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Abstract

Total Least Squares (TLS) is a method of fitting that is appropriate when
there are errors in both the observation,vector b (mxl) and in the data matrix
A (mxn) . The technique has been discussed by several authors and amounts to fit-
ting_é "best" subspace to the points (az,bi) , i=1,...,m , where ai is the i-th
row of A . In this paper a singular value decomposition analysis of the TLS prob- '
lem is presented. The sensitivity of the TLS problem as well as its relationship
to ordinary least squares regression is explored. An algorithm for solving the TLS
problem is proposed that utilizes the singulaf value decomposition and which pro-

vides a measure of the underlying problem's sensitivity.
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1. Introduction

In the least squares (LS) problem we are given an mxn "data matrix" A, a
"yector of observations" b having m components, a nonsingular diagonal matrix

D = diag(d

l,...,dm_), and are asked to find a vector x such that
(1.1) || Db - Ax) ||2 = min,
Here,’ Il' “2 denotes Fuclidean length. It is well-known that any solution to

the LS problem satisfies the following system of "normal equations':

(1.2) ATDZAx = ATDzb .
The solution is unique if rank(A) = n. However, regardless of the rank of A there

is always a unique minimal 2-norm solution to the LS problem given by

(1.3) ' x g - oa) Db

where (DA)+ denoges the Moore-Penrose Pseudo-inverse of DA .

In the (classical) LS problem there is an underlying assumption that all
the errors are confined to the observation vector b . Unfortunately, this assump-
tion is frequently unrealistic; sampling errors, human errors, modelling errors,
and instrument errors may preélude the possibility of knowing the data matrix A

exactly. Methods for estimating the effect of such errors on X g are given in

Hodges and Moore [11] and Stewart [19]. The representation of data errors in a
s£atistically meaningful way is a difficult task that can be appreciated by reading
the survey article by Cochrane [2].

In this paper we analyze the method of total least squares (TLS), whicﬁ is one
of several fitting techniques that has been devised to compensate for data errors.

A good way to motivate the method is to recast the ordinary LS problem as follows:



minimize ”Dr “2
r

subject to b+r € Range (A)

If “Dr”2 = min and b+ r = Ax, then x solves the LS problem (1.1). Thus the

LS problem amounts to perturbing the observation b by a minimum amount r so

that b+r can be "predicted" by the columns of A .

Now simply put, the idea behind total least squares is to consider perturbations

of both b and A. More precisely, given the nonsingular weighting matrices

D = diag(d),...,d) s ,i=1,...,m

t,>0,1i=1,...,ntl

we seek to

minimize || D[E|r]T “F
E,r :

.4)
subject to b+r € Range(A + E)

Here, ” . ”F denctes the Frobenius norm, viz H B ”i, = ): z .. Once a mini-
ij

mizing [Al-fl'i:] is found, then any x satisfying

~

(A+§)x = b+T

is said to solve the TLS problem (1.4). Thus, the TLS problem is equivalent to the
problem of solving a nearest compatible LS problem min H (A+E)x - (b+%) ||2

where "nearncss" is measured by the weighted Frobenius norm above.

Total least squarcs is not a new method of fitting; the n=1 case has been
scrutinized since the turn of the century. More recently, the method has been dis-
cussed in the context of the subset selection problem, sec [9], [10], and [20].

In Deming [ 3] and Gerhold [4 ] the following more general problem is analyzed:



T 2 t 2
minimize izl{ Airi + .Z wijeij }
(1.5) E,r J
subject to b+r € Range(A+E)

T . e .
= ’ = . ositive weights.
where E (eij)’ T = (rl,...,rm) , and the Ai and w55 are given p g

The TLS approach to fitting has also attracted interest outside of statistics.
For example, many algorithms for nonlinearly constrained minimization require es-
timates of the vector of Lagrange multipliers. This typically involves the solution
of an LS problem where the matrix is the Jacobian of the "active contraints." Be-
cause of uncertainties in this matrix, Gill and Murray[ 5] have suggested using
total least squares. Similar in spirit is the work of Barrera and Dennis [ 1]

who have developed a "fuzzy Broyden" method for systems of nonlinear equations.

In the present paper we analyze the TLS problem by making heavy use of the
singular value decomposition (SVD). As is pointed out in Golub and Reinsch [7 ] and
more fully in Golub [6 ], this decomposition can be used to solve the TLS-problem.
We indicate how this can be accomplished in §2. An interesting aspect of the TLS

problem is that it may fail to have a solution. For example, if

>
1
o
1]
o
I
-3
]
.

then for every € >0, b€ Range (A + Ea) where Ee diag(0,e) . Thus, there is
no "smallest" || [E] r] ”F for which b+r ¢ Range(A+E) since b £ Range(A).
_This kind of pathological situation raises several important questions. Under what

set of circumstances does the TLS problem lack a solution? More generally, what

constitutes an ill-conditioned TLS problem? Answers to these and other related

theoretical questions of practical importance are offered in §3 and 84. In §5 some

algorithmic considerations are bricfly mentioncd.



2. The TLS Problem and the Singular Value Decomposition

If b+r is in the range of A+E, then there is a vector Xx € R" such

that
(A+E)x=b+r
i.e.,
2.1) - { p[a|b)T + DIE|r]T } Tt [XJ =0
. -1

This equation shows that the TLS problem involves finding a perturbation matrix

nx (n+
Ae R@x(n 1 having minimal norm such that C + A is rank deficient where

(2.2) ¢ = D[A|b]T.

The singular value decomposition can be used for this purpose. Let

T s
vcv = dlag(o1 yeess 0n+l)
) . +1
(2.3) U= [ul yeeas um] V= [vl sesesy Vn+1] u; € R? » Vy € R"
012.-.2 0k> Uk+l= e =0‘n+l

be the SVD of C with UTU = Im and VTV = In . A discussion of this decom-
position and its elementary properties may be found in Stewart[17]. In particular,

it can be shown that

(2.4) ' o = min || a |l .
rank(CG+A) < ntl

. . T . .
Moreover, the minimum is attained by setting A = -Cvv.  where v 1is any unit

vector in the subspace SC defined by

]

2.5) SC span {vk+l reees Vn+l} .



Suppose we can find a vector v in S, having the following form:

C
y
v = { ] y € R , a#0

a

1f
. -1
(2.6) X = -0 le T1 = dlag(tl,..., t“)
n+l

and we define E and T by
D[E|FIT = -Cvv

then

c(I - VVT)( =
¢ nt+l

"

{Dp[A]b]T + D[EI'E]T}T’ILX] = 0
In light of the remarks made after (2.1), it follows that x solves the TLS problem
If e 1" (O,...,O,l)T is orthogonal to SC , then the TLS problem has no
solution. On the other hand, if Y is a repeated singular value of C, then the
TLS problem may lack a unique solution. However, whenever this is the case it is

possible to single out a unique "minimum norm" TLS solution which we denote by X1LS

In particular, let Q be an orthogonal matrix of order n-k+l with the property tha

(2.7) [ v yeras V 1]Q =
k+1 n+l 0 o 1
n-k
If we set X o —le/(atn+l) and if we define the T -norm by
. _ —l . n
(2.8) ol = e wll v eR

then it is easy to show that “ X for all other solutions x to

ol < el
the TLS problem (1.4).



3. A Geometric Interpretation of the TLS Problem

If the SVD of C = D[AID]T is given by (2.3), then it is easy to verify
that

[[ptalpiT v ],

TR TR
Vol

and that equality holds for nonzero v if and only if v is in the subspace SC
defined by (2.5). Combining this fact with (2.6), we see that the TLS problem

amounts to finding an x € R" (if possible) such that

I otareyr 73] 11,

],

Ontl *

The geometry of the TLS problem comes to light when we write

Il pialsir v ] 112 m , lax-ob, |2
(3.1) ” T—l[ X ”2 - ._}_:1 di 'TT—Z - -2 .
—1] 2 o xh v hn

T . .
where a; = (ail seves ain) , the i-th row of A . The quantity

- | alx - b, |?
1

T, -2 -2

X T1 x + tn+l

is the square of the distance from [ i] c Rn+1 to the nearest point in the
i
subspace Px defined by

. a n T :
= { [b] |aeR ,beR, b=xal.

Here, the "distance" between two points u and v in Rn+1 is given by || T(u - v) ”2'



Thus, the TLS problem is tantamount to finding a "closest' subspace Px to
the (nt+l)-tuples [?%] , i=1,...,m . The simple case when n=1 and D and T are
i
both identities is worth illustrating. In Figure 1 the LS and the TLS measures of
goodness—of-fit ére depicted. In the LS problem it is the vertical distances that
are important while in the TLS problem it is the perpendicular distances that are

critical. (When T # I , these perpendiculars are "skewed".) To say that the

Figure 1. Least Squares Vs. Total Least Squares

TLS problem has no solution in the n=1 case is to say the the TLS fitting line
is vertical. This would be the case, for example, if the three data points in Figur:
1 are (1,8), (2,-2), and (4,-1) for then the line a=7/3 1is closest to the data

in the sense of minimizing the sum of the squared perpendicular distances.

The fitting of straight lines when both variables are subject to error has
received a lot of attention in the statistics literature. We refer the ipterested
reader to the papers by Pearson [15], Madansky [14], Riggs et al [16] , and York

[22], as well as Chapter 13 of Linnik [13].



4. The Sensitivity of the TLS Problem

In this section we establish some inequalities that shed light on the sen-
sitivity of the TLS problem as well as on the relationship between Xg and XrLs
The starting point in the analysis is to formulate the TLS problem as an eigenvalue
problem. Recall the definitions of the matrix C and the subspace SC in §2 . It is
easy to show that the "singular vectors" vy in (2.3) are eigenvectors of CTC and
that in particular, S, is the invariant subspace associated 0§+l’ the smallest

c

eigenvalue of this matrix. Thus, if x e R® is such that
(4.1) CT -1 x - 2 -1 X

CT ] "% T |1
then x solves the TLS problem. With the definitions

(4.2) A = DAT, , b =1Db , A=t

equation (4.1) is readily seen to have the following block structure:

AR T | (1] T, x
2
(4.3) ) . | - .
AbTA Aszb Y 1 | nt+l —A_l
Moreover, if
. 6 =1 , 9% =1
. T = - m ’ n
(4.4) U AV =7 = diag(o) ..., )
0y %0, % . 20,20
is the SVD of A , and if we define
’ AT“ 1\2 '\2 ‘T ~ ~T~ -~
(4.§) K = Z z = diag(o ,...,on) , £ = z UTb . h2 = bTb , 2 = %TTllx

then (4.3) transforms to



K Ag z

2 z
(4.6) _ = 0 _
AgT AZhZ Y 1 n+l 2 1
From this equation we see that
(4.7) (K - 0% 1)z =
n+l /%2 T 8
and
2 T 2
(4.8) ‘ntl 4+ gz =h .
A2
With these reductions, we now obtain some useful characterizations of both
X11s and O+ ;n order for the subsequent analysis to be uncluttered, we

freely make use of the notation established in (2.2)-(2.8) and (4.2)-(4.5).

Theorem 4.1
If o > O 41 then %rLs exists and is the only solution to the TLS problem.
Moreover,
. = 2Tr 2 -1 3T1;
(4.9) . T, (A'A -0, 177 AD
and
n e

2 1 2
(4.10) o = + } 2 _ 2 = 9

n+l A2 i=1 %% " %1 LS
where

== | T = ATA

(4.11) | c=(e)s.eese )" = U'D

2 2 2
(4.12) prg = min oo - ax) [, = lIpo - ax 5 .

X



- 10 -

Proof

The separation theorem [21,p.103] for eigenvalues of symmetric matrices im-

plies that
(4.13) °1>’°1>’°2>'“'>’°n>’°n3°n+1 .
The assumption Gn >0 thus insures that O+l is not a repeated singular
value of C. 1f cc [7]= o, |Y| anda 0% R? |, then it clearly foll

. 0 o+l | 0 y e R , en it clearly follows
that ATAy = oi+ly- , a contradiction since 8n is the smallest eigenvalue of A A.

Thus, S_  must contain a vector whose (n+l)st component is nonzero. This implies that
TLS problem has a solution. Since SC has dimension 1, this solution is unique. The

formula (4.9) follows directly from the "top half" of (4.3).

To establish (4.10) we observe from (4.7) and (4.8) that

o T, 2 -1 _ .2
ntl + g (K- on+lI) g = h .
A2

By wusing the definitions (4.5) and (4.11) this can be rewritten as

22 2
g.c

02 s ii T2
S izl 2ot izl &
A i n+l
or
2 - ; i .
o R + Y = c,
S 2 2162 - 0i+1 i=n+l T
-Inequality (4.10) now follows since
2 a2 2 2 T 2
min || D(b - Ax) ”2 = min ||b - Ay Ilz = min || ¢ - 2\q||2 = ) ey |
' i=n+l

X y w



We shall make use of (4.10) in the next section. The characterization
(4.9) points out an interesting connection between total least squares and ridge

regression. Ridge regression is a way of "regularizing" the solution to an ill-

conditioned LS problem. (See [12,p.190ff.].) Consider, for example, the minimizatior

of

- 2
sGsw = 100 - a0 12+ wll 1xly

where u is a positive scalar. It is easy to show that

AT+ -1 -T2~
XLS(u) = Tl( A'A +uI) " AD

. ' 1 =1 _
solves this problem and thét i T, xLS(u) ||2 = || xLS(u)HT becomes small as u
becomes large. This is the key to ridge regressicn; by controlling u we can control
the T - . . )
e norm of xLS(u)
. . . . . _ 2
What is particularly interesting, however, is that XoLs XLS( cn+l) . That

is, total least squares is a deregularizing procedure, a kind of "reverse' ridge

regression. As we shall see, this implies that the condition of the TLS problem is

always worse than the condition of the corresponding LS problem. For this reason

it is interesting to compare the LS and TLS fits with one another.

Corollary 4.2

Let = ||p@ - AXLS)”2 .If o > o then

PLs n +1

(4.14) I xppg = xg Il s P Mo lly e
2 2
n 0n+l

and

(4.15) | Do )y |l 1+ LTS ol

. D(b - x, < P =
. TLS 2 LS on °n+1



- i —

Proof

Using (1.2) it is clear that x . = Tl(ﬁTﬁ)-l ATS -and so from (4.9) we have

LS

2 -1 aTx

~Ta -1 AT~
X - x Tl[(A A-o 1) ~ (A7A) ] ADb

TLS LS

(4.16)
2 AT~ 2 -1 -1
on+1 Tl(A A - On+l D T1 *Ls

Applying Tzl to both sides of this equation and taking norms gives

o2, llxgg |l
'l _ || < n+l LS Mt
*1LS s 'x ¥ L7 2 .
n

Un+1

This result coupled with the inequalities
. -1 .
@11 e = IDx g - |l, = [IDMAlIT T [gﬂnza»%ﬂnﬁsm

(el . =(0,...,0,1) )

(4.18) A | b, = Il plafplTe entl

n+l ll 2 n+l

establish (4.14).
-

To prove (4.15), note that

(4-19) “ D(b - AXTLS) ”2 < pLS + H DA(XTLS - XLS) ”2 *

Now by (4.16),

2« aTa 2 -1 -1

DA(Xp s = Xpg) = Oppp A WA - o DT T X

and so by invoking (4.17) and (4.18) we find



AT~ 2

| oAGry g = x Ol < opg 2 1B 1, IAGT - o2 7 I,
A - l
= PLs A Ilb ||2 max _ % . =
1<k<n % + o+l %k T °n+1

< epg MBI, /G, = 0y)
Inequality (4.15) follows by substituting this result into (4.19). O

The corollary shows that XrLg * X g 2s A + 0 . Thus, by reducing the

"observation weight" A = E 41 ° the TLS problem "converges" to the LS problem. Of

course, if PLs =0 and A has full rank, then XTLS = Xg regardless of A .

The bounds in (4.14) and (4.15) are large whenever on+l is close to an

(This occurs, for example, whenever o is a nearly repeated singular value.) Our

n+l

next results indicate the extent to which (on -0 ) measures the sensitivity

_ n+l
of the TLS problem.

Lemma 4.3
If U= [ﬁl',..., ﬁm] is a column partitioning of the matrix U in the SVD

(4.4) and if O, > %1 0 then

| ol 6 | 51,
< Megglly ¢ 7=

) o -0

2(On - 0n+l n ntl

Proof

Substituting the SVD (4.4) into (4.9) and taking the T -norm of both sides

gives
9 n 81 ﬁ?g 2
Ixge 12 = 1 | — :
= +
i=1 | (o, 1) € Oy o 41’
1 ai
The lemma follows from the inequalities D < G +o ) <1 D
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Theorem 4.4

If A' ¢ R and b' e R™ are such that

I ol A'-A|Db'=-b] T [|F s €/6

where

then the perturbed TLS problem

min || D[E|r]T ”
E,r

subject to b'+r e Range(A'+E)

(4.20)

has a unique solution X%LS . Moreover, if x # 0, then

TLS

. ” XI'LS - xf'['LS ” In 01 1 + A ” b ”
(4.21) T ¢ — =
o —— ||u>u2 o

| xp gl n

Proof

Denote the singular values of the matrices A' = DA'T and C' = D[A'lb']T

by ai 2002 8; and oi 2 ...2 0

for singular values insure that

|

ot respectively. Well-known perturbation results

o - o Io' -0c | >
n+l n+l' ~

(4.22) lh; 0r'1+1| : I n - on+l| - l

In view of Theorem 4.1, this implies that the perturbed TLS problem above has a unique

solution \TLS

Let [Z] (y € R" , & € R) be a unit right singular vector of C associated

" with o Using the SVD perturbation theory of Stewart[18], it is possible to

n+l °

bound the difference between [Z] and [2

Not surprisingly, the bound involves the scparation of o and ©

] , a corresponding singular vector of c'

associated o'

n+l’ ntl
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y z 3n
sl - {e] l, « ===
n n+l

—le/(AB) where A = t and

Now from §2 we hgve X ntl

= -le/(ka) and x|

TLS TLS

Tl = diag(tl,---,tn). Thus,

]

1 1 Nzl
by “ (y/a) - (Z/B)IIZ < I)\al ”y "2”2 + —l—é-l—z lC‘"Bl

1
| *rs ~ *TLS “'r

and so

3n

| % g |l '
i Tle‘.l r [1+ A ||xTLS IIT] .
% 7 %41 " y 2

I XrLs T *TLS ”r

At

N ~ €
Set B' = Db' . From Lemma 4.3, equation (4.22), and the fact that [l xd - b") llzs 1

we have ' :
. s
T TP L PR {n l +L%.
’ % 7 %atl % T %ntl 62
-and so .
P L P LI ¢ ERLULTR A
N c -0 4 2 ¢ -0 y
” xTLSIlT n +1 n ntl 2
In order to get a lower bound on || y ||, observe that
el 81, < NGRS, + Navll, < opp +NAlLNy I,
i.e.,
B, -, < @-laballsll, +HAlNy I,

e Nyl ealisl, + NAl,1 <« 2lyl,lcl,

The assumption that x. ¢ # 0 implies that Allg ”2

o
n+l
is a singular vector of C . The theorem now follous because

for otherwise [y] = [0]
a 1
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1 < 20y D
Ty, 50, - o

Both the lemma and the theorem suggest that the TLS problem is unstable when-
ever 3n is close to 04 This is borne out by some results established in [23]
where it is shown that a change of order Ial in C can result in an insoluble TLS
problem. Using Lemma 4.3, this translates into the assertion that an =041 is
a measure of how close (1.4) is to the class of insoluble TLS problems.

Finélly, we remark that if the LS problem is ill-conditioned, i.e., an is

small, then the TLS problem is likewise sensitive.

S. Algorithmic Considerations

Although a stable and efficient algorithm for computing the SVD exists [7 ],
there are numerical difficulties associated with the determinatioﬁ of the dimension

‘of Sc , i.e., the multiplicity of o,

1 One approach is to regard all computed

singular values in the interval [Gn+1 » O 41 +e] as being identical where € > 0
is some small machine dependent parameter. This leads to the following overall pro-

cedure for computing the solution to the TLS problem:

1. Compute the SVD UT(D[Alb]T)V = diag(ol seees Un+l) . Accumulate V .

2, Define the index p by op > 06 4, te 2 .op+1 2% O

3. Let V= [v,,...,v. ] be a column partition of V and compute a Householder
1 n
matrix Q such that

y

a

e

[v yeees V. 21Q
ptHl n+l 00

4, If a = 0 , then the TLS problem has no solution. Otherwise, x —le/(atn+l).

TLS
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A shortcoming of this scheme is that it does not compute an =0 4 which
as we have seen, is a measure of TLS sensitivity. To rectify this it may be more
. AT ~ & . - - &
desirable to compute the SVD U AV = dlag(ol,...,on) = Z and then make use of

the TLS "secular equation':

2
n C
N i 2
¥) = o |5 + ] 7|~ Pus
. A i=1 g, - ©

In view of (4.9) and (4.11), if a o can be found that satisfies this equation

and is less than cn , then

Standard root-finding techniques can be used for this éurpose. (The function ¥
has monotonicity proﬁerties in the bracketing interval [O,Gn] .) Notice how easy
.it is to compute the TLS solution for different va}ues of the weight A ='tn+l .
A detailed discussion of these and other algorithmic aspecés of the TLS problen,

such as the choosing of the weights, will appear elsewhere.
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