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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This paper presents a framework for exploring 

issues in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtime-dependent planning: planning in 

which the time available to respond to predicted 

events varies, and the decision making required 

to formulate effective responses is complex. Our 

analysis of time-dependent planning suggests an 

approach based on a class of algorithms that we 

call anytime algorithms. Anytime algorithms can 

be interrupted at any point during computation 

to return a result whose utility is a function of 

computation time. We explore methods for solv- 

ing time-dependent planning problems based on 

the properties of anytime algorithms. 

Time-dependent planning is concerned with determining 

how best to respond to predicted events when the time 

available to make such determinations varies from situation 

to situation. In order to program a robot to react appropri- 

ately over a range of situations, we have to understand how 

to design effective algorithms for time-dependent planning. 

In this paper, we will be concerned primarily with under- 

standing the properties of such algorithms, and providing 

a precise characterization of time-dependent planning. 

The issues we are concerned with arise either because 

the number of events that the robot has to contend with 

varies, and, hence, the time allotted to deliberating about 

any one event varies, or the observations that allow us 

to predict events precede the events they herald by vary- 

ing amounts of time. The range of planning problems in 

which such complications occur is quite broad. Almost 

any situation that involves tracking objects of differing ve- 

locities will involve time-dependent planning (e.g., vehicle 

monitoring [Lesser and Corkill, 1983; Durfee, 19871, signal 

processing [Chung et al., 19871, and juggling [Donner and 

Jameson, 19861). S t t i ua ions where a system has to dynam- 

ically reevaluate its options [Fox and Smith, 1985; Dean, 

19871 or delay committing to specific options until critical 

information arrives [Fox and Kempf, 19851 generally can 

be cast as time-dependent planning problems. 

To take a specific example, consider the problem faced 

by a stationary robot assigned the task of recognizing and 

intercepting or rerouting objects on a moving conveyor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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belt. Suppose that the robot’s view of the conveyor is ob- 

scured at some point by a partition, and that someone on 

the other side of this partition places objects on the con- 

veyor at irregular intervals. The robot’s task requires that, 

between the time each object clears the partition and the 

time it reaches the end of the conveyor, it must classify the 

object and react appropriately. We assume that classifica- 

tion is computationally intensive, and that the longer the 

robot spends in analyzing an image, the more likely it is to 

make a correct classification. One can imagine a variety of 

reactions. The robot might simply have to push a button 

to direct each object into a bin intended for objects of a 

specific class; the time required for this sort of reaction is 

negligible. Alternatively, the robot might have to reach out 

and grasp certain objects and assemble them; the time re- 

quired to react in this case will depend upon many factors. 

One can also imagine variations that exacerbate the time- 

dependent aspects of the problem. For instance, it might 

take more time to classify certain objects, the number of 

objects placed on the conveyor might vary throughout the 

day, or the conveyor might speed up or slow down accord- 

ing to production demands. The important thing to note 

is, if the robot is to make optimal use of its time, it should 

be prepared to make decisions in situations where there is 

very little time to decide as well as to take advantage of 

situations where there is more than average time to decide. 

This places certain constraints on the design of the algo- 

rithms for performing classification, determining assembly 

sequences, and handling other inferential tasks. 

Traditional computer science concerns itself primarily 

with the complexity and correctness of algorithms. In 

most planning situations, however, there is no one cor- 

rect answer, and having the right answer too late is tanta- 

mount to not having it at all. In dealing with potentially 

intractable problems, computer scientists are sometimes 

content with less than guaranteed solutions (e.g., answers 

that are likely correct and guaranteed computed in poly- 

nomial time (Monte Carlo algorithms), answers that are 

guaranteed correct and likely computed in polynomial time 

(Las Vegas algorithms), answers that are optimal within 

some factor and computed in polynomial time (approxi- 

mation algorithms). While we regard this small concession 

to reality as encouraging, it doesn’t begin to address the 

problems in time-dependent planning. For many planning 

tasks, polynomial performance is not sufficient; we need 

algorithms that compute the best answers they can in the 

time they have available. 

Planning is concerned with reasoning about whether to 

act and how. Scheduling is concerned with reasoning about 
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when to act having already committed to act, and plays 

an important role in planning. In job-shop scheduling, if 

it is possible to suspend, and later resume, a job, then 

many otherwise difficult problems become trivial [Graham 

et al., 1977; Bodin and Golden, 19811. Such (preemp- 

tive) scheduling problems are somewhat rare in real job 

shops given that there is often significant overhead involved 

is suspending and resuming jobs (e.g., traveling between 

workstations or changing tools), but they are consider- 

ably more common with regard to purely computational 

tasks (e.g., suspending and resuming Unix processes). In 

many scheduling problems, each job has a fixed cost and 

requires a fixed amount of time to perform; spending any 

less than the full amount yields you nothing. In planning, 

we are interested in the computational tasks of deciding 

upon appropriate reactions. If the decision procedures for 

computing appropriate reactions are preemptible and pro- 

vide better answers depending upon the time available to 

deliberate, then the time-dependent planning problem is 

considerably simplified. In the next section, we examine 

this claim in more detail. 

2 Time- ent Planning 

Temporal notation: 

e a set of event types: I = {&I, E2, . . .). 

0 a set of time points: 7 = {tl,t2.. .}. 

0 a set of actual events: A = {ei, e2 . . .}; 

Ve E d, (begin(e) E I) A (end(e) E 7). 

o a function type from A to E; Ve E d, type(e) E Z. 

o a function distance from 7 x 7 to the reals (82); 

Vtl, t2 E 7, distance(tl, t2) E 3. 

8 a precedence relation 4 on I such that Vtl, t2 E 

7, (distance(tl,ta) > 0) =+ (tl -+ t2). 

An instance of a time-dependent planning problem consists 

a set of events, C = { ci, ~2, . . . cn) C d, corresponding 

to conditions demanding a response from the robot. 

a set of events, 0 = {or, 02, . . . om} E A, correspond- 

ing to observations made by the robot. 

a set of reactions, R C 6, corresponding to the types 

of actions that might be taken by the robot in reaction 

to a predicted event; 4 indicates the null reaction. 

a function react from R to 32, where react(e) corre- 

sponds to the time required to carry out a reaction of 

type .5; react(4) = 0. 

a function herald from C to 0, where herald(c) corre- 

sponds to the earliest event in 0 that would enable 

the robot to predict c. 

a function utility from C x R to %2; 

Vc E C, utility(c, 4) = 0. 

a function response from C to ?I?, where response(c) cor- 

responds to the time between having the information 

available to predict c, and c itself. We will assume 

that a robot’s reaction to c must be carried out prior 

to c, and, hence, we have 

response(c) = distance(end(herald(c)), begin(c)). 

We can divide the robot’s time as follows: 

prediction time: the time required to predict an event 

given the information available. For the robot to pre- 

dict c, the robot must “ know”  type(c) and begin(c)‘. 

To simplify our analysis, we will assume that predic- 

tion time is fixed, and, hence, that it can be factored 

out of response(c). 

deliberation time: the length of the maximum interval 

of time during which the robot must commit to a spe- 

cific reaction if a reaction is to be carried at all. We 

note that during any given interval of time there may 

be many deliberative processes competing for the use 

of the same computational resources. 

reaction time: the time required to react to a given 

event. Reactions differ in terms of how long they take 

to carry out. If we assume that reaction time is al- 

ways negligible (i.e., VE E R, react(c) M 0), then the 

deliberation time for an event c is just response(c). 

For each c E C, we assume that the robot has some 

decision procedure for inferring how to react to c. Each 

decision procedure, when allocated some amount of time, 

returns some E E R corresponding to its best guess about 

how to react2. We define y from C x %+ to R so that for 

each c E C and positive real number 6, y(c, 6) = E where 

E is the robot’s best guess about how to react to c having 

spent S in deliberation. In describing the robot’s ability 

to cope with time-dependent planning problems, we will 

be interested in the composite function utility(c, y(c, 5))3. 

Throughout this paper, we will assume that there is exactly 

one processor dedicated to deliberation. 

In the following, we consider several classes of time- 

dependent planning problems corresponding to different 

restrictions on the robot’s ability to compute reactions to 

predicted events. There are two issues we have to consider. 

The first concerns how much work the robot has to do in 

order to determine how best to allocate the time avail- 

able for deliberation. We’ll refer to this as the deliberation 

scheduling problem. Apart from deciding what to think 

about when, the rest of the robot’s intellectual capacities 

are fixed. The time required for deliberation scheduling 

will not be factored into the overall time allowed for delib- 

eration. For the techniques we are concerned with, we will 

demonstrate that deliberation scheduling is simple, and, 

hence, if the number of predicted events is relatively small, 

the time required for deliberation scheduling can be con- 

sidered negligible. The second issue is concerned with how 

IA more realistic model might require only that the robot 

“ knows”  e and t such that s is a supertype of type(c) and 

t 4 begin(c). 

21f the decision procedure takes a fixed amount of time to 

formulate an answer, we can assume that it outputs 4 until that 

fixed time is up. 

31n our analysis, we assume that there is a wide range of 

utilities associated with the various reactions, but this stipula- 

tion is not critical. The utility of the outcome can be constant; 

it is sufficient for our analysis to apply that the expectedutility 

have a sufficiently wide range. 
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ii. iv. 

Figure 1: Berformance profiles for decision procedures 

well the robot can hope to do, assuming that it has made 

the best decision about how to allocate its deliberation 

time. In order to talk about making the best decision, we 

have to introduce some method of comparing decisions. 

If we assume that the robot can only perform one action 

at a time, then a solution to a time-dependent planning 

problem consists of a mapping $ : C + A and a  single- 

processor schedule for the set, j+(c) 1 c E C}, subject to 

Vc E G ~y~e($W E 73 (appropriately typed) 

Ve E C, end($(c)) 4 begin(c) (appropriately timed) 

Vc’ # c” , (end($(c’)) 4 begin(+(c”))) V 

(end(W)) + begin(W))) (no overlap) 

We define a cost function on solutions: 

cost($) = - C utility(c, type($(c))). 

CEC 

If Q is the set of all solutions, then we are interested in 

that $ E Q that minimizes cost. 

Now, we introduce five classes characterizing the robot’s 

capability to compute solutions as a function of the time 

available for deliberation. The first class includes the 

other four; it is mentioned only because later we will 

consider problems that do not fit within this class. Fig- 

ure 1 illustrates performance profiles for instances of each 

class (ii) through (v). In the following, let P(x:, y) = 

utility(z, y(3c, 9)). 

i. monotonic improvement: 

ii. one-shot improvement: 

VCEC, 3T,lcE?R+, j&q= { 0 for 0 < S < 7, 

tc for 7 5 6 < 00. 

iii. linear improvement and unbounded utility: 

VCEC, 3XEa?+, p(c,S)=X*6. - 

iv. piecewise linear improvement and bounded utility: 

it needs to formulate reactions for. If Vc E C 30 E 0, o = 

herald(c), then -Ct = {c 1 end(herald(c)) 5 t 4 begin(c)j4. 

In deliberation scheduling, the robot has to determine how 

best to budget its time among the events in &. The object 

is to generate a solution II, that minimizes cost given the 

deliberative capabilities of the robot. Every time that a 

new event is predicted the robot will have to reformulate its 

strategy for allocating the available deliberation time. The 

problem of constructing an optimal strategy for class (ii) 

capabilities is solvable in pseudo-polynomial time [Graham 

et aa., 19771. Classes (iii) and (iv) are special cases of 

class (v). In the following, we describe a polynomial-time 

algorithm for constructing optimal strategies for class (v) 

capabilities. Classes (iii) and (iv) can be handled using 

simpler algorithms, which we discuss as well. We assume 

that VE E 72 react(e) = 0. Let fC(z) = p(c,z). 

. . . 
111. Let AC be the slope of the linear function fe. An opti- 

mal strategy is to deliberate on that c in & such that 

X, is maximal. At any point, the processor will be 

working on the event c such that the change in fC(S) 

with respect to 6 is maximized over &; working on 

any other event will result in a higher cost. 

iv. 

V. 

We can use the fact that for any S 2 rc, ~(c, S) is a 

constant function, and that for S < T,, ~(c, S) is linear. 

This allows us to define a simple analytic, rather than 

iterative, algorithm for deliberation scheduling, which 

lack of space precludes our including in this paper. 

We define a sequence cl, . . . ck such that, for 1 5 

i < k, ci E & and begin 4 begin(c;-1). Let 

*j = {Cd 1 1 5 i 5 j}, and initially set allot(c) = 0 

for all c E &. The algorithm in Figure 2 shows how 

to compute a strategy for scheduling the deliberation 

processor from t until the last event in &. The strat- 

egy assumes time slicing with a fixed smallest allo- 

cation of processing time A. This strategy remains 

in effect as long as no new events are predicted. For 

any c > 0, there is some A > 0 such that the above 

strategy is optimal within E. A more complicated ap- 

proach that involves solving a system of simultaneous 

equations enables us to generate an optimal strategy 

analytically without time slicing. 

v. diminishing returns: 

vc E c, v, / &t) = f(t) such that f is mono- 

tonic increasing, continuous, and piecewise differen- 

tiable, and Vz, y E R+ such that J’(z) and f’(y) exist, 

x < Y =F- (f’(Y) I f’(4). 

For each time t, the robot has some set of events, &, that 

VCEC, 3T,XE%+, p(c,6)= 
{ 

;:; 
0<6<7, 

9 7<6<00. 
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for i=l to k 

start c (if i = b, then t, else begin(ci+l)) 

stop c begin(q) 

for j = 0 to Ldistance(start , stop)/ AJ 

choose c E Ai s.t. ve E Aa, (c # e) 3 (fi(alloc(c)) > &alloc(e))) 

deliberate on c from (start+jA) to min((start+(j + l)A),stop) 

allot(c) c allot(c) + min((start+(j + l)A),stop) - (start+jA) 

Figure 2: Deliberation scheduling algorithm for class v. 

is less time available, the system carries out some default 

reaction. Planning problems for which such capabilities 

appear satisfactory are somewhat rare. Consider a distri- 

bution function describing the time available to respond to 

c given all situations in which c is predicted to occur. If 

the variance is small, the robot’s decision procedures are 

optimized for the mean, and for any situation in which c 

is predicted to occur it is unlikely that there will be other 

events to contend with, then class (ii) capabilities will per- 

form well. Class (ii) capabilities will also do well if the time 

required to determine a reaction that is within E of opti- 

mal is small compared to the mean. Classes (iii) through 

(v) will outperform class (ii) capabilities in a wide range of 

natural planning problems in which the variance is signif- 

icant, and the potential gain from increased deliberation 

and the number and importance of other events to contend 

with at any given moment varies substantially. 

The above analysis can be extended in a myriad of ways. 

In the following sections, we will consider just a few issues 

that we think particularly interesting. Before leaving this 

section, it seems worthwhile to reiterate some of the as- 

sumptions that have been made, and comment on their 

relevance. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

prediction time can be factored out, of response time, 

predicted events come to pass at the expected time, 

there exist separate decision procedures for each event 

type, 

the cost of preemption. is negligible, 

cost is the inverse sum of the individual utilities, 

there exist decision procedures of the sort described 

in (iii-v), 

utility is a monotonically increasing function of delib- 

eration time, and 

reaction time is negligible. 

We claim without further argument that the first four can 

be relaxed to suit, many realistic planning problems. As- 

sumption 5 is tantamount to assuming that coordinat- 

ing responses buys you nothing. Relaxing assumption 5 

is problematic; if all responses are complexly interdepen- 

dent, then the kinds of decision procedures and the meth- 

ods whereby they communicate become quite complicated. 

The requisite analysis is similarly complicated and is rel- 

egated to a companion paper currently in preparation. 

Throughout the rest of this paper, we will continue to as- 

sume that responses are independent. Section 3 considers 

the existence of decision procedures that satisfy the re- 

quirements underlying assumption 6. Section 4 considers 

issues in relaxing assumptions 7 and 8. 

In the previous section, we described a class of time- 

dependent planning problems characterized by there be- 

ing a variety of reactions to predicted events and a range 

of response times occurring in practice. In all of the sce- 

narios that we looked at, the robot made use of decision 

procedures having the property that the utility of the reac- 

tions suggested by these procedures monotonically increase 

over time. Our analysis indicates that being forced to rely 

upon procedures with a fixed one-time improvement can 

lead Lo poor performance. Furthermore, our analysis sug- 

gests a class of algorithms that could significantly improve 

performance. The most important characteristics of these 

algorithms are that (i) they lend themselves to preemptive 

scheduling techniques (i.e., they can be suspended and re- 

sumed with negligible overhead), (ii) they can be termi- 

nated at any time and will return some answer, and (iii) 

the answers returned improve in some well-behaved man- 

ner as a function of time. It is the last two of these two 

characteristics that really distinguishes the algorithms we 

are interested in from more traditional algorithms, and. in 

recognition of this, we christen them anytime algorithms. 

There are large classes of algorithms that satisfy the 

characteristics described above. The study of methods 

for iterative approximation is a large and active area in 

numerical -analysis [Tompkins and Wilson, 1969; Hage- 

man and Young, 19811. Algorithms for heuristic search, 

in particular those employing variable lookahead and fast 

evaluation functions, can easily be cast as anytime algo- 

rithms [Pearl, 19851. Symbolic processing in general can be 

viewed as the manipulation of finite sets (of bindings, con- 

straints, entities, etc.). The behavior of iterated functions 

over finite sets is the subject of the study of discrete itera- 

tions [Robert, 19861. The analysis of discrete iterations is 

closely tied to work on connectionist models [Hinton and 

Sejnowski, 19831, the study of cellular automata [Farmer 

et al., 19841, and the design of VLSI systems [Mead and 

Conway, 19801. Our preliminary literature search uncov- 

ered a large body of research on the properties of anytime 

algorithms and their application to control problems. 
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plan(T) + 

setof(E,predict(T,E,$,Events), 

allocate(Events, cl > ,pla.n(i). 

act(T) + 

setof(E,predict(T,E,T),Events), 

execute (Events, Cl > ) act (i) . 

allocate( Cl ,Processes) + 

schedule(Processes). 

allocate( [Event IL1 ,Processes) + 

decisionqrocess(Event,P), 

allocate(L, CP I Processes1 > s 

execute( Cl , React ions) 

delegate (Reactions) 

C 

execute( [Event IL] ,Reactions) 

decide (Event ,R), execute(L ,FRl React ions1 1. 

start + 

concurrently(plan(tj , act(Q). 

predict(T,Event,T+A) t 

herald(Precursors,Event,A), 

holds(Precursors,T). 

Figure 3: Simple interpreter for time-dependent planning 

In this section, we describe a simplified framework for 

employing decision procedures implemented as anytime al- 

gorithms. We use a specification language based loosely on 

PROLOG to capture both the inferential and the procedu- 

ral aspects of our approach. Let t^ refer to the current 

time as indicated by the robot’s clock. Figure 3 provides 

a listing for a simple PROLOG program5 that implements a 

time-dependent planner. 

We assume that plan and act run concurrently on sep- 

arate processors, and require some small amount of time 

for each invocation neglecting recursive calls. The proce- 

dure decision-process (E,P) returns in P a process set up 

to run an anytime algorithm uniquely associated with the 

event E. Such a process is terminated when the begin point 

of its associated event passes. The procedure schedule 

implements deliberation scheduling, using a strategy such 

as those described in Section 2 to allocate processor time 

to existing processes. The procedure predict (T p E , T+A) 

takes a time T and returns in E an event predicted to occur 

at time T+A. In the interpreter of Figure 3, an event, has 

to be repeatedly predicted in order to continue deliberating 

on an appropriate reaction for that event. The procedures 

5The construct setof (X,P,R) repeatedly invokes the proce- 

dure P in which X appears unbound. The resulting bindings are 

returned as a list in Ib. 

herald and holds might be implemented using a temporal 

database of the sort described in [Dean, 19871. Execution 

is handled in a manner similar to deliberation: the pro- 

cedure decide(E,R) looks up the process associated with 

the event E and then uses that process to return in R the 

best guess for a reaction given the time spent, in delibera- 

tion, and the procedure delegate turns over the execution 

of these reactions to some independent processor. In the 

remainder of this section, we relax two of the assumptions 

imposed in Section 2, and see how the simple planner in 

Figure 3 is complicated as a result. 

If 3~ VE E 72, react(E) = 7- (i.e., all reactions take ex- 

actly the same time), the task of determining when to stop 

deliberating and start acting is trivial. In Figure 3, we 

assume that r = 0. In the following, we consider three 

simple cases in which react(&) is allowed to vary; let gc be 

the robot’s current, best guess for how to react to c. For 

the first case, suppose that utility(E, c) is completely inde- 

pendent of react(e), and that we have an accurate estimate 

of react(&) for all E E R. In this case, deliberation schedul- 

ing is performed as it was described in Section 2 with the 

exception that, if react(i,) changes significantly during de- 

liberation, then the deadline for reacting to c will have 

changed requiring the scheduler to determine a new strat- 

egy for &. For a particular c E C, the deadline for reacting 

to c can be obtained by subtracting react(2,) from begin(c). 

As a second case, suppose that utility(E, c) is completely 

determined by react(&) (e.g., utility(e, c) = Area&(E) with 

constant A). In this case, if utility(&,c) is well behaved 

(e.g., functions of class (v) as described in Section 2), then 

deliberation scheduling and deciding when to act can be 

handled as in the first case. Finally, if allot(c) corresponds 

to the amount of time allocated to deliberating about c, 

and -uhlity(&, c) = react(E)+alloc(c) (i.e., all that matters 

is minimizing the sum of deliberation time and reaction 

time), the problem is still easy. Since -e = 1 + e, 

we stop deliberating when e > -1. Similar analyses 

yield solutions to a number of additional special cases. It 

should be noted, however, that relaxing the assumption 

that reaction time is negligible can make time-dependent 

planning arbitrarily complex. 

Another assumption we might relax is that utility in- 

creases monotonically with deliberation time. Utility may 

decrease over time when reaction time is non-zero and in- 

teracts with deliberation time, as discussed above. Utility 

may also decrease as the world changes over time render- 

ing the information obtained from previous observations 

obsolete. Given that the general problem of scheduling 

sensing is far too complex to be addressed here, we pose a 

simpler problem: suppose that our decision procedures de- 

pend critically upon the information available when they 

are first started. 

The basic scenario is as follows. An event c is pre- 

dicted to occur at time t. At some point, commit(c), be- 

tween t and begin(c), a set, of sensor readings, data(c), is 

collected-assume that the time required for collection is 1 

negligible. In the time between commit(c) and begin(c), 

the robot has to formulate an appropriate reaction to c 

based upon extrapolations from data(c). The accuracy 

of the exLrapolations performed during deliberation de- 

. 
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pend upon distance(commit(c), begin(c)). If the extrapo- 

lations are perfect, then the expected utility of the com- 

puted reaction will depend solely upon deliberation time. 

Given that the extrapolations are not perfect, the prob- 

lem of deliberation scheduling-in particular, the problem 

of determining commit(c)-is somewhat more complicated 

than the problems we considered in Section 2. By rep- 

resenting utility as a function f of deliberation time and 

distance(commit(c), begin(c), we can make use of the partial 

derivatives of f to implement a variant of the scheduling 

algorithm described for class (v) functions. 

5 Conclusion 

In this paper, we define the problem of time-dependent 

planning, and argue that a wide variety of planning prob- 

lems satisfy our definition. Our formulation of the prob- 

lem suggests a solution in terms of anytime algorithms: 

algorithms that can be interrupted and resumed with lit- 

tle overhead, that can provide increasingly good answers 

over a range of response times, and that, therefore, pro- 

vide solutions over a range of response time#. We demon- 

strate that under certain assumptions (listed at the end 

of Section 2), anytime algorithms can be coordinated in 

an effective strategy for handling time-dependent planning 

problems. 

Our preliminary literature search indicates that the class 

of decision procedures that can be implemented as anytime 

algorithms is quite large. We are currently working on a 

framework that relies on a library of generic anytime algo- 

rithms: general-purpose algorithms that can be composed 

to build specialized decision procedures. This framework 

generates bounded-depth decision trees that serve to com- 

bine the results of several generic anytime algorithms using 

simple operators. One outstanding problem involves gen- 

erating appropriate performance profiles for such compos- 

ite anytime algorithms. If this problem can be satisfacto- 

rily resolved, we believe that our framework will provide a 

practical approach to building high-performance planning 

systems for time-dependent applications. 
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