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1. Introduction. In this decade the theory of variational inequalities has been
developed by a number of prominent mathematicians. At present we can find in the
literature not only the elements of a mathematical theory, but also several applications
to mechanics and physics; see for example, Duvaut and Lions [1], Historically, this
theory started in an investigation of a Signorini problem in elasticity by Fichera [2],
The beginning of the development of a systematic mathematical framework for this
theory is generally linked with the work of Lions and Stampacchia [3], The relationship
between the free boundary problems and the theory of variational inequalities has been
explicitly investigated by Lions [4],

In this paper, we study this relationship in some detail using a typical free boundary
problem, namely the analysis of seepage flow, and we investigate the approximation
theory of variational inequalities. We also show how error estimates of approximations
of variational inequalities by finite-element methods can be obtained, and we compare
the results obtained by variational inequalities with the results of Taylor's method
which was developed to find the free surface in seepage flow problems. The present
work may be regarded as an expository article designed to demonstrate in simple terms
the basic qualitative properties of the theory of variational inequalities and to show
an application of the theory to a typical example problem involving the free boundary.

The use of variational inequalities in connection with seepage flow problems was
deeply studied by Baiocchi [5, 6, 7] and others. In this paper, we use the simplest case of
Baiocchi's theory. Numerical resolution of this problem was performed by Comincioli
[8, 9] and others. The error estimates of approximation of a class of variational inequalities
were investigated by Falk [10]. Here, we study a modification of Falk's theory. This
theory can be applied to all kinds of variational inequalities provided we approximate
closed convex sets with subsets. We elaborate on this requirement later in the paper.

In Sec. 2, we explain the mathematical theory of variational inequalities. First the
equivalence between variational inequalities and free boundary problems is explained
using a simple example. Second, we give an existence theorem which suggests how we
calculate the variational inequality numerically. Third, in order to interpret physically
the meaning of the solution, we introduce a regularity theorem for variational inequalities
and illustrate it by means of a simple example. Then we establish error estimates of finite-
element approximations of variational inequalities which are confirmed by numerical
experiments.

* Received April 8, 1976; revised version received July 14, 1976. The support of this work by a
grant from N.S.F. is gratefully acknowledged.
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In Sec. 3, we explain the method of application of variational inequalities to mech-
anics. Specifically, we describe how transformations can be made which are necessary
for formulating a given problem in terms of variaitonal inequalities. The considerations
also are helpful in solving other problems, which include free boundaries and various
discontinuity (jump) conditions, using the idea of variational inequalities. Finally, we
compare the numerical results of the variational inequality method associated with
seepage flow problems with the numerical results of Taylor's method [11], From this
comparison, we are able to identify certain advantages and disadvantages of the formu-
lation.

2. Mathematical theory of variational inequalities.

2.1 Existence and regularity theorem. Let H be a reflexive Banach space and K be a
closed convex subset of H. Let A be an operator from H into the dual space H' of H.
The following problem is said to be variational inequality (or unilateral problem):
find u £ K such that, for / £ H',

(Au — /, v — u) > 0, V v £ K. (2.1)

In the present study, it suffices to consider only those cases in which H is a real Hilbert
space.

If A is a potential operator of a functional F on H, then (2.1) is equivalent to the
constrained minimization problem: find u £ K such that

F(u) - 2(1, u) < F(v) - 2</, v), V v £ K. (2.2)

An important aspect of variational inequalities is that if the admissible set K is
represented by some inequality-type constrained conditions, then variational inequalities
may be equivalent to the free boundary problems. In order to confirm this aspect, an
example could help. Let Hm(G) be the '/Nth-order Sobolev space on G.

Example 1. Consider the variational inequality: u £ K,

fJo
\u,z(v — u),x 4- (v — u)} dx > 0 for V v £ K (2.3)

where K = \v \ v £ H\0, 1), v(0) = 0.25, u(l) = 0, v > 0 a.e. in (0, l)j. As shown
later, (2.3) has a unique solution u belonging to //2(0, 1). Then by integration by parts
(2.3) can be written as

fJo
(— u,rx + \)(v — u) dx > 0, V v £ K. (2.4)

Let 5(0) be a mollifer of the Dirac 5-function with 5(0) = 1 at x = 0. Clearly, 0.255(0)
and 2u — 0.255(0) belong to K. Then

II

(— u,,r + 1)(±m) dx > 0.

This means that

(— w,„ + l)w = 0 a.e. in (0, 1).

By (2.4),
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/ (~' u,rr + l)y dx > / (— u,IX + \)u dx = 0.
•/() ^0

Since v > 0 a.e. in (0, 1), — m,„ + 1 > 0 a.e. in (0, 1). Therefore, (2.3) is equivalent to

u > 0

( 1)^ 0 . ... , /o r\, a.e. in (0, 1). (2.5)
~~ U,TZ +1^0

w(0) = 0.25, w(l) = 0.

Thus, there are two parts in (0, 1) such that Q, = {x \ u(x) > 0} and 00 = f.r | u(x) = 0}.
Since u is the regular solution, (2.5) is equivalent to

- u,zr +1=0 in (0, p) _2 6>

u = 0 in (p, 1)

where 0 < p < 1. In this case p = 1/V2. It is also worthwhile to note that if another
boundary condition is imposed, the "free" boundary p may not occur. For example,
if K' — {v | v £ H'(0, 1), v(0) = 1, v(l) = 0, v > 0 a.e. in (0, 1)}, then the solution
of (2.3) is

u{x) = 0.5(.r — 1.5)2 — 1/8 > 0 in (0, 1).

Now we note the existence theorem of variational inequalities following Lions and
Stampacchia [3]. Let PK be the Riesz's projection map from H onto K, (■, ■) an inner
product on H.

Lemma 1. (a) u = PKf is equivalent to (b) (u — j,v — u) >0 for V v £ K.

Theorem 1. (c) u £ K is a solution of

u = PK(u — t(Au — /)), t > 0 (2.7)

is equivalent to (d) u £ K is a solution of

(Au — /, v — u) > 0 for V v £ K. (2.8)

Furthermore, if A is linear, coercive, and continuous on H, i.e. there are positive constants
M and m such that

{Au, v) < M | |w| | | H |

(Au, u) > m |\u\|2

for every u, v in H, then the operator T: Tu = PK(u — t(Au — /)) is a contraction map
on H for constants 0 < t < 2m/M2. This means that there exists a unique solution u
in H of (2.8).

Proof. The equivalence (c) and (d) is obvious from Lemma 1. Since \ \PKu — PKv|| <
||u - i>||,

112'm, — Tu2 || < («i — u2 — t(Aui — Au2), u, — u2 — t(Aut — Au2))

< (1 — 2mi + M2t2) ||Ui — m2||2.

Thus, if 0 < t < 2m/M~, 0 < 1 — 2m t + M2f < 1. This means that T is a contraction.
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Remark 1. Here we assumed that A is linear, but A is not necessarily linear. In
fact, if there exist constants m and M such that

(Au — Av,u — v) > m \\u — y||2

(Aii — Av, ii-) < M \ \u — v\\ ||t«||
for u, v and iv in H, then the same conclusion in Theorem 1 is valid.

Remark 2. The equivalence between (c) and (d) suggests that we can solve Eq.
(2.7) instead of the inequality (2.8). When PK = 1, the scheme of (2.7) is called the
method of steepest descents. That is, the solution u can be obtained by the iteration

u(n+1) = PK(uU) - t(AuM - /)). (2.9)

Note that if K = \v \ v £ H, Mv > y a.e. in $2} where g is some given function and At is
operator, then the projection map is, roughly speaking, considered as

PK(v) = Max {v, M~lg\. (2.10)

In variational inequalities, the regularity of solutions is much complicated since
the constraint conditions are imposed. About this subject there is a remarkable work
by Brezis [12], We state here his theorem:

Theorem 2 (Brezis). Let C be a closed convex subset of L2(Q) and L a closed convex
subset of a Hilbert space V. Pc denotes the projection map of L2(0) onto C. Suppose
that (i) PC(L) C L, (ii) there exists a positive constant C, such that, for every v £ L,
(Av, v — Pcv) > —Ct ||i> — PcHU.tti) > (iii) there is a unique solution u £ H2(Q) r\ L of,

(Au — /, v — u) > 0, V v £ L

for / £ L2(Q). Further,

iMiwvm ̂  c,(n/[u.<0> + c2).
Then, for every / £ L2(fi), there exists a unique solution u £ //2(0) C\ C L of

(Au — f, v — u) > 0, V v £ C L
and

INUmq) < C3(2 ||/||l.(o, + c, + c2). (2.11)
Example 2. Let's consider the problem (2.3), i.e.

u £ K\ f \u„(v — u),t + (v — u)\ di > 0 for V v £ K
Jo

where K = {v \ v £ H'(0, 1), w(0) = 0.25, w(l) = 0, v(x) > 0 in (0, 1)}. Since there is
/ £ H2(0, 1) such that /(0) = 0.25 and /(1) = 0, (2.3) can be changed as follows: find
w £ K' such that

fJo
{w,x(v - iv),x + (1 - f,XI)(v - ?o)| dx > 0, Vt£ K' (2.12)

where K' = {v \ v £ H01(0, 1), v(x) > —j(x) a.e. in (0, 1)). Now we apply Theorem 2.
Let C = K, L = V = //„1 (0, 1). Then, clearly PK(L) £ L. Since PKv = sup {?», —/}
and v — PKv — —sup {0, — v — /},
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dx

nl

dx

f v,r(v - PKv),x dx = - f vsup {0, -»-/},
Jf> •/()

= [ (~f-v),zsup{0, -v-f)„dx+ f /,,sup {0, -v - f\„
Jo Jo

- —f0 ~ PkV)» = / f„„(v - PKv) dx

> ||/,«|U,(0) Ik P *rf | U,( B) •
Moreover, by the regularity of boundary-value problems, there exists w £ //./(O, 1) H
tf2(0, 1) of

[ {w,r(v - w)„ + (1 - /,„)(» - w)S dx > 0, V»G „'(<>, 1);
•'O

that is,

f {w,xV,x + (1 - /,„)} dx = 0, V V E Wn'(0, 1)

and

IIHUmo.d < C(l|l ~~ /)ir|U,<B>)-
Therefore, (2.12) has a unique solution w £z K' H0\0, 1) C\ H'(0, 1) such that

||w||h«(0) < 3C ||/,ii||i,(Q) . (2.13)

2.2 Approximation theory. Let Hh be a finte-dimensional subsapce of II with basis
{&},•-/' constructed by finite-element methods. Let us define the approximated closed
convex subset Kh by Kh = K C\ Hh . Suppose that Kh^> K and Hh —* H as h —> 0, where
h is the mesh parameter of finite elements.

Lemma 2. Let u and U be solutions of

(Au — /, v — u) > 0 for V v £ K (2.14)
and

(AU - /, V - U) >0 for V V £ Kh (2.15)
respectively. Then

(Au - f,V - u) > (Au - AU, V - U)
for every

Proof. (Au - f,V - U) = (AU - /, F - U) + (Au - AU,V - U). By (2.15),
(Au - f,V - U) > (Au - AU,V - U). (2.16)

Since U £ K,

(Au -f,U- u) > 0 (2.17)
by (2.14). Add (2.16) and (2.17):

(Au - /, V. - u) > (Au - AU,V - U)
Suppose that L is a dense Hilbert space in II.
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Theorem 3: Let u and U be solutions of (2.14) and (2.15), respectively. If A is
linear, coercive and continuous, then there exist m and M such that

I/2 o
IIU - t/||„2 < IIu - F||„2 + AuII, Hit - F||, (2.18)

for every V £ Kh .
Prooj. Since A is coercive, there is a positive constant m such that

m ||m — U||/,2 < (Au — AU,u — U)

= (Au - AU, u - V) + (Au - AU, V - U).
By Lemma 2,

m \\u — U11< (Au — AU, u — V) + (/ — Au, u — V).
By continuity of A, there is a positive constant M such that

m \\u — t/||2 < M ||u - U\\„ |\u - V\\„ + (f - Au, u - V)

< f In - u\W + f£ fV - r||„2 + ||/ - Auiu ||U - v\\L
The approximation error above is bounded only by norms of u — V, V (E Kh . Then,

in order to get the error estimates, it is not necessary to make any special consideration
except interpolation properties of functions. Thus, we specify interpolation properties
to accomplish the error estimates.

For this purpose we introduce the Shk' '"-family as an approximation space of II.
The S/'"-family has the following properties:

(a) Skk" C Hm(U).
(b) (P*(J2) C fi),k'where (\\(9.) is the space of polynomials of degree < k on 9..
(c) For every u (E Hr(il) and 0 < s < min {m, r j, there exist mi (E Shk'm and

positive constant C, independent of u and h, such that

||m - 7rw||„.(a) < Ch° ||M||//r(U) , <J = min {k + 1 - s, r - sj. (2.19)

Suppose that the approximated space //, is a member of the Shk' '"-families. Then,
Hh —> H as h —» 0 and Hh has the interpolation property. However, Kh is a problem in
variational inequalities. That is, construction of Kh as K A IIbecomes a serious problem.
We see this by considering an example.

Example 3. Let us consider the approximation of the problem (2.3). Suppose that
Hh is a member of S,',1. Then Kh can be constructed as

Kh = {F | V = E F>, , F1 = 0.25, F'v = 0, F' > 0).
V = 1

Clearly, Kh = K C\ Hh . However, if IIh is a member of <SA21, then the above construction
does not satisfy Kh C K. That is, if F* = a > 0, F, + 1 = 0, and F,+2 = 0, then in the
interval (i + 1, i + 2), F <0. Here, we consider only Lagrange interpolation-type finite-
element methods. The underlying explanation is only for linear finite-element approxima-
tions. As shown in Example 2, (2.3) has a unique solution u £ H\0,1) C\ K. For the same
reason, the approximation problem of (2.3) has a unique solution U in Kh. Using Theorem
3, we can get the following approximation error:
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M2 9
\\u — f/| Ihuo.d < ~2 | \u — F||//.(0,]) + ~ 11/ Au 111. (O. i) | |m — F|U,(0,|) ■

By the interpolation property (2.19) with k = 1 and r — 2,

| \u *u||//i(o,i) ^ CA ||w||//"(o,i) >

I \u iru\ |/,,((>,1) ^ I jw| |//a (0, 1) •

Therefore,

IIU - t/|r„.(0.„ < c(~ MttfU.co.o2 + ~ 11/ - Au\\,.,<a,u UmIIhmo.d)^2.

That is, \\u — f/||„.(0.i)J = 0(h). Thus, we get the same rate of convergence as varia-
tional boundary value problems.

The numerical experiment by the author shows the above result exactly; cf. Fig. 1.

3. Seepage flow problems with finite-element methods. As an example of varia-
tional inequalities, we will consider seepage flow through a porous medium. This kind
of treatment has been deeply studied by Baiocchi [5, 6, 7] and others. Here it suffices
to work the simplest case of Baiocchi's studies for our purpose so that we may unify the

10"2

10 3

10 4

10 5

_j L_
.01 .05 .1

Fig. 1. Numerical results of error estimates for one-dimensional problem.



156 NOBORU KIKUCIII

method of applications of variational inequalities. Then we discuss why the special
transformation introduced by Baiocchi is necessary to formulate the variational inequal-
ity. After the formulation we compare the numerical results of this problem with the
usual iterative method to get the free surface introduced by Taylor [11].

Assume that the porous medium is isotropic and homogeneous, and the flow is
stationary, irrotational and incompressible. Then the seepage flow is formulated by
the continuity equation and Darcy's law as

d2u/dx* + d2u/dif = 0 in fi (3.1)

where u is the piezometric head. As in Fig. 2, let 4>(x) be the free surface which is unknown
a priori. In the usual sense, the boundary conditions are

u = y i on AE, u = y2 on CB, — = 0 on AB, (3.2)

u = <t> (x) on 'EDC, ^ = 0 on ED. (3.3)
Oil

Theorem 4. Let the pair |u, 0} be the solution of the problem (3.1)—(3.3); then
for 0 < x < a the integral

rj(-r) = £" fx U, t) dt (3.4)
exists and is constant.

Proof. Since u satisfies (3.1),
<»a r*<t> (i)

0 = / / Vm- Vv dx
•'o Jo

for every v £ Co°(0„), = (0, a) (x) (0, 4>(x)).
Since v(x, y) G C',," (12,,) can be decomposed by

v(x, y) = s(x) -l(y)

where S(x) G Co"(0, a), and l(y) is a "constant" distribution on (0, <t>(x)). Then

o'-nir fx,iy]^)c'x-

O C 3

Fig. 2. Domain for Theorem 4.
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Thus, in the sense of distribution,

„ d r*"}du, . r*(Jl du
0 = d-xJa Txdy> le- I 3x const.

Note that the above theorem is only valid when the impermeable foundation is
horizontal or at least straight.

Now, we first consider the simplest case: the cross-section of the porous medium is
a rectangle, as shown in Fig. 3. Using the special transformation introduced by Baiocchi

Fig. 3. Domain for Lemma 4 and Theorem 5.

w(x, y) = f (u(x, 0 - t) clt for (/, y) G il
«'1/ (3.5)

= 0 for (x, y) G D/0,

where D — the domain of the rectangle ABFE, we can get the following Lemma 3:

Lemma 3. Let the pair {u, 4>) be the solution of the problem (3.1)-(3.3). Then

(1) w(x, y) > 0 a.e. in D and iv{x, y) G HX(D)\ (3.6)

(2) w(x, y) = g{x, y) on 3D, where g = %{y, - yf on AE,

(I = 4(2/2 - V? on BC, a = 42/,2 - ^ (</,2 - y22)x on AB,

and g = 0 on EFDC. (3.7)

(3) [ VwVtdxdy+ [ f dx dy = 0 for V i G Ha\D) (3.8)
J D J B

Proof. (1) Since m(x, y) > y in 0, w(x, y) > 0 and m(z, j/) G w(x, y) is defined
by (3.5). Furthermore w(x, y) is continuous and the first derivatives of w(x, y) are piece-
wise continuous; then w(x, y) G H\D).

(2) Using Theorem 4, we can get, by simple calculation,
(3) Since t(x, y) G H0\D), i)(x, y) = \p(x, t) dt G H„\D), then
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J Vw-Vidrdy = J Vw-Vtdxdy = - J v(^)-V>? ds dy

f Vm- Vi; rf/ fty — [ ~~ dx dy = — [ \p dx dy.
J n J a oy J n

Note that condition (1) is the essential property to formulate by the variational
inequality. First, w(x, y) > 0 means that in the fixed domain w(x, y) is greater than
zero or equal to zero. More precisely, if iv(x, y) > 0 then (a:, y) G 52; if v:(x, y) = 0 then
(x, y) G t>/&. Second, iv(x, y) belongs to //'(D), that is the value w(x, y) and its first
derivatives are piecewise continuous in D. This means that we can naturally extend
u(x, y) defined only in an unknown 12 to w(x, y) defined in the fixed domain D without
any problems which we may face at the time of the formulation in the variational form.
If iv(x, y) or its first derivatives have discontinuity on the unknown surface ED, some
"unknown" terms will appear in the variational form (3.8). Thus, in order to extend
the unknown domain to the fixed known domain, the variable should be extended as
maintaining the continuity of the variable itself and its first derivatives in the second-order
differential equations. This means that if we can find the transformation which preserves
the "continuity", then we can extend the problem by this transformation. For example,
the transformation

z(s> if) — f (u(-r> 0 ~ 0 dt in 0
(3.9)

= z(x, 4>(x)) in D/il

also satisfies the "continuity" condition explained above, i.e. if u(x, y) G //'(O), then
z(x, y) G Hl(D). For details of this transformation, see Baiocchi [7],

Therefore, from Lemma 3, we can formulate the seepage flow by variational inequal-
ities as follows:

Theorem 5. If the pair {u, 0| is the solution of (3.1)—(3.3), then the following
variational inequality is established:

w G K: f V»»- V(»» — w) dr dy + f (v — w) dx dy > 0 (3.10)
J i> J n

for all v G K, where K = \v \ v G H1 (S2), v\BD = g, v > 0 a.e. in D\.
Furthermore, as explained in Examples 1 and 2, the solution w of (3.10) gives the

solution u of (3.1)—(3.3), that is, the problem (3.1)-(3.3) is exactly equivalent to the
variational inequality (3.10). Thus, after obtaining the solution w of (3.10), we find

ft = \{x,y) G D: w(x, y) > 0)

<t>(x) = Min {/: w(x, t) — 0, 0 < x < a|
y 9 < I < v i

(x, y) at D:yD = lim 4>(a — e) (3-^1)
*—♦0

dw .U = y — — in n.dy

Then, applying the technique cited in Remark 2, we can calculate the variational
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inequality of (3.10) by iteration. More precisely, after approximation by the linear
finite element method, the iteration is defined by:

Algorithm 1. (1) Select an arbitrary set of elements W{0) which belongs to Kh
(possibly TFo) = 0).

(2) W,l + nk = max {o, Wu)" - p(xj KkiW{t + lj + £ KkiWuj - (3.12)

where

Kki = I V4>i, V<t>, dx dy, Fk = - j <f>t dx dy
«'o Jd

and {</>,},.i'v is basis of Sh .
(3) The recurrence formula (3.12) is applied successfully until covnergence is

obtained.
In this case, we can get the approximation error e = w — W as

IMIwto = 0(h) and ||e||t,(D) = 0(112), (3.13)

as shown in Example 3.

• saturated nodal point

////i/A//> /A./A/A//Q/A

4a. Free surface by variational 4c. Free surface by Taylor's method
inequalities (element 2 X 5 X 5). (element 2X3X3).

4b. Free surface by variational in- 4d. Free surface by Taylor's method
equalities (element 2 X 10 X 10). (element 2 X 5 X 5).

Fig. 4.
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Now we describe the numerical test of the variational inequality. For comparison
with this method we use Taylor's method [11] to determine the free surface using itera-

tion of domains satisfying the condition du/dn — 0 for the free surface EDC. This

convergence can be determined by the condition u(z, y) = y on EDC. Then we can
conclude the following:

(1) The method of variational inequalities gives a very rough free surface if the
number of meshes is small (Fig. 4). In order to get a suitable smooth surface (Fig. 5),
it needs more than ten times the number of Taylor's method. However, in Taylor's method,
the system of linear equations has to be solved several times to get convergence. In the
method of variational inequalities, it is not necessary to solve the system of linear
equations more than one time.

(2) The method of variational inequalities can determine the seepage point D

/A/a //i_ // //-i. // $//*. / A 77H //o

V

/-/i//S> r/s, //i //c^

Fig. 5. Free surface by variational inequalities (element 2 X 20 X 40).
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(cf. Fig. 3) without ony special considerations. However, Taylor's method needs some
special considerations (see [11]).

(3) Taylor's method has no guarantee of convergence, but the method of variational
inequalities does.

According to the numerical experiment by the author, the method of variational
inequalities is not so powerful from a numerical viewpoint. From the theroetical view-
point, however, this method suggests many things to us. For example, we can treat
ambiguous conditions precisely using this theory. This means that almost all free bound-
ary problems can be formulated by the variational inequalities within the rigorous
theory. The possibilities of applications for mechanics are discussed by Duvaut and
Lions [1].

//^ //i //o ///> //d//o/av/o //$.//$.

Fig. 6a. Free surface by variational inequality (3200 finite elements).
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N
N\K

//^ // i_//i //x!/ / 3_//i /) i / AV/i // -i//-s //-l //-a s/-2

_2_

//±//\ /A//c //V/ai /Vo/*//A//i//^/v/i//^//\N

Fig. 6b. Free surface by variational inequality (3200 finite elements).
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