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Abstract—The two-inductor boost converter has been previ-
ously presented in a zero-voltage switching (ZVS) form where
the transformer leakage inductance and the MOSFET output
capacitance can be utilized as part of the resonant elements.
In many applications, such as maximum power point tracking
(MPPT) in grid interactive photovoltaic systems, the resonant
two-inductor boost converter is required to operate with vari-
able input output voltage ratios. This paper studies the variable
frequency operation of the ZVS two-inductor boost converter to
secure an adjustable output voltage range while maintaining the
resonant switching transitions. The design method of the resonant
converter is thoroughly investigated and explicit control functions
relating the circuit timing factors and the voltage gain for a 200-W
converter are established. The converter has an input voltage of
20 V and is able to produce a variable output voltage from 169 V
to 340 V while retaining ZVS with a frequency variation of 1 MHz
to 407 kHz. Five sets of theoretical, simulation and experimental
waveforms are provided for the selected operating points over
the variable load range at the end of the paper and they agree
reasonably well. The converter has achieved part load efficiencies
above 92% and an efficiency of 89.6% at the maximum power of
200 W.

Index Terms—Two-inductor boost converter, variable frequency
control, zero-voltage switching (ZVS).

NOMENCLATURE

Resonant capacitance.

Converter input source voltage.

Device switching frequency, one
half of the converter frequency.

Converter frequency.

Maximum converter frequency.

Minimum converter frequency.

Ratio of the average of the
absolute resonant inductor
current to the average input
inductor current in Regions 1
and 2 without the dependent
variable.
Ratio of the average of the
absolute resonant inductor
current to the average input
inductor current in Regions
1 and 2 with the dependent
variable.
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Supplemental functions defined
in the circuit constraint in
Region 1.
Supplemental functions defined
in the circuit constraint in
Region 2.
Resonant inductor current.

Average input inductor current.

k Load factor.

Resonant inductance.

Control functions in Regions 1
and 2.

Transformer turns ratio.

Load resistance.

Resonant capacitor voltage.

Converter output voltage
reflected to the transformer
primary winding.

Converter output load voltage.

Peak switch voltage.

Characteristic impedance of the
resonant tank.
Delay angle.

Characteristic angular frequency
of the resonant tank.

Timing factor.

I. INTRODUCTION

T
HE two-inductor boost converter was developed by ap-
plying the duality principle to the half bridge converter and

is classified as a boost derived converter [1]. As the converter
has a lower switch conduction loss and a full utilization of the
transformer, it has found intensive applications where low input
voltages are required to be converted to high output voltages
such as grid interactive photovoltaic (PV) converters and unin-
terrupted power supplies [2]–[7].

In order to minimize the size of the converter design, high
switching frequencies are preferred. However, one significant
barrier to this approach is the switching loss in both the pri-
mary side MOSFETs and the output rectifier diodes. As the
switch voltage is at least twice the converter input voltage and
the switch current provided by the PV source is normally high,
the switching loss contributes to a moderate proportion of the
total power loss in the converter. Moreover, the existence of the
transformer leakage inductance causes the switch voltage to ex-
ceed twice the input voltage at turn-off in the hard-switched im-
plementations. Hard switching also produces hard recoveries in
the output rectifiers. Often these will be 600-V devices and care
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Fig. 1. ZVS two-inductor boost converter.

must be taken to ensure that reverse recovery losses do not pro-

duce thermal runaway failures.

To combat with the high switching loss under high switching

frequencies and actively utilize the parasitic components, the

resonant two-inductor boost converter has been developed as

shown in Fig. 1 [8]. The resonant converter employs additional

inductance in series with the transformer primary winding and

additional capacitance in parallel with the MOSFETs. The trans-

former leakage inductance and the MOSFET output capacitance

can be absorbed into the resonant tank and the zero-voltage

switching (ZVS) condition can be achieved. The MOSFETs turn

on at zero voltage and the turn-on switching loss can be com-

pletely removed. Moreover, the additional resonant capacitance

is much larger than the MOSFET output capacitance and this re-

sults in a much smaller across the switch at turn-off. The

switching conditions for the output diodes are far less stressful

in terms of both and reapplied . Therefore, higher

efficiencies can be obtained under high switching frequencies.

Further size reduction of the resonant two-inductor boost con-

verter can be achieved by the magnetic integration approach [9].

The ZVS two-inductor boost converter is well suited to the

voltage boosting dc-dc conversion in PV converters [10]. Most

often, maximum power point tracking (MPPT) is needed in PV

systems and the converter is required to produce variable input

output voltage ratios [11]. It has been proposed that the variable

frequency control technique can be applied to the resonant con-

verters to cater for different load conditions and maintain the

resonant conditions [12]–[15].

In this paper, the variable frequency operation of the reso-

nant two-inductor boost converter is studied. Two operational

regions are identified under different combinations of the circuit

parameters including the load factor, the timing factor and the

delay angle. For each region, surfaces relating the transformer

primary voltage to the circuit parameters are presented. A full

set of design equations is provided for each operating region and

explicit control functions are obtained numerically through the

MATLAB program.

II. VARIABLE FREQUENCY OPERATION

The resonance of the converter can be analysed using the

equivalent circuit shown in Fig. 2. is the effective resonant in-

ductor and and are the effective resonant capacitors.

and are embedded reverse body diodes of the MOSFETs.

The current source models or . The voltage source

is the output voltage on the capacitor reflected to the trans-

former primary winding and the diode D corresponds to the

diodes in the full bridge rectifier. The arrangement for and

in Fig. 2 assumes a positive resonant inductor current as

illustrated and their polarities reverse when the inductor current

becomes negative. Three important parameters are illustrated in

Fig. 2. Equivalent resonant circuit.

Fig. 3. Resonant waveforms of one operation mode: (a) capacitor voltage and
(b) inductor current.

the resonant waveforms of one operation mode shown in Fig. 3.

They are, respectively, as follows.

• The timing factor , which determines the initial resonant

inductor current 0 when the MOSFET

turns off or 0 when the MOSFET turns

off. The initial inductor current is zero in the operation

mode shown in Fig. 3.

• The load factor , defined by the equation ,

where is the characteristic

impedance of the resonant tank made up by the resonant

inductor and capacitors.

• The delay angle , defined as the angle between the in-

stant when the resonant inductor current reaches zero and

the instant when the corresponding MOSFET turns off,

which respectively corresponds to and in Fig. 3.

It can be found that , where is the

characteristic angular frequency of the resonant tank.

It has been reported that different timing factor or delay

angle and load factor values may result in either the contin-

uous or discontinuous operation modes of the resonant two-in-

ductor boost converter [16]. Different operation modes lead to

different average values of the absolute resonant inductor or

the transformer primary current and therefore different output

powers. Therefore the operation of the resonant two-inductor

boost converter under variable load condition can be realized by

varying the timing factor or the delay angle and the load factor,

and thus the device switching frequency. Under the variable fre-

quency control, the ZVS condition is maintained.

III. DESIGN EQUATIONS AND CONTROL FUNCTIONS

It is established that the ZVS two-inductor boost converter

has two operational regions: Region 1 where 0 and

0 rad and Region 2 where 0 and 0 rad. It is

required that 1 to maintain ZVS conditions in both regions.
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As the output voltage is higher when 0 rad, the discussion

on the design equations and the control function in Region 1

will be given first. The analysis of the Region 2 operation is

similar and will be given briefly in due course.

A. Design Equations

In order to design the converter parameters such as or

and the transformer turns ratio n in Region 1, and must

be given initially. The design equations are

(1)

(2)

(3)

(4)

where is the input source voltage, is the output load

voltage and is the load resistance. Function is

the ratio of the average of the absolute current in the resonant

inductor or the transformer primary to and is determined

by two independent variables, and . From (1)–(4), if ,

and are also known, and can be solved. If

the device switching frequency is determined, the resonant

inductance and capacitance or can be duly obtained

from (5) and (6)

(5)

(6)

B. Control Function

After the values of or and are calculated through

the design equations, the load factor is no longer an indepen-

dent variable deciding or . Then (2) should be rewritten

by replacing with as in (7), where the depen-

dent variable is removed

(7)

Dividing (7) by (1) and solving for yield

(8)

Equation (8) relates the transformer primary voltage to the

delay angle and can be used as the control function for the

ZVS two-inductor boost converter if function is solved

analytically or numerically. However, function cannot

be solved directly. An indirect method is to maintain the load

factor as a variable initially in (8) as

(9)

and then to eliminate it by applying the inherent circuit con-

straint obtained through (1)–(4)

(10)

Equation (10) is used to find the inherent relationship between

and in order to remove the dependent variable from (9).

By defining two supplemental functions to be

(11)

(12)

(10) can be simplified as

(13)

The two functions in (11) and (12), respectively, represent a

surface in a 3-D space with and as two orthogonal axes.

As the analytical solution of function in (9)

contains the inverse trigonometric functions and presents a sig-

nificant level of complexity, the understanding of the physical

implication of the function becomes impossible. Therefore,

function is solved numerically by MATLAB program

against a range of and values through the state analysis

of the converter. The numerical relationship of and can

be established by the intersection curve of the two surfaces

defined by (11) and (12). The result is then back substituted to

(9) to remove the dependent variable and derive the control

function in the numerical form. Then the control function can

be accurately approximated by polynomial fitting if a simple

analytical function is desired.

The state analysis for Region 1 operation is provided in

Table I. Before turns off, both of and are closed. At

time 0 turns off and the converter will move through

three states before turns off [16]. The equations for the

capacitor voltage and the inductor current in each state

are listed in Table I.

A result related to the device switching frequency can be ob-

tained from the state analysis in Region 1 as

(20)

By performing state analysis with the MATLAB program,

function can be calculated and in Region 1

can be drawn as a surface in Fig. 4 according to (9) when

0 10 rad and 1 10. A theoretical maximum peak

switch voltage of 160 V is allowed in the design in order to

employ MOSFETs with reasonable drain source on resistances

[17]. From (3) and (16), the peak switch voltage is

(21)

The surface is drawn in Fig. 5 in order to determine

the initial set of the design values for and k. Theoretically,

the point corresponding to the initial values of and for the

maximum output voltage of 340 V can be selected anywhere

on the surface where 160 V. However, to obtain a

reasonable range of the converter output voltage in Region 1
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TABLE I
REGION 1 STATE ANALYSIS

Fig. 4. Surface V in Region 1.

Fig. 5. Surface V in Region 1.

operation, the initial value of should be selected moderately

larger than zero and that of should be selected moderately

larger than 1.

An initial set of design parameters can thus be selected to be

2.0 rad and 2.10. Other parameters used are

Fig. 6. Surfaces h (� ; k) and h (� ; k).

20 V, 340 V and 576 . By performing the state

analysis shown in Table I, the set of the design equations given

by (1)–(4) can be solved and the calculation results are:

• 5.0A;

• 0.778;

• 51.42 V;

• 6.61;

• 21.6 .

The circuit constraint in (13) is now applied and the surfaces

and defined in (11) and (12) are drawn

together in Fig. 6. The intersection curve determines the re-

lationship between and , which is substituted to the control

function in (9). Through polynomial fitting, the control function

can be found as

(22)

The control function is drawn in Fig. 7. When

reaches zero, Region 1 operation ends and Region 2 operation

starts. At this point, 0 rad, 1.71 and 41.62 V.
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TABLE II
EQUATIONS IN REGIONS 1 AND 2

Fig. 7. Region 1 control function M (� ).

C. Region 2 Operation

The analysis of the design equations and the control function

in Region 2 is similar to that in Region 1. The equations in Re-

gion 2 share the same format of their counterparts in Region 1

except that the variable needs to be replaced by and the

subscript by to maintain the nomenclatural clarity and con-

sistency. To make this rule clearer, Table II lists the pairs of the

equations, which have different variables and subscripts, in the

two regions. The state analysis of the converter operating in Re-

gion 2 is given in Table III. It is worth mentioning that State (b)

shown will be bypassed if the initial resonant inductor current in

State (a) is high enough to cause the resonant capacitor

voltage at the end of State (a) to exceed [16]. In this

case, .

Fig. 8. Surface V in Region 2.

A result related to the device switching frequency can be ob-

tained from the state analysis in Region 2 as

(39)

From (3) and (35), the peak switch voltage is

(40)

Fig. 8 shows the surface given in (26) when 0 2

and 1 10. Fig. 9 shows the surface and it can

be visualized that the peak switch voltage is well below 160 V

when 1.71. The surfaces and in
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TABLE III
REGION 2 STATE ANALYSIS

Fig. 9. Surface V in Region 2.

(28) and (29) are drawn together in Fig. 10. The intersection

curve determines the relationship between and , which

is substituted to (26). Through polynomial fitting, the control

function can be found as

(41)

The control function is drawn in Fig. 11. As a safety

margin for the load factor is preferred, Region 2 operation

ends when 2 and 1.05. At this point, 25.52 V.

D. Converter Design

The converter frequency needs to be selected against the two

border operating points listed in Table IV and they are obtained

from the analysis of the converter operations in both Regions 1

Fig. 10. Surfaces h (� ; k) and h (� ; k).

and 2. According to Table IV, the converter presents the highest

switching frequency when 2.0 and 1.05 and this is

selected to be 1 MHz. Therefore, the characteristic

angular frequency of the resonant tank can be solved from

(39), the converter frequency when 2.0 rad and

2.10 can be solved from (20), the resonant inductance can be

solved from (5) and the resonant capacitance or can be

solved from (6). The calculation results are:

• 4.09 Mrads ;

• 407 kHz;

• 5.28 H;

• 11.32 nF.

For the above converter parameters, the output voltage ranges

between 169 V and 340 V if the converter frequency is adjusted

between 1 MHz and 407 kHz. The soft-switching conditions

over the entire operating range are maintained.
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TABLE IV
TWO BORDER OPERATING POINTS

Fig. 11. Region 2 control functionM (� ).

Fig. 12. Point 1—Theoretical waveforms.

E. Summary

As discussed above, the design procedures of the ZVS two-in-

ductor boost converter under variable frequency operation can

be divided into three steps—the design of the converter oper-

ating at the rated output voltage in Region 1, the analysis of the

converter operating in both Regions 1 and 2 and the calculation

of the converter frequency and the resonant elements. The first

step includes the following tasks.

• Determine the MOSFET voltage rating and draw the peak

switch voltage surface given in (21) by performing the state

analysis with the rated output voltage and power for a range

of and values through (14) and (19).

• Select the circuit parameters including and which

fulfil the switch voltage requirement. In order to obtain a

reasonable output voltage range, needs to be selected

to be moderately larger than zero, (2.0 in this case), and

Fig. 13. Point 1—Simulation waveforms.

Fig. 14. Point 2—Theoretical waveforms.

needs to be selected to be moderately larger than 1, (2.10

in this case).

• Solve the design equations given by (1)–(4) and obtain the

transformer turns ratio.

The second step includes the following tasks:

• Draw the two surfaces given in (11) and (12) by performing

the state analysis in Region 1 for a range of and values

through (14) and (19) and the two surfaces given in (28)

and (29) by performing the state analysis in Region 2 for a

range of and values through (31) and (38).

• Establish the control functions given in (22) in Region 1

and (41) in Region 2 through the corresponding intersec-

tion curves.

• Identify the two border operating points.

The last step includes the following tasks:

• Select the maximum converter frequency.

• Calculate the angular resonance frequency from (39) and

the minimum converter frequency from (20).

• Calculate the resonant inductance and capacitance from (5)

and (6).
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Fig. 15. Point 2—Simulation waveforms.

Fig. 16. Point 3—Theoretical waveforms.

Fig. 17. Point 3—Simulation waveforms.

IV. THEORECTICAL AND SIMULATION WAVEFORMS

Figs. 12–21 show the theoretical and the simulation wave-

forms for five selected operating points listed in Table V. The

converter frequency is twice the device switching frequency

. The theoretical waveforms are generated by plotting the de-

vice waveforms according to (14)–(19) or (31)–(38) and the

simulation is performed with SIMULINK.

V. EXPERIMENTAL WAVEFORMS

A prototype 200-W resonant two-inductor boost converter

was built in the laboratory as shown in Fig. 22. The main com-

ponents used in the ZVS two-inductor boost converter are listed

as follows.

Fig. 18. Point 4—Theoretical waveforms.

Fig. 19. Point 4—Simulation waveforms.

Fig. 20. Point 5—Theoretical waveforms.

Fig. 21. Point 5—Simulation waveforms.
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TABLE V
FIVE SELECTED OPERATING POINTS

Fig. 22. Prototype 200-W resonant two-inductor boost converter.

• Inductors and —Core type Siemens RM10 with

0.21-mm air gap in the centre pole, 400 nH, ferrite

grade Siemens N48, inductor winding 13 turns.

• Transformer T—Core type Ferroxube ETD29, gapless, fer-

rite grade Ferroxube 3F3, primary winding 6 turns,

secondary winding 40 turns, leakage inductance re-

flected to the transformer primary 0.25 H.

• Additional Resonant Inductor—Core type Ferroxube

ETD44 with 1.6-mm air gap in the centre core leg, ferrite

grade Ferroxube 3F3, inductor winding five turns,

4.90- H inductance.

• Additional Resonant Capacitors—Cornell Dubilier surface

mount mica capacitor MC22FD102J, 1 nF, 11 nF capaci-

tance in parallel with each MOSFET.

• MOSFETs and —Fairchild FQB34N20,

200 V, 31 A, 0.06 0.43 nF.

• Diodes to —ST STTA106U, 1.0 A,

600 V, 1.5 V.

• Capacitor —Philips MKP capacitor, 1 F.

The experimental waveforms of the five individual operating

points listed in Table V are, respectively, given in Figs. 23–27.

From top to bottom, the waveforms are, respectively, the

MOSFET gate voltage, the resonant capacitor voltage and

the resonant inductor current. The experimental waveforms

agree reasonably well with the theoretical and the simulation

waveforms. Table VI lists the converter output voltages of

the individual operating points in the theoretical analysis, the

Fig. 23. Point 1—Experimental waveforms.

Fig. 24. Point 2—Experimental waveforms.

simulation results and the experimental results. The converter

efficiencies under different operating points or load conditions

are shown as the solid line in Fig. 28.

For comparison, a hard-switched two-inductor boost con-

verter was also built in the laboratory. The transformer employs
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Fig. 25. Point 3—Experimental waveforms.

Fig. 26. Point 4—Experimental waveforms.

a low-leakage design where the primary and the secondary

windings are interleaved [18]. No voltage clamping or snubber

circuit is included in the hard-switched converter design there-

fore the MOSFETs with the same voltage rating in the ZVS

converter are used. If voltage clamping or snubber circuit is

employed, MOSFETs with low-voltage ratings can be used

[19]. However, the low switch conduction loss is gained at

the cost of the additional loss in voltage clamping or snubber

circuit. The hard-switched converter operates under a converter

frequency of 407 kHz and the switching duty ratio is slightly

greater than 50%. The converter efficiencies under a range

of load conditions are shown as the dashed line in Fig. 28. It

can be seen that under the rated power, the efficiency can be

increased by 1% or the power loss can be reduced by 2 W in

the ZVS two-inductor boost converter.

Under the fixed output voltage and load condition, the con-

verter frequency increases when the input voltage increases. The

first line of Table VII and Fig. 29 show the result of increasing

the input voltage to 25 V for the maximum converter load. From

top to bottom, Fig. 29 shows the experimental waveforms of the

Fig. 27. Point 5—Experimental waveforms.

Fig. 28. Converter efficiency.

Fig. 29. Converter experimental waveforms under input voltage variation.

MOSFET gate voltage, the resonant capacitor voltage and the

resonant inductor current.

Under the fixed input and output voltages, the converter

frequency increases when the load decreases. The second line
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TABLE VI
CONVERTER OUTPUT VOLTAGE UNDER EACH OPERATING POINT

TABLE VII
INPUT VOLTAGE AND OUTPUT LOAD VARIATIONS

Fig. 30. Converter experimental waveforms under output load variation.

of Table VII and Fig. 30 show the result of decreasing the

load to 150 W for a fixed input voltage. From top to bottom,

Fig. 30 shows the experimental waveforms of the MOSFET

gate voltage, the resonant capacitor voltage and the resonant

inductor current.

VI. CONCLUSION

This paper studies the variable frequency control of the ZVS

two-inductor boost converter based on varying the circuit pa-

rameters such as the timing factor or the delay angle . The

resonant converter operates with a variable input output voltage

ratio while maintaining the soft-switching conditions over a sig-

nificant load and voltage gain range. Under reasonable switch

voltage stresses, the converter is able to achieve four to one

range for load power variation and an output voltage range from

169 to 340 V. In these cases, the converter frequency varies be-

tween 1 MHz and 407 kHz. Further increases in the converter

output voltage range will increase the switch voltage stress. De-

sign approaches are presented which have been supported with

both simulation and experimental results.
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