account quantitatively for ac­

curacy and latency, albeit with a fair number of

parameters. Explicit expressions for latency can be de­

rived, and the derivations are not particularly difficult.

One can argue that the number of free parameters is ex­

cessive, but consider what predictions are possible. One

can predict accuracy proportions, latency means, vari­

ance, and distributions for correct rejections, misses, hits,

and false alarms for all serial positions in the Sternberg

paradigm and all study-test positions in the study-test

paradigm, all with the same set of parameter values. Stan­

dard methods of parameter estimation, such as SIMPLX

or STEPIT, can be used to fit the model to data or, given

particular parameter values, specific predictions can be

made.
The fact that strength theory predicts a number of

aspects of the data simultaneously means that everything

is interrelated. One soon comes to appreciate what this

means when one tries to fit the model to a given set of

data. If one changes the location of the criterion to in­

crease accuracy, one also changes the latency. If one

changes the mean or variance of the old-item distribution

to adjust, for example, hits, then one also changes misses.

If the slope of the strength-latency transfer function

changes, this will affect both means and variances of posi-

Table 6
Variance of Correct Rejections (Column 4) and Misses (Columns 5-8) as a Function of a, b, uo, and /lo

Misses

a b 0 0 CR fLo= 1.0 fLo= 1.5 1-'0=2.0 1-'0=2.5

1.000 0.500 0.500 0.041 0.014 0.008 0.005 0.003

1.000 0.500 1.000 0.041 0.034 0.029 0.024 0.019

1.000 0.500 1.500 0.041 0.051 0.047 0.043 0.039

1.000 1.000 0.500 0.059 0.034 0.024 0.016 0.011

1.000 1.000 1.000 0.059 0.063 0.058 0.052 0.045

1.000 1.000 1.500 0.059 0.074 0.074 0.072 0.069

1.000 1.500 0.500 0.058 0.051 0.039 0.028 0.026

1.000 1.500 1.000 0.058 0.074 0.073 0.069 0.067

1.000 1.500 1.500 0.058 0.077 0.083 0.081 0.234

1.500 0.500 0.500 0.040 0.019 0.014 0.008 0.005

1.500 0.500 1.000 0.040 0.039 0.034 0.029 0.024

1.500 0.500 1.500 0.040 0.054 0.051 0.047 0.043

1.500 1.000 0.500 0.047 0.041 0.034 0.024 0.016

1.500 1.000 1.000 0.047 0.064 0.063 0.058 0.052

1.500 1.000 1.500 0.047 0.071 0.074 0.074 0.072

1.500 1.500 0.500 0.041 0.054 0.051 0.039 0.028

1.500 1.500 1.000 0.041 0.069 0.074 0.073 0.069

1.500 1.500 1.500 0.041 0.069 0.077 0.083 0.081

2.000 0.500 0.500 0.034 0.020 0.019 0.014 0.008

2.000 0.500 1.000 0.034 0.041 0.039 0.034 0.029

2.000 0.500 1.500 0.034 0.055 0.054 0.051 0.047

2.000 1.000 0.500 0.032 0.034 0.041 0.034 0.024

2.000 1.000 1.000 0.032 0059 0.064 0.063 0.058

2.000 1.000 1.500 0.032 0.066 0.071 0.074 0.074

2.000 1.500 0.500 0.024 0.035 0.054 0.051 0.039

2.000 1.500 1.000 0.024 0.058 0.069 0.074 0.073

2.000 1.500 1.500 0.024 0.060 0.069 0.077 0.083

Note-In all cases. /IN=O and uN=I.O.
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Figure 6. Results of four Monte Carlo computer simulations to show the results of criterion

variability. The standard deviation of the criterion distribution is 71, and the criterion is cen­

tered on a.

tives or negatives. And so it goes; one cannot make local

changes to patch one problem without at the same time

changing other aspects of the data and perhaps causing

new problems.

Although frustrating, this feature of strength theory is

probably realistic. As in most complex systems, every­

thing probably is interrelated. The human memory sys­

tem is a complex system, and anyone change may have
widespread ramifications. Our theories should face up to

these complexities, rather than pretend they do not exist.

On the other hand, the difficulties with strength theory

should also be noted. A simple version cannot account

for the data, and a version which can account for the data

requires some ad hoc assumptions. It requires a dozen or

so parameters and, with so many parameters, separation

of parameters may not be easy. The parameter space may

be quite flat, so fairly substantial changes in the data may

not be easily attributable to one or two parameters. Other

types of models (e.g., Shiffrin's SAM model; see Gil­

lund & Shiffrin, 1984) may also have this problem, so

it is not necessarily unique to strength theory.

Strength theory uses a functionalistic approach, not a

structuralistic approach (Pieters, 1983). Admittedly, this

is a matter of theoretical preference, but it does seem to

be the case that many cognitive psychologists today prefer

process models. Strength theory describes a simple trans­

fer relationship, and this makes possible the latency deri­

vations. However, strength theory does not provide many

insights as to how or why the decision system operates,

or, for that matter, what the origin of the original strength

distributions might be. The slope of the transfer function

seems to decrease as set size or test position increases.

What does this transfer function represent, and why does

its slope decrease? Those who want a process view will

have to look elsewhere for the answers to these questions.

To summarize, a simple version of strength theory with
parameters /LN, aN, /La, ao, a, b, and c (Figure 3) cannot

adequately account for accuracy and latency data from

the Sternberg or the study-test procedure. If several of

these parameters are allowed to vary across conditions

(set size, output, or serial position), then it can. Explicit

expressions for the latency distribution, mean, and vari­

ance for hits, false alarms, misses, and correct rejections

may be obtained by standard methods, and these expres­

sions may be useful in further developments of the theory.
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where

where

The expression in Equation A4 is simply

k'<f>[(a-/l-bu2)/<7], so by combining Equations 3-5 we

have

(A3)

(A5)

Thus, we have an explicit expression for the mean of the

latency distribution for negative responses in terms of the

five parameters of the model: /l and <7, the mean and stan­

dard deviation of the strength distribution; a, the criterion

or cutoff on the strength distribtuion; and band c, the

rate constant and the intercept of the exponential transfer

function. Equation A6 would apply to both correct rejec­

tions (/l=o) and missess (/l > 0). Figure 3 shows the
strength-latency transfer function for hits, and the analy­

sis for hits and false alarms is similar.

Since Var(t) = /l2(t)_/l2(t), where /l2(t) is the second

moment, we have

c2e-2ba 1___ Ja e2bs- 1/2[(s _1'1"1
2ds. (A7)

<f>[(a - /l)/ a] -./'Fir a -00

Equation A7 can be rewritten as

/l2(t) = r ef(t)dt =
o

1 Ia c2e2b(s - a)<I>(s) ds
<f>[(a-/l)/a] -00

<I> (a - /l)/ <7 is the area under the curve from - 00 to a nor­

malized in terms of /l and <7 (see Figure 1).

Equation A 1 can be rewritten as

/l_(t) = _k_ Ja e-1/2[(S2-2I'S-2b~S)/,,21ds (A2)
-./'Fir a - 00 '

/lJt) = _k_'_ r e-1/2[(s-l'-b~)/"fds, (A4)
-./'Fir <7 - 00

ce -ba - (ll2,,2)

k=
<f>[(a-/l)/<7] .

If we take the exponent of the integral in Equation A2

and complete the square, we have
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APPENDIX

where <I>(s) is the new-item strength distribution and

(A9)h=

where

Again we complete the square in Equation A8, and we

have

(AI)--l-f ebs-II2[(S-I')/,,12ds,
-./'Fir <7 - 00

ce- ba

For negative responses

/l t = r tf(t)dt
- 0

1 ra b(s a) ....

<I>[(a - /l)/ <7] J -00ce - '¥(s)ds
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_h_'_ r e-II2[(s-tt-2bc?)/af ds, (A 10)
...jTir a -00

where

and

The expression in Equation Al 0 is simply

h' <I>[(a -J.t-2bcrla], so by combining Equations A9-A11,

we have

from which we can calculate the variance.

It simplifies the expressions and clarifies the relation­

ships involved if we make the substitutions z = (a - J.t)1a

and u = ba. The we can write

(A17)
<I>(z)

e -112[z + (l/u)ln(t/c)l'
I

f (t) = --
- .,f1.7r ut

Thus, this analysis leads to explicit expressions for the

first two moments of the latency distribution for all four

cells of the 2 x2 signal-detection/strength-theory model

of recognition memory: correct rejections, misses, hits,

and false alarms.

To obtain an expression for the latency distribution it­

self, one can use the change-of-variable technique (e.g.,

Hoel, 1962). For negative responses, we must solve the

transfer function t = ceb(s- a) for s in terms of t, then

Ids/dt I= I/bt and

(AI3)

(All)

<I>(z -u)

<I>(z) ,

, 2
h' = heI/2[<tt+2ba")/al .

(AI8)

1 e -112{z - (l/u)[ln(t/c»)I'

f+ (t) = --./T7r ut <I>c(z)

where as above <I>c(z) = l-<I>(z).

(Manuscript received June 18. 1984;

revision accepted for publication November 15. 1985.)

where z and u are as defined above. For positive

responses, the transfer function is t=ceb(a-s) and

(AI5)

In a similar way, one can obtain the mean and variance

for hits and false alarms. The transfer function is t =

ceb(a-S)(see Figure 3) and one must replace <I>[(a-J.t)/a] by

<I>c[(a-J.t)/a] where <I>c[(a-J.t)/a] = l-<I>[(a-J.t)/a].

Otherwise the development is the same. Then for posi­

tive responses (hits and false alarms), we have

( '/2) <I>c(z+u)
J.t + (t) = ce u + uz

<I>c(z) ,

and


