
An Analysis of Time-Dependent Planning

Thomas Dean* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Mark Boddy

Department of Computer Science

Brown University

Box 1910, Providence, RI 02912

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This paper presents a framework for exploring

issues in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtime-dependent planning: planning in

which the time available to respond to predicted

events varies, and the decision making required

to formulate effective responses is complex. Our

analysis of time-dependent planning suggests an

approach based on a class of algorithms that we

call anytime algorithms. Anytime algorithms can

be interrupted at any point during computation

to return a result whose utility is a function of

computation time. We explore methods for solv-

ing time-dependent planning problems based on

the properties of anytime algorithms.

Time-dependent planning is concerned with determining

how best to respond to predicted events when the time

available to make such determinations varies from situation

to situation. In order to program a robot to react appropri-

ately over a range of situations, we have to understand how

to design effective algorithms for time-dependent planning.

In this paper, we will be concerned primarily with under-

standing the properties of such algorithms, and providing

a precise characterization of time-dependent planning.

The issues we are concerned with arise either because

the number of events that the robot has to contend with

varies, and, hence, the time allotted to deliberating about

any one event varies, or the observations that allow us

to predict events precede the events they herald by vary-

ing amounts of time. The range of planning problems in

which such complications occur is quite broad. Almost

any situation that involves tracking objects of differing ve-

locities will involve time-dependent planning (e.g., vehicle

monitoring [Lesser and Corkill, 1983; Durfee, 19871, signal

processing [Chung et al., 19871, and juggling [Donner and

Jameson, 19861). S t t i ua ions where a system has to dynam-

ically reevaluate its options [Fox and Smith, 1985; Dean,

19871 or delay committing to specific options until critical

information arrives [Fox and Kempf, 19851 generally can

be cast as time-dependent planning problems.

To take a specific example, consider the problem faced

by a stationary robot assigned the task of recognizing and

intercepting or rerouting objects on a moving conveyor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

*This work was supported in part by the National Science

Foundation under grant IRI-8612644 and by an IBM faculty

development award.

belt. Suppose that the robot’s view of the conveyor is ob-

scured at some point by a partition, and that someone on

the other side of this partition places objects on the con-

veyor at irregular intervals. The robot’s task requires that,

between the time each object clears the partition and the

time it reaches the end of the conveyor, it must classify the

object and react appropriately. We assume that classifica-

tion is computationally intensive, and that the longer the

robot spends in analyzing an image, the more likely it is to

make a correct classification. One can imagine a variety of

reactions. The robot might simply have to push a button

to direct each object into a bin intended for objects of a

specific class; the time required for this sort of reaction is

negligible. Alternatively, the robot might have to reach out

and grasp certain objects and assemble them; the time re-

quired to react in this case will depend upon many factors.

One can also imagine variations that exacerbate the time-

dependent aspects of the problem. For instance, it might

take more time to classify certain objects, the number of

objects placed on the conveyor might vary throughout the

day, or the conveyor might speed up or slow down accord-

ing to production demands. The important thing to note

is, if the robot is to make optimal use of its time, it should

be prepared to make decisions in situations where there is

very little time to decide as well as to take advantage of

situations where there is more than average time to decide.

This places certain constraints on the design of the algo-

rithms for performing classification, determining assembly

sequences, and handling other inferential tasks.

Traditional computer science concerns itself primarily

with the complexity and correctness of algorithms. In

most planning situations, however, there is no one cor-

rect answer, and having the right answer too late is tanta-

mount to not having it at all. In dealing with potentially

intractable problems, computer scientists are sometimes

content with less than guaranteed solutions (e.g., answers

that are likely correct and guaranteed computed in poly-

nomial time (Monte Carlo algorithms), answers that are

guaranteed correct and likely computed in polynomial time

(Las Vegas algorithms), answers that are optimal within

some factor and computed in polynomial time (approxi-

mation algorithms). While we regard this small concession

to reality as encouraging, it doesn’t begin to address the

problems in time-dependent planning. For many planning

tasks, polynomial performance is not sufficient; we need

algorithms that compute the best answers they can in the

time they have available.

Planning is concerned with reasoning about whether to

act and how. Scheduling is concerned with reasoning about

Dean and Boddy 49

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

when to act having already committed to act, and plays

an important role in planning. In job-shop scheduling, if

it is possible to suspend, and later resume, a job, then

many otherwise difficult problems become trivial [Graham

et al., 1977; Bodin and Golden, 19811. Such (preemp-

tive) scheduling problems are somewhat rare in real job

shops given that there is often significant overhead involved

is suspending and resuming jobs (e.g., traveling between

workstations or changing tools), but they are consider-

ably more common with regard to purely computational

tasks (e.g., suspending and resuming Unix processes). In

many scheduling problems, each job has a fixed cost and

requires a fixed amount of time to perform; spending any

less than the full amount yields you nothing. In planning,

we are interested in the computational tasks of deciding

upon appropriate reactions. If the decision procedures for

computing appropriate reactions are preemptible and pro-

vide better answers depending upon the time available to

deliberate, then the time-dependent planning problem is

considerably simplified. In the next section, we examine

this claim in more detail.

2 Time- ent Planning

Temporal notation:

e a set of event types: I = {&I, E2, . . .).

0 a set of time points: 7 = {tl,t2.. .}.

0 a set of actual events: A = {ei, e2 . . .};

Ve E d, (begin(e) E I) A (end(e) E 7).

o a function type from A to E; Ve E d, type(e) E Z.

o a function distance from 7 x 7 to the reals (82);

Vtl, t2 E 7, distance(tl, t2) E 3.

8 a precedence relation 4 on I such that Vtl, t2 E

7, (distance(tl,ta) > 0) =+ (tl -+ t2).

An instance of a time-dependent planning problem consists

a set of events, C = { ci, ~2, . . . cn) C d, corresponding

to conditions demanding a response from the robot.

a set of events, 0 = {or, 02, . . . om} E A, correspond-

ing to observations made by the robot.

a set of reactions, R C 6, corresponding to the types

of actions that might be taken by the robot in reaction

to a predicted event; 4 indicates the null reaction.

a function react from R to 32, where react(e) corre-

sponds to the time required to carry out a reaction of

type .5; react(4) = 0.

a function herald from C to 0, where herald(c) corre-

sponds to the earliest event in 0 that would enable

the robot to predict c.

a function utility from C x R to %2;

Vc E C, utility(c, 4) = 0.

a function response from C to ?I?, where response(c) cor-

responds to the time between having the information

available to predict c, and c itself. We will assume

that a robot’s reaction to c must be carried out prior

to c, and, hence, we have

response(c) = distance(end(herald(c)), begin(c)).

We can divide the robot’s time as follows:

prediction time: the time required to predict an event

given the information available. For the robot to pre-

dict c, the robot must “ know” type(c) and begin(c)‘.

To simplify our analysis, we will assume that predic-

tion time is fixed, and, hence, that it can be factored

out of response(c).

deliberation time: the length of the maximum interval

of time during which the robot must commit to a spe-

cific reaction if a reaction is to be carried at all. We

note that during any given interval of time there may

be many deliberative processes competing for the use

of the same computational resources.

reaction time: the time required to react to a given

event. Reactions differ in terms of how long they take

to carry out. If we assume that reaction time is al-

ways negligible (i.e., VE E R, react(c) M 0), then the

deliberation time for an event c is just response(c).

For each c E C, we assume that the robot has some

decision procedure for inferring how to react to c. Each

decision procedure, when allocated some amount of time,

returns some E E R corresponding to its best guess about

how to react2. We define y from C x %+ to R so that for

each c E C and positive real number 6, y(c, 6) = E where

E is the robot’s best guess about how to react to c having

spent S in deliberation. In describing the robot’s ability

to cope with time-dependent planning problems, we will

be interested in the composite function utility(c, y(c, 5))3.

Throughout this paper, we will assume that there is exactly

one processor dedicated to deliberation.

In the following, we consider several classes of time-

dependent planning problems corresponding to different

restrictions on the robot’s ability to compute reactions to

predicted events. There are two issues we have to consider.

The first concerns how much work the robot has to do in

order to determine how best to allocate the time avail-

able for deliberation. We’ll refer to this as the deliberation

scheduling problem. Apart from deciding what to think

about when, the rest of the robot’s intellectual capacities

are fixed. The time required for deliberation scheduling

will not be factored into the overall time allowed for delib-

eration. For the techniques we are concerned with, we will

demonstrate that deliberation scheduling is simple, and,

hence, if the number of predicted events is relatively small,

the time required for deliberation scheduling can be con-

sidered negligible. The second issue is concerned with how

IA more realistic model might require only that the robot

“ knows” e and t such that s is a supertype of type(c) and

t 4 begin(c).

21f the decision procedure takes a fixed amount of time to

formulate an answer, we can assume that it outputs 4 until that

fixed time is up.

31n our analysis, we assume that there is a wide range of

utilities associated with the various reactions, but this stipula-

tion is not critical. The utility of the outcome can be constant;

it is sufficient for our analysis to apply that the expectedutility

have a sufficiently wide range.

50 Automated Reasoning

ii. iv.

Figure 1: Berformance profiles for decision procedures

well the robot can hope to do, assuming that it has made

the best decision about how to allocate its deliberation

time. In order to talk about making the best decision, we

have to introduce some method of comparing decisions.

If we assume that the robot can only perform one action

at a time, then a solution to a time-dependent planning

problem consists of a mapping $: C + A and a single-

processor schedule for the set, j+(c) 1 c E C}, subject to

Vc E G ~y~e($W E 73 (appropriately typed)

Ve E C, end($(c)) 4 begin(c) (appropriately timed)

Vc’ # c” , (end($(c’)) 4 begin(+(c”))) V

(end(W)) + begin(W))) (no overlap)

We define a cost function on solutions:

cost($) = - C utility(c, type($(c))).

CEC

If Q is the set of all solutions, then we are interested in

that $ E Q that minimizes cost.

Now, we introduce five classes characterizing the robot’s

capability to compute solutions as a function of the time

available for deliberation. The first class includes the

other four; it is mentioned only because later we will

consider problems that do not fit within this class. Fig-

ure 1 illustrates performance profiles for instances of each

class (ii) through (v). In the following, let P(x:, y) =

utility(z, y(3c, 9)).

i. monotonic improvement:

ii. one-shot improvement:

VCEC, 3T,lcE?R+, j&q= { 0 for 0 < S < 7,

tc for 7 5 6 < 00.

iii. linear improvement and unbounded utility:

VCEC, 3XEa?+, p(c,S)=X*6. -

iv. piecewise linear improvement and bounded utility:

it needs to formulate reactions for. If Vc E C 30 E 0, o =

herald(c), then -Ct = {c 1 end(herald(c)) 5 t 4 begin(c)j4.

In deliberation scheduling, the robot has to determine how

best to budget its time among the events in &. The object

is to generate a solution II, that minimizes cost given the

deliberative capabilities of the robot. Every time that a

new event is predicted the robot will have to reformulate its

strategy for allocating the available deliberation time. The

problem of constructing an optimal strategy for class (ii)

capabilities is solvable in pseudo-polynomial time [Graham

et aa., 19771. Classes (iii) and (iv) are special cases of

class (v). In the following, we describe a polynomial-time

algorithm for constructing optimal strategies for class (v)

capabilities. Classes (iii) and (iv) can be handled using

simpler algorithms, which we discuss as well. We assume

that VE E 72 react(e) = 0. Let fC(z) = p(c,z).

. . .
111. Let AC be the slope of the linear function fe. An opti-

mal strategy is to deliberate on that c in & such that

X, is maximal. At any point, the processor will be

working on the event c such that the change in fC(S)

with respect to 6 is maximized over &; working on

any other event will result in a higher cost.

iv.

V.

We can use the fact that for any S 2 rc, ~(c, S) is a

constant function, and that for S < T,, ~(c, S) is linear.

This allows us to define a simple analytic, rather than

iterative, algorithm for deliberation scheduling, which

lack of space precludes our including in this paper.

We define a sequence cl, . . . ck such that, for 1 5

i < k, ci E & and begin 4 begin(c;-1). Let

*j = {Cd 1 1 5 i 5 j}, and initially set allot(c) = 0

for all c E &. The algorithm in Figure 2 shows how

to compute a strategy for scheduling the deliberation

processor from t until the last event in &. The strat-

egy assumes time slicing with a fixed smallest allo-

cation of processing time A. This strategy remains

in effect as long as no new events are predicted. For

any c > 0, there is some A > 0 such that the above

strategy is optimal within E. A more complicated ap-

proach that involves solving a system of simultaneous

equations enables us to generate an optimal strategy

analytically without time slicing.

v. diminishing returns:

vc E c, v, / &t) = f(t) such that f is mono-

tonic increasing, continuous, and piecewise differen-

tiable, and Vz, y E R+ such that J’(z) and f’(y) exist,

x < Y =F- (f’(Y) I f’(4).

For each time t, the robot has some set of events, &, that

VCEC, 3T,XE%+, p(c,6)=
{

;:;
0<6<7,

9 7<6<00.

Dean and Boddy 51

for i=l to k

start c (if i = b, then t, else begin(ci+l))

stop c begin(q)

for j = 0 to Ldistance(start , stop)/ AJ

choose c E Ai s.t. ve E Aa, (c # e) 3 (fi(alloc(c)) > &alloc(e)))

deliberate on c from (start+jA) to min((start+(j + l)A),stop)

allot(c) c allot(c) + min((start+(j + l)A),stop) - (start+jA)

Figure 2: Deliberation scheduling algorithm for class v.

is less time available, the system carries out some default

reaction. Planning problems for which such capabilities

appear satisfactory are somewhat rare. Consider a distri-

bution function describing the time available to respond to

c given all situations in which c is predicted to occur. If

the variance is small, the robot’s decision procedures are

optimized for the mean, and for any situation in which c

is predicted to occur it is unlikely that there will be other

events to contend with, then class (ii) capabilities will per-

form well. Class (ii) capabilities will also do well if the time

required to determine a reaction that is within E of opti-

mal is small compared to the mean. Classes (iii) through

(v) will outperform class (ii) capabilities in a wide range of

natural planning problems in which the variance is signif-

icant, and the potential gain from increased deliberation

and the number and importance of other events to contend

with at any given moment varies substantially.

The above analysis can be extended in a myriad of ways.

In the following sections, we will consider just a few issues

that we think particularly interesting. Before leaving this

section, it seems worthwhile to reiterate some of the as-

sumptions that have been made, and comment on their

relevance.

1.

2.

3.

4.

5.

6.

7.

8.

prediction time can be factored out, of response time,

predicted events come to pass at the expected time,

there exist separate decision procedures for each event

type,

the cost of preemption. is negligible,

cost is the inverse sum of the individual utilities,

there exist decision procedures of the sort described

in (iii-v),

utility is a monotonically increasing function of delib-

eration time, and

reaction time is negligible.

We claim without further argument that the first four can

be relaxed to suit, many realistic planning problems. As-

sumption 5 is tantamount to assuming that coordinat-

ing responses buys you nothing. Relaxing assumption 5

is problematic; if all responses are complexly interdepen-

dent, then the kinds of decision procedures and the meth-

ods whereby they communicate become quite complicated.

The requisite analysis is similarly complicated and is rel-

egated to a companion paper currently in preparation.

Throughout the rest of this paper, we will continue to as-

sume that responses are independent. Section 3 considers

the existence of decision procedures that satisfy the re-

quirements underlying assumption 6. Section 4 considers

issues in relaxing assumptions 7 and 8.

In the previous section, we described a class of time-

dependent planning problems characterized by there be-

ing a variety of reactions to predicted events and a range

of response times occurring in practice. In all of the sce-

narios that we looked at, the robot made use of decision

procedures having the property that the utility of the reac-

tions suggested by these procedures monotonically increase

over time. Our analysis indicates that being forced to rely

upon procedures with a fixed one-time improvement can

lead Lo poor performance. Furthermore, our analysis sug-

gests a class of algorithms that could significantly improve

performance. The most important characteristics of these

algorithms are that (i) they lend themselves to preemptive

scheduling techniques (i.e., they can be suspended and re-

sumed with negligible overhead), (ii) they can be termi-

nated at any time and will return some answer, and (iii)

the answers returned improve in some well-behaved man-

ner as a function of time. It is the last two of these two

characteristics that really distinguishes the algorithms we

are interested in from more traditional algorithms, and. in

recognition of this, we christen them anytime algorithms.

There are large classes of algorithms that satisfy the

characteristics described above. The study of methods

for iterative approximation is a large and active area in

numerical -analysis [Tompkins and Wilson, 1969; Hage-

man and Young, 19811. Algorithms for heuristic search,

in particular those employing variable lookahead and fast

evaluation functions, can easily be cast as anytime algo-

rithms [Pearl, 19851. Symbolic processing in general can be

viewed as the manipulation of finite sets (of bindings, con-

straints, entities, etc.). The behavior of iterated functions

over finite sets is the subject of the study of discrete itera-

tions [Robert, 19861. The analysis of discrete iterations is

closely tied to work on connectionist models [Hinton and

Sejnowski, 19831, the study of cellular automata [Farmer

et al., 19841, and the design of VLSI systems [Mead and

Conway, 19801. Our preliminary literature search uncov-

ered a large body of research on the properties of anytime

algorithms and their application to control problems.

52 Automated Reasoning

plan(T) +

setof(E,predict(T,E,$,Events),

allocate(Events, cl > ,pla.n(i).

act(T) +

setof(E,predict(T,E,T),Events),

execute (Events, Cl >) act (i) .

allocate(Cl ,Processes) +

schedule(Processes).

allocate([Event IL1 ,Processes) +

decisionqrocess(Event,P),

allocate(L, CP I Processes1 > s

execute(Cl , React ions)

delegate (Reactions)

C

execute([Event IL] ,Reactions)

decide (Event ,R), execute(L ,FRl React ions1 1.

start +

concurrently(plan(tj , act(Q).

predict(T,Event,T+A) t

herald(Precursors,Event,A),

holds(Precursors,T).

Figure 3: Simple interpreter for time-dependent planning

In this section, we describe a simplified framework for

employing decision procedures implemented as anytime al-

gorithms. We use a specification language based loosely on

PROLOG to capture both the inferential and the procedu-

ral aspects of our approach. Let t^ refer to the current

time as indicated by the robot’s clock. Figure 3 provides

a listing for a simple PROLOG program5 that implements a

time-dependent planner.

We assume that plan and act run concurrently on sep-

arate processors, and require some small amount of time

for each invocation neglecting recursive calls. The proce-

dure decision-process (E,P) returns in P a process set up

to run an anytime algorithm uniquely associated with the

event E. Such a process is terminated when the begin point

of its associated event passes. The procedure schedule

implements deliberation scheduling, using a strategy such

as those described in Section 2 to allocate processor time

to existing processes. The procedure predict (T p E , T+A)

takes a time T and returns in E an event predicted to occur

at time T+A. In the interpreter of Figure 3, an event, has

to be repeatedly predicted in order to continue deliberating

on an appropriate reaction for that event. The procedures

5The construct setof (X,P,R) repeatedly invokes the proce-

dure P in which X appears unbound. The resulting bindings are

returned as a list in Ib.

herald and holds might be implemented using a temporal

database of the sort described in [Dean, 19871. Execution

is handled in a manner similar to deliberation: the pro-

cedure decide(E,R) looks up the process associated with

the event E and then uses that process to return in R the

best guess for a reaction given the time spent, in delibera-

tion, and the procedure delegate turns over the execution

of these reactions to some independent processor. In the

remainder of this section, we relax two of the assumptions

imposed in Section 2, and see how the simple planner in

Figure 3 is complicated as a result.

If 3~ VE E 72, react(E) = 7- (i.e., all reactions take ex-

actly the same time), the task of determining when to stop

deliberating and start acting is trivial. In Figure 3, we

assume that r = 0. In the following, we consider three

simple cases in which react(&) is allowed to vary; let gc be

the robot’s current, best guess for how to react to c. For

the first case, suppose that utility(E, c) is completely inde-

pendent of react(e), and that we have an accurate estimate

of react(&) for all E E R. In this case, deliberation schedul-

ing is performed as it was described in Section 2 with the

exception that, if react(i,) changes significantly during de-

liberation, then the deadline for reacting to c will have

changed requiring the scheduler to determine a new strat-

egy for &. For a particular c E C, the deadline for reacting

to c can be obtained by subtracting react(2,) from begin(c).

As a second case, suppose that utility(E, c) is completely

determined by react(&) (e.g., utility(e, c) = Area&(E) with

constant A). In this case, if utility(&,c) is well behaved

(e.g., functions of class (v) as described in Section 2), then

deliberation scheduling and deciding when to act can be

handled as in the first case. Finally, if allot(c) corresponds

to the amount of time allocated to deliberating about c,

and -uhlity(&, c) = react(E)+alloc(c) (i.e., all that matters

is minimizing the sum of deliberation time and reaction

time), the problem is still easy. Since -e = 1 + e,

we stop deliberating when e > -1. Similar analyses

yield solutions to a number of additional special cases. It

should be noted, however, that relaxing the assumption

that reaction time is negligible can make time-dependent

planning arbitrarily complex.

Another assumption we might relax is that utility in-

creases monotonically with deliberation time. Utility may

decrease over time when reaction time is non-zero and in-

teracts with deliberation time, as discussed above. Utility

may also decrease as the world changes over time render-

ing the information obtained from previous observations

obsolete. Given that the general problem of scheduling

sensing is far too complex to be addressed here, we pose a

simpler problem: suppose that our decision procedures de-

pend critically upon the information available when they

are first started.

The basic scenario is as follows. An event c is pre-

dicted to occur at time t. At some point, commit(c), be-

tween t and begin(c), a set, of sensor readings, data(c), is

collected-assume that the time required for collection is 1

negligible. In the time between commit(c) and begin(c),

the robot has to formulate an appropriate reaction to c

based upon extrapolations from data(c). The accuracy

of the exLrapolations performed during deliberation de-

.
Dean and Boddy 53

pend upon distance(commit(c), begin(c)). If the extrapo-

lations are perfect, then the expected utility of the com-

puted reaction will depend solely upon deliberation time.

Given that the extrapolations are not perfect, the prob-

lem of deliberation scheduling-in particular, the problem

of determining commit(c)-is somewhat more complicated

than the problems we considered in Section 2. By rep-

resenting utility as a function f of deliberation time and

distance(commit(c), begin(c), we can make use of the partial

derivatives of f to implement a variant of the scheduling

algorithm described for class (v) functions.

5 Conclusion

In this paper, we define the problem of time-dependent

planning, and argue that a wide variety of planning prob-

lems satisfy our definition. Our formulation of the prob-

lem suggests a solution in terms of anytime algorithms:

algorithms that can be interrupted and resumed with lit-

tle overhead, that can provide increasingly good answers

over a range of response times, and that, therefore, pro-

vide solutions over a range of response time#. We demon-

strate that under certain assumptions (listed at the end

of Section 2), anytime algorithms can be coordinated in

an effective strategy for handling time-dependent planning

problems.

Our preliminary literature search indicates that the class

of decision procedures that can be implemented as anytime

algorithms is quite large. We are currently working on a

framework that relies on a library of generic anytime algo-

rithms: general-purpose algorithms that can be composed

to build specialized decision procedures. This framework

generates bounded-depth decision trees that serve to com-

bine the results of several generic anytime algorithms using

simple operators. One outstanding problem involves gen-

erating appropriate performance profiles for such compos-

ite anytime algorithms. If this problem can be satisfacto-

rily resolved, we believe that our framework will provide a

practical approach to building high-performance planning

systems for time-dependent applications.

References

[Bodin and Golden, 19811 L. Bodin and B. Golden. Clas-

sification in vehicle routing and scheduling. Networks,

11:97-108, 1981.

[Chung et al., 19871 Jen-Yao Chung, Jane W.S. Liu, and

Kwei-Jay Lin. Scheduling periodic jobs using imprecise

results. Technical Report UIUCDCS-R-87-1307, Uni-

versity of Illinois at Urbana-Champaign Department of

Computer Science, 1987.

‘Horvitz [Horvitz, 19871 discusses the problem of reasoning

under resource constraints in a more general framework. In par-

ticular, he makes a more extensive use of probability and utility

theory than we have space for here. His conclusions concerning

the algorithms and architectures appropriate for effective rea-

soning under resource constraints are entirely compatible with

the discussion in this paper.

[Dean, 19871 Thomas Dean. Intractability and time-

dependent planning. In Michael P. Georgeff and

Amy L. Lansky, editors, The 1986 W orkshop on Reason-

ing About Actions and Plans, pages 245-266. Morgan-

Kaufman, 1987.

[Donner and Jameson, 19861 Marc D. Donner and

David H. Jameson. A real-time juggling robot. IBM

Research Report RC 12111 (54549), IBM, 1986.

[Durfee, 19871 Edmund H. Durfee. A unified approach

to dynamic coordination: Planning actions and in-

teractions in a distributed problem solving network.

Technical Report 87-84, University of Massachusetts at

Amherst Department of Computer and Information Sci-

ence, 1987.

[Farmer et al., 19841 D. Farmer, T. Toffoli, and S. Wol-

fram. Celdulur Automata. North Holland, 1984.

[Fox and Kempf, 19851 B.R. Fox and K.G. Kempf. Op-

portunistic scheduling for robotics assembly. In IEEE

International Conference on Robotics and Automation,

pages 880-889, 1985.

[Fox and Smith, 19851 M.S. Fox and S. Smith. Isis: A

knowledge-based system for factory scheduling. Expert

Systems, 1:25-49, 1985.

[Graham et al., 19771 R.L. Graham, E.L. Lawler, J.K.

Len&a, and A.H.G. Rinnooy Kan. Optimization and

approximation in deterministic sequencing and schedul-

ing: A survey. In Proceedings Discrete Optimization,

1977.

[Hageman and Young, 19811 L.A. Hageman and D.M.

Young. Applied Iterative Methods. Academic Press,

1981.

[Hinton and Sejnowski, 19831 G.E. Hinton and T.J. Se-

jnowski. Optimal perceptual inference. In Proceedings

of IEEE Conference on Computer Vision and Pattern

Recognition, pages 448-453, 1983.

[Horvitz, 19871 Eric J. Horvitz. Reasoning about beliefs

and actions under computational resource constraints.

In Proceedings of the 1987 AAAI W orkshop on Uncer-

tainty in Artificial Intelligence, 1987.

[Lesser and Corkill, 19831 V.R. Lesser and D.D. Corkill.

The distributed vehicle monitoring testbed: A tool for

investigating distributed problem solving networks, AI

Magazine, 4:15-33, 1983.

[Mead and Conway, 19801 C.A. Mead and M.A. Conway.

Introduction to VLSI Systems. Addison-Wesley, 1980.

[Pearl, 19851 Judea Pearl. Heuristics. Addison-Wesley,

1985.

[Robert, 19861 F. Robert. Discrete Iterations- A Metric

Study. Springer-Verlag, 1986.

[Tompkins and Wilson, 19691 C.B. Tompkins and W.L.

Wilson. Elementary Numerical Analysis. Prentice-Hall,

1969.

54 Automated Reasoning

