
An Analysis of Traces from a Production
MapReduce Cluster

Soila Kavulya∗, Jiaqi Tan†, Rajeev Gandhi∗ and Priya Narasimhan∗
∗Carnegie Mellon University, Pittsburgh, PA 15213

spertet@ece.cmu.edu,rgandhi@ece.cmu.edu, priya@cs.cmu.edu
† DSO National Laboratories, Singapore 118230

tjiaqi@dso.org.sg

Abstract—MapReduce is a programming paradigm for parallel
processing that is increasingly being used for data-intensive
applications in cloud computing environments. An understanding
of the characteristics of workloads running in MapReduce
environments benefits both the service providers in the cloud
and users: the service provider can use this knowledge to make
better scheduling decisions, while the user can learn what aspects
of their jobs impact performance. This paper analyzes 10-
months of MapReduce logs from the M45 supercomputing cluster
which Yahoo! made freely available to select universities for
academic research. We characterize resource utilization patterns,
job patterns, and sources of failures. We use an instance-based
learning technique that exploits temporal locality to predict job
completion times from historical data and identify potential
performance problems in our dataset.

I. INTRODUCTION

Large-scale data processing is becoming increasingly com-
mon, and has been facilitated by frameworks such as Google’s
MapReduce [1], which parallelizes and distributes jobs across
large clusters. In particular, Hadoop, the open-source imple-
mentation of MapReduce, has been widely used for large-scale
data-intensive tasks such as click-log mining, web crawling,
image processing, and data analysis. Hadoop is widely used
at companies such as Yahoo!, Facebook, and Fox Interactive
Media, as well as for academic research [2]. MapReduce
clusters process large amounts of data–at Google alone, more
than 100,000 MapReduce jobs process more than 20 PB of
data daily [1].

Frameworks such as Hadoop allow users to harness dedi-
cated or virtualized resources in compute clouds to run their
data-intensive jobs. The pay-per-use cost model of cloud
computing (e.g., commercial datacenters like Amazon’s Elastic
Compute Cloud (EC2) charge $0.10-0.80/hour/node for users
wishing to use/lease the computation and storage resources)
coupled with the scale of the clusters required or instantiated
by the users makes cost-management essential. An understand-
ing of the characteristics of workloads running in MapReduce
environments as well as the factors affecting job-completion
times can benefit both the cloud-computing service provider as
well as the users: the service provider can use this knowledge
to make better scheduling decisions and to provision resources
more effectively across diverse workloads, while the user can
learn which aspects of their jobs impact their performance and
drive down the cost of leasing the cloud-computing resources.

To gain insight on MapReduce workloads, we analyzed 10-
months of trace data from the M45 [3] supercomputing cluster,
a production Hadoop environment that Yahoo! administers and
has made freely available to select universities for academic
research. The M45 cluster has approximately 400 nodes, 4000
processors, 3 terabytes of memory, and 1.5 petabytes of disk
space. The cluster runs Hadoop, and uses Hadoop on Demand
(HOD) to provision virtual Hadoop clusters over the large
physical cluster. For the past year, researchers at Carnegie
Mellon University have been running diverse data-intensive
workloads on M45, such as large-scale graph mining, text and
web mining, large-scale computer graphics, natural language
processing, machine translation problems, and data-intensive
file system applications. This paper describes our analysis of
the M45 trace data–both black-box OS performance data (such
as CPU utilization) and white-box performance data (extracted
from native Hadoop logs)–obtained over a 10-month period
spanning parts of 2008 and 2009.

The primary contribution of this paper is to provide a de-
scription of the statistical properties of this trace data that will
aid other researchers in understanding the performance and
failure characteristics of Hadoop jobs running in large-scale
real-world clusters for different, often unknown, workloads.
The main insights from our analysis, as shown in Table I, are
that: (i) job completion times and cluster allocation patterns
follow a long-tailed distribution and require fair job schedulers
[4] to prevent large jobs or heavy users from monopolizing
the cluster; (ii) better diagnosis and recovery approaches
are needed to reduce error latencies in long-running tasks;
(iii) evenly-balanced load across most jobs implies that peer-
comparison is a suitable strategy for anomaly detection as
described in our previous work [6]–[8]; and (iv) low variability
in user behavior over short periods of time allows us to exploit
temporal locality to predict job completion times.

A secondary contribution of this paper is to understand
which aspects of a Hadoop job most affect the completion
time of that job, and to present a simple analytical model
with configurable Hadoop-specific parameters to predict job-
completion times. Due to the lack of labeled data, we could
not verify performance problems. Instead, we inferred perfor-
mance problems by predicting job completion times and flag-
ging large prediction errors as potential performance problems
or workload changes.

jdigney
Text Box

jdigney
Text Box
10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2010). May 17-20, 2010, Melbourne, Victoria, Australia.

2

TABLE I
SUMMARY OF FINDINGS

Finding Implications
Workload characterization
I. The average resource utilization on the cluster was low. For example, average CPU
utilization across all nodes ranged from 5% to 10% (Section III-B).

The low resource utilization presents an opportunity to exploit
energy-aware job scheduling to reduce power consumption.

II. The job completion times and cluster allocation patterns follow a long-tailed
distribution in which small jobs are occasionally interspersed with large jobs that run
for more than one day. (Figures 2(c) and 3(b))

Fair job schedulers, e.g., the Hadoop capacity scheduler, can
prevent large jobs or heavy users from monopolizing the cluster.

III. Most jobs fail within 150 seconds from the first aborted task. However, we observed
a maximum error latency of 4.3 days (Section IV-A).

Better diagnosis and recovery approaches are needed to reduce
error latencies in long-running tasks.

IV. Load was generally evenly distributed across Map and Reduce tasks. (Section V-C1). Peer-comparison is a feasible strategy for anomaly-detection.
Performance prediction
I. The variability in user behavior over short periods of time was low as users tend to
run the same job repeatedly over short intervals of time (Section VI).

Exploiting temporal locality can improve the accuracy of per-
formance prediction.

II. Locally-weighted linear regression predicts job completion times better than the
distance-weighted algorithm when data input sizes are scaled. (Section VII).

Large prediction errors can be used to detect performance
problems and workload changes (Section VII).

Hadoop

Hadoop

.

MASTER SLAVES

HDFS

Hadoop

TaskTracker

Map
Reduce

DataNode

data
blocks

D
at

aN
o
d
e

lo
g

T
as

k
T

ra
ck

er
lo

g

s
a
d
c

v
e
c
to

rs

/proc

Hadoop

JobTracker

NameNode

N
am

eN
o
d
e

lo
g

Jo
b
T

ra
ck

er
lo

g

s
a
d
c

v
e
c
to

rs

/proc

Fig. 1. Architecture of Hadoop, showing the instrumentation sources that
provide us with our M45 data traces.

The paper is organized as follows: Section II provides a
brief background on Hadoop while Section III and III-B de-
scribe the M45 data traces and the cluster allocation patterns.
Section IV provides an analysis of the traces, including job
inter-arrival times and completion times, and job structure.
Section VI presents our prediction algorithm. Section VII
evaluates our approach. Section VIII compares our results to
related work. Section IX concludes.

II. BACKGROUND

Hadoop [9] is an open-source implementation of Google’s
MapReduce [10] framework that enables distributed, data-
intensive, parallel applications by decomposing a massive job
into smaller (Map and Reduce) tasks and a massive data-set
into smaller partitions, such that each task processes a different
partition in parallel. A Hadoop job consists of a group of Map
and Reduce tasks performing some data-intensive computa-
tion. The Map task executes a user-defined map function for
each key/value pair in its input. The Reduce task consists of
a shuffle, sort, and reduce phase. During the shuffle and sort
phase, the Reduce task fetches, merges, and sorts the outputs

from completed map tasks. Once all the data is fetched and
sorted, the Reduce task calls a user-defined function for each
input key and list of corresponding values. Hadoop shares
data amongst the distributed tasks in the system through the
Hadoop Distributed File System (HDFS), an implementation
of the Google File System [11]. HDFS splits and stores files
as fixed-size blocks (except for the last block). Hadoop uses
a master-slave architecture with a unique master node and
multiple slave nodes, as shown in Figure 1. The master node
typically runs two daemons: (1) the JobTracker that schedules
and manages all of the tasks belonging to a running job; and
(2) the NameNode that manages the HDFS namespace by
providing a filename-to-block mapping, and regulates access
to files by clients (i.e., the executing tasks). Each slave node
runs two daemons: (1) the TaskTracker that launches tasks on
its local node, and tracks the progress of each task on its
node; and (2) the DataNode that serves data blocks (on its
local disk) to HDFS clients.

III. DESCRIPTION OF DATASET

The data we collected spanned an 10-month period from
April 25, 2008 to April 24, 2009. (The Hadoop logs from
Nov 12, 2008 to Jan 18, 2009 were unavailable.) The dataset
comprised of 171,079 Hadoop jobs representing a diverse set
of data-intensive workloads, such as large-scale graph mining,
text and web mining, large-scale computer graphics, natural
language processing, machine translation problems, and data-
intensive file system applications.

Table II gives an overview of the dataset. Jobs completed in
20 minutes on average–with less than 4% of jobs exceeding 30
minutes. The maximum job completion time that we observed
was 6.83 days. Each job consisted of an average of 153
Maps and 19 Reduces running on 27 nodes. The maximum
number of nodes allocated to a job in our dataset was 299.
We categorized the completion status of jobs as: (i) successful
jobs, (ii) failed jobs which were aborted by the JobTracker due
to unhandled exceptions, and (iii) cancelled jobs which were
aborted by the user or the weekly maintenance daemon on
M45. The job success-rate was high–97% of jobs completed
successfully, 2.4% failed, and 0.6% were cancelled.

3

TABLE II
SUMMARY OF M45 DATASET.

Log Period Apr 25 - Nov 12, 2008
Jan 19 - Apr 24, 2009

Hadoop versions 0.16: Apr 2008 -
0.17: Jun 2008 -
0.18: Jan 2009 -

Number of active users 31
Number of jobs 171079
Successful jobs 165948 (97%)
Failed jobs 4100 (2.4%)
Cancelled jobs 1031 (0.6%)
Average maps per job 154 ± 558σ
Average reduces per job 19 ± 145σ
Average nodes per job 27 ± 22σ
Maximum nodes per job 299
Average job duration 1214±13875σ seconds
Maximum job duration 6.84 days
Node days used 132624

TABLE III
JOB HISTORY STATISTICS.

Metric Description
Task duration Duration of Maps/Reduces
Task status Success, failed, or incomplete
Task input/output sizes Input/output records (or bytes) to task
Spilled records Records spilled to disk
Data locality Data-,rack-, or non-local
Combiner records Combiner input/output records
File-system bytes Bytes read/written to disk (or HDFS)
Map/Reduce counts Launched tasks and Map/Reduce slots

TABLE IV
RESOURCE USAGE METRICS

Resource Metrics
CPU utilization System, User, IOWait % utilization
Network KBps received/sent
Disk KBps read/written

The cluster ran three major Hadoop versions during this
period (see Table II) namely: (i) Hadoop version 0.16 from
April 2008, (ii) Hadoop version 0.17 from June 2008, and
(iii) Hadoop version 0.18 from January 2009. There were also
some minor version upgrades during this period.

A. Data collection

Figure 1 describes the native Hadoop logs (labeled the
JobTracker logs) that we obtained over the 10-month period
for our analysis. We parsed the JobTracker logs to extract the
information listed in Table III. In addition to the log traces,
we also obtained and analyzed periodically sampled /proc-
based OS performance data (labeled black-box data) over the
same period of time. The OS performance data was sampled
at 5-minute intervals and a subset of the metrics collected is
listed in Table IV.

B. Resource Utilization

Resource utilization on the cluster rose significantly from 2008
to 2009. The allocation of the cluster increased from ∼20%
of the node hours available in mid-2008 to ∼40% in late
2008 and 2009 (see Figure 2(a)). CPU utilization on the
cluster increased from ∼5% in 2008 to ∼10% in 2009. This
increase in CPU utilization does not appear to be correlated
with the increased node allocation in November 2008. Since
the increase in CPU utilization corresponds with an upgrade
from Hadoop 0.17 to Hadoop 0.18, we hypothesize that the
increased CPU utilization might be due to changes in the
compression of map outputs in Hadoop 0.18, coupled with
changes in user workload. Network and disk utilization also
rose from 2008 to 2009 (see Table V). Despite the increased
resource utilization in 2009, the cluster operated below its peak
capacity. The low resource utilization presents an opportunity
to reduce power consumption by exploiting energy-aware
job scheduling. Node allocation patterns between users was
skewed with 32% of the users accounting for 98% of the node
hours allocated in the cluster (see Figure 2(c)).

TABLE V
NETWORK AND DISK UTILIZATION

Metric 2008 (µ ±σ) 2009 (µ ±σ)
Network KBps Received 150±213 494±402
Network KBps Sent 148±217 501±405
Disk KBps Read 308±180 960±890
Disk KBps Write 361±369 987±1300

IV. JOB CHARACTERIZATION

We analyzed the completion times of successful jobs, failed
jobs, and cancelled jobs in 2008 and 2009. Failed jobs are
jobs which were aborted by the JobTracker due to unhandled
exceptions, and cancelled jobs were aborted by the user or
the weekly maintenance daemon. We measured the completion
time of cancelled jobs by subtracting the timestamp of the last
entry in the JobTracker log file from the job submission time.
Figure 3(a) shows the total number of successful, failed and
cancelled jobs per month. There was a burn-in period over the
first two months of operation during which the job failure rate
was high–in April 2008, 70% of jobs failed, and in May 2008,
10% of jobs failed. From June 2008 onwards, the failure rate
dropped to 3%.

We computed the mean, standard deviation, and the coeffi-
cient of variation (CV) for the job completion times. The coef-
ficient of variation is the ratio of the standard deviation to the
mean. Distributions with CV < 1 have a low-variance, while
those with CV > 1 have high-variance. We used the maximum-
likelihood estimation method in R’s MASS [12] package
to fit the job completion times to the exponential, Weibull,
and lognormal distributions. We measured the goodness of fit
between the empirical distribution function and the reference
distribution using the Kolmogorov-Smirnov (KS) test.

We observed that the job completion times follow a long-
tailed distribution with 95% of jobs completing within 20
minutes. (see Figure 3(b)). The longest running job we
observed lasted 6.83 days. Jobs aborted by the JobTracker
had lower completion times than jobs aborted by the user.

4

(a) Mean node hours allocated increased from
∼20% in mid-2008 to ∼40% in late 2008.

(b) Average CPU utilization increased to
∼10% in 2009. This increase appears corre-
lated with upgrade to Hadoop 0.18.

(c) Cluster allocation patterns follow a long-
tailed distribution– 32% of the users account
for 98% of the node hours allocated.

Fig. 2. Resource usage patterns on M45.

A
p

r-
2

0
0

8

M
a

y-
2

0
0

8

Ju
n

-2
0

0
8

Ju
l-

2
0

0
8

A
u

g
-2

0
0

8

S
e

p
-2

0
0

8

O
ct

-2
0

0
8

N
o

v-
2

0
0

8

Ja
n

-2
0

0
9

F
e

b
-2

0
0

9

M
a

r-
2

0
0

9

A
p

r-
2

0
0

9

T
o

ta
l

Jo
b

s

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0
0

Successful Failed Cancelled

(a) The job failure rate during the first two
months was high, but subsequently dropped to
3%.

(b) Job completion times follow a long-tailed
distribution.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error latency

C
u
m

m
u
la

tiv
e
 d

is
tr

ib
u
ti
o
n
 o

f
fa

ilu
re

s

1s 100s 1h 100h

(c) Most jobs fail within 150 seconds after the
first unrecoverable task aborts. However, we
observed a maximum error latency of 4.3 days.

Fig. 3. Distribution of job completion times and error latencies.

TABLE VI
DISTRIBUTION OF JOB COMPLETION TIME (M - MEAN, SD - STANDARD DEVIATION, CV - COEFFICIENT OF VARIATION, KS - MAXIMAL DISTANCE

BETWEEN THE CUMULATIVE DISTRIBUTION FUNCTION OF THE THEORETICAL DISTRIBUTION AND THE SAMPLE EMPIRICAL DISTRIBUTION).

Period Job status Mean SD CV Best fitted distribution KS
2008 Successful 1065.35 11673.79 10.96 Lognormal (µ=4.29, σ=1.44) 0.130

Failed 7193.96 38521.66 5.36 Lognormal (µ=4.23, σ=2.22) 0.300
Cancelled 45861.79 123114.3 2.68 Lognormal (µ=6.75, σ=2.84) 0.128

2009 Successful 507.375 1268.315 2.50 Lognormal (µ=5.24, σ=1.44) 0.060
Failed 1273.24 5574.86 4.38 Lognormal (µ=4.87, σ=1.88) 0.200
Cancelled 7335.54 37860.92 5.16 Lognormal (µ=6.78, σ=1.87) 0.057

90% of failed jobs were aborted within 35 minutes, compared
to cancelled jobs where 90% of jobs were aborted within 9
hours. In Figure 3(b), we observe a cluster of cancelled jobs
which were aborted after 100 hours. These completion times
correspond to the weekly maintenance task on M45 which
shuts down active Hadoop daemons.

We measured the goodness of fit of the job completion times
against the exponential, Weibull, and lognormal distributions.
The lognormal distribution was the best fitting distribution
for the successful, failed and cancelled jobs (see Table VI).

However, the large distances yielded by the Kolmogorov-
Smirnoff test for failed jobs, indicates that a distribution other
than the lognormal, Weibull, and exponential distributions that
we tested might be a better fit.

Long-tailed job completion times have also been observed
in other MapReduce clusters [4], prompting the development
of fair job schedulers, such as the Hadoop capacity scheduler
[5] and the Quincy fair scheduler [4], which prevent large jobs
or heavy users from monopolizing the cluster.

5

JobAbort MapException ReduceException TaskTimeout TrackerLost

P
e
rc
e
n
ta
g
e
 o
f
jo
b
s

0
2
0

4
0

6
0

8
0

Failed jobs
Cancelled jobs

Fig. 4. Most job failures occurred during the map phase.

A. Failure Characterization

There were 4100 failed jobs and 1031 incomplete jobs in our
dataset. These failures accounted for 3% of the total jobs run.
We observed that:

1) Most jobs fail within 150 seconds after the first aborted
task. Figure 3(c) shows that 90% of jobs exhibited an
error latency of less than 150 seconds from the first
aborted task to the last retry of that task (the default
number of retries for aborted tasks was 4). We observed
a maximum error latency of 4.3 days due to a copy
failure in a single reduce task. Better diagnosis and
recovery approaches are needed to reduce error latencies
in long-running tasks.

2) Most failures occurred during the map phase. Failures
due to task exceptions in the map phase were the
most prevalent–36% of these failues were due to array
indexing errors (see Figure 4). IO exceptions were
common in the reduce phase accounting for 23% of
failures. Configuration problems, such as missing files,
led to failures during job initialization.

3) Application hangs and node failures were more preva-
lent in cancelled jobs. Task timeouts, which occur when
a task hangs and fails to report progress for more than
10 minutes, and lost TaskTracker daemons due to node
or process failures were more prevalent in cancelled jobs
than in failed jobs.

4) Spurious exceptions exist in the logs. The logs contained
spurious exceptions due to debugging statements that
were turned on by default in certain versions of Hadoop.
For example, a debug exception to troubleshoot a prob-
lem in the DFS client attributed to data buffering, and an
exception due to a disabled feature that ignored the non-
zero exit codes in Hadoop streaming, accounted for 90%
of exceptions from January 21 to February 18, 2009.
This motivates the need for error-log analysis tools that
highlight important exceptions to users.

V. JOB STRUCTURE

We examined the structure of the Hadoop jobs in our dataset
by categorizing jobs based on the amount of time spent in each
MapReduce phase namely: (i) map-only jobs, (ii) map-mostly

jobs, and (iii) reduce-mostly jobs. We then used a one-way
analysis of variance (ANOVA) to determine which Hadoop-
specific parameters (see Table III) had the most influence
on job completion times. For continuous input parameters,
ANOVA is equivalent to a linear regression, which tests for a
significant slope in the line of best fit. The F-statistic computed
during the ANOVA measures the degree to which the variance
in the predicted value is explained by the variance in the input
parameters. Large values of the F-statistic which exceed a
critical threshold allow us to reject the null hypothesis that
the input parameter has no influence on the predicted value.
We list the Hadoop-specific parameters which influenced job
completion times in Table VII. These parameters yielded an
F-statistic that was significant at the 5% level. We provide a
summary of the job categories below:

1) Map-only jobs: Map-only jobs had no Reduce phase and
were the most common pattern in our dataset with 77%
of jobs falling in this category. The mean job completion
time was 531 seconds. These jobs tended to be write-
intensive and job completion times were influenced by
the number of Map tasks launched and the amount of
data read to HDFS.

2) Map-mostly jobs: These jobs had a Reduce phase but
spent most of their time in the map-phase. This pat-
tern accounted for 14% of jobs and had a mean job
completion time of 440 seconds. These jobs were also
write-intensive and completion times were primarily
influenced by the amount of data written and read from
the local file-system.

3) Reduce-mostly jobs: These jobs spent most of their
time in the Reduce phase and accounted for 9% of
the jobs. These jobs had the longest running times
with a mean job completion time of 5830 seconds. The
job completion times were primarily influenced by the
number of Reduce tasks launched.

We also studied the characteristics of the behavior of
individual MapReduce jobs by utilizing our prior work in
Hadoop log analysis [6], [13] to generate abstractions and
visualizations of MapReduce behavior within individual jobs
at the level of Maps and Reduces, particularly making use
of the “Swimlanes” space-time plots of task execution in a
Hadoop cluster.

A. In-Job Behavior: “Swimlanes” Plots

The Swimlanes visualization plots the executions of Map
and Reduce tasks of one (or more) MapReduce job(s). Figure
5 shows a plot of a typical MapReduce job: the horizontal
axis shows the time elapsed since the start of the job. For
each (Map or Reduce) task, a horizontal line is plotted to
indicate the duration of the job during which it was executing.
The executions of Map and Reduce tasks are plotted using
different colors. Tasks are plotted in the order in which they
were executed during the job. ([13] explores other insights
that can be gleaned from different orderings of the tasks being
plotted.) The behavior of each MapReduce job can be studied

6

TABLE VII
TOP FIVE JOB-EXECUTION CHARACTERISTICS WHICH INFLUENCE PERFORMANCE.

Map-only Map-mostly Reduce-mostly
Prevalence of jobs 77% Prevalence of jobs 14% Prevalence of jobs 9%
Mean job duration 531±8135s Mean job duration 440±2070s Mean job duration 5830±25072s
Influential metrics F Influential metrics F Influential metrics F
TotalMaps 147 LocalBytesWritten 1876 TotalReduces 1376
HDFSBytesWritten 42 LocalBytesRead 945 ReduceSlots 31
MapInputRecords 33 TotalMaps 756 MapSlots 14
MapOutputRecords 21 TotalReduces 619 LocalBytesWritten 12
MapOutputBytes 18 MapInputBytes 578 HDFSBytesWritten 9

0 200 400 600 800

0
5
0

1
0
0

1
5
0

Time/s

P
e
r-

ta
sk

Sort Workload (4 nodes)

JT_Map
JT_Reduce

Fig. 5. Example Swimlanes plot showing two jobs executing one after
another. Maps are shown in blue with crosses at the end of each line, and
Reduces are shown in green with triangles at the end of each line. The
horizontal axis shows time elapsed during the job, and each horizontal line
shows the duration of execution of one task (Map or Reduce). Each tick in
the vertical axis is occupied by one task.

in greater detail from the Swimlanes plot of its execution,
and we focus on two aspects of MapReduce behavior that are
highlighted by our visualization: (i) the phenomenon of the
execution of tasks progressing in “waves”, and (ii) the equality
of the distribution of job times.

B. “Wave” Behavior of Task Scheduling

Hadoop MapReduce slave nodes are configurable to concur-
rently execute up to a particular number of Map (and Reduce)
tasks1. Hence, slave nodes are typically said to possess that
number of Map (and Reduce) slots, each of which can execute
one Map (and Reduce) task. If the number of Map (or Reduce)
tasks in the job exceeds the number of Map (or Reduce)
slots available, then Maps (or Reduces) are first scheduled
to execute on all available slots are first and these Maps (or
Reduces) form the first “wave” of tasks, and subsequent tasks
form the second, third, and subsequent waves. We labeled tasks
by the waves they belonged to, and illustrated these waves on
our Swimlanes plots as well. Such “wave” behavior can be
seen in Figure 5 where there are multiple waves of Map tasks,
and two waves of Reduce tasks.

Understanding the “wave” behavior in tasks, such as the
number of waves, and the sizes of waves, would aid the
configuration of tasks for improved cluster utilization. For

1As of Hadoop release 0.20, Map and Reduce task slots can be used
interchangeably and there is no longer a notion of dedicated Map-slots and
Reduce-slots.

Number of waves (Maps)

100

101

102

103

104

0 50 100 150 200

(a) Histogram of Number of Map
Waves in Jobs. Frequencies shown
on a logarithmic scale.

Number of waves (Reduces)

100

101

102

103

104

0 10 20 30 40 50

(b) Histogram of Number of Re-
duce Waves in Jobs. Frequencies
shown on a logarithmic scale.

Fig. 6. Histograms of jobs with a given number of Map waves or Reduce
waves.

instance, having waves that do not saturate all available slots
in the cluster would result in a portion of the cluster being idle
during that wave (in particular, this occurs frequently during
the last wave of a job).

1) Observations of Wave Behavior: First, we survey the
distribution of the number of Map waves and Reduce waves
in user jobs in our dataset. Figure 6 shows the distribution
of jobs and the number of Map waves and Reduce waves in
jobs in our dataset. We observed that most jobs have relatively
few Map waves (more than 95% of jobs have fewer than 24
waves of Maps), while a small number of jobs have a large
number of Map waves (several hundred). On the other hand,
95% of jobs have fewer than 7 waves of Reduces, with the
vast majority of jobs having fewer than 2 Reduce waves. We
hypothesize that jobs with few (< 24) Map waves exhibit
these waves due to users provisioning virtual Hadoop clusters
that are small relative to the number of available nodes out
of politeness; this resulted in their jobs requiring multiple
waves to complete the execution of all Map tasks. Jobs with
extremely large numbers of Map waves (in excess of 100) are
likely to have been processing very large datasets that resulted
in a large number of input splits, resulting in large numbers
of Map tasks. The observation that almost all jobs have 2 or
fewer Reduce waves probably reflects users using a published
heuristic for setting the number of Reduce tasks in a job to
0.95 the number of available Reduce slots [14]. Hence, most

7

Map tasks occur in multiple waves, while Reduce tasks tend to
complete in one to two waves, in most real-world workloads.

C. Equity of Task Durations

Next, we study the extent to which tasks (Maps and Reduces)
in a MapReduce job take comparable amounts of time to
complete. This property of how equitable durations are across
tasks, which we term the “equity of task durations”, is im-
portant in optimizing the performance of parallel programs
in general. Intuitively, parallel programs perform optimally
when the different threads (a term we use loosely to refer
to independently executing parts) of the program executing
in parallel complete in the same amount of time; otherwise,
the runtime of the program can be reduced by redistributing
work from threads taking longer to complete to work taking
less time to complete. Alternatively, the disequity of task
durations, or imbalances in runtimes of the various tasks,
can be seen as indications of inefficiency or performance
problems (if each task has the same amount of work), or
as an indication that the job at hand intrinsically consists
of barriers to its parallelization. Visually, this can also be
seen from the Swimlanes plots of MapReduce job behavior;
“straggler” Map or Reduce tasks, which take much more time
than other tasks to complete, slow the completion of jobs,
and are easily seen visually from our plots. These stragglers
would also typically render the durations of tasks in the job
less equitable, so studying the equity of task durations is
also instructive in indirectly (but scalably, for large datasets)
identifying the possible existence of straggler tasks.

1) Measure of Task Equity: Gini Coefficient: We use the
Gini Coefficient [15], a measure of statistical dispersion typi-
cally used as an indicator for income inequality in nations, as a
measure of the extent to which task durations are comparable
(or equal in the best case). The Gini Coefficient runs from 0.0
to 1.0 in value and is a ratio of actual cumulative job durations
to the ideal (equal) cumulative job durations. In our context, a
Gini Coefficient value of 0.0 indicates that all tasks have equal
durations, while higher values indicate that there is a greater
disparity among the durations of tasks. The Gini Coefficient
is more useful than observing the Cumulative Distribution
Function (CDF) of task runtimes when analyzing large datasets
of job data, such as with our dataset, as it provides us with a
single number indicative of the “health” of the equity of task
durations for each job. However, the Gini Coefficient only
serves as a measure of (statistical) dispersion, but does not
imply if a particular level of dispersion is desirable (or not).

2) Observations of Equity of Task Durations: Next, we
surveyed the Gini Coefficients of the durations of Map and
Reduce tasks for each job in our dataset. Figure 6 shows
the histograms of the number of jobs with the given Gini
Coefficient values for their Map and Reduce tasks separately.

We observed that most jobs exhibited low values of the Gini
Coefficient for both Map and Reduce task durations, indicating
that the durations of Map tasks (and Reduce tasks) were
comparable in most jobs, with more than 85% of jobs with
Gini Coefficients of Map durations of < 0.2, and with more

Gini coefficients (Map Durations)

100

101

102

103

104

0.0 0.2 0.4 0.6 0.8

(a) Histogram of Gini Coefficients
of Map Durations. Frequencies
shown on a logarithmic scale.

Gini coefficients (Reduce Durations)

100

101

102

103

104

105

0.0 0.2 0.4 0.6 0.8

(b) Histogram of Gini Coefficients
of Reduce Durations. Frequencies
shown on a logarithmic scale.

Fig. 7. Histograms of Gini Coefficients.

than 75% of jobs with Gini Coefficients of Reduce durations
of < 0.2. However, we also observed that there were jobs
with high values of Gini Coefficients in excess of 0.5, could
be indicative of performance problems, or data skews. Hence,
we can conclude that most user jobs in M45 had Maps and
Reduces with runtimes that were comparable amongst each
other.

VI. PERFORMANCE PREDICTION

Anecdotal evidence from users indicates that they experienced
performance problems while running their jobs. Due to the
lack of labeled data on performance problems, we inferred
performance problems by predicting job completion times
and flagging large prediction errors as potential performance
problems or workload changes.

The performance prediction algorithm extends the instance-
based (nearest-neighbor) learning approaches described in
[16], [17]. The algorithm consists of two steps: (i) using
a distance-based approach to find a set of similar jobs in
the recent past, and (ii) generating regression models which
predict the completion time of the incoming job from the
Hadoop-specific input parameters listed in the set of similar
jobs. A manual inspection of jobs corroborated the findings
of [18] which showed that users tended to run the same job
repeatedly over short intervals of time–allowing us to exploit
temporal locality to predict job completion times.

A. Finding similar jobs

We used the Hadoop-specific input parameters listed in Table
VIII to identify similar jobs in the recent past. These features
are known at the onset of the incoming job and are used
to quantify the distance between jobs. We included the job
submission time as a feature in order to exploit temporal
locality.

We used the Heterogeneous Euclidean Overlap Metric [19]
to quantify the distance between jobs, and locate similar jobs
based on a combination of input features. The Heterogeneous
Euclidean Overlap Metric is a distance function, D(x, y),

8

TABLE VIII
DISTANCE COMPUTATION AND REGRESSION FEATURES.

Feature Type Distance Regression
Job submission time Numeric

√
×

User name Categorical
√

×
Job name Categorical

√
×

Map slots Numeric
√ √

Reduce slots Numeric
√ √

Map input bytes Numeric
√ √

Map input records Numeric
√ √

that can be used for both categorical and numeric features.
Categorical features are assigned the minimal distance of 0
if they are identical, and the maximal distance 1 if they are
different. For numeric features, the distance is defined as the
difference between the two numeric features normalized by the
range of values for that feature, yielding a distance between 0
and 1. We scaled the numeric features using the log-scale due
to the large numeric ranges present in our dataset. Missing
features are handled by returning a distance of 1 (i.e., a
maximal distance). The total distance between two jobs is
the square root of the squared sum of the individual feature
distances.

We observed a large variance in job names in our dataset–
only 40% of jobs appear to have run multiple times. One
reason for this variance is that Hadoop assigns random job
names to streaming jobs that allow users to run any executable
or script as a mapper or reducer. Another reason is that users
sometimes add unique identifiers to differentiate between jobs
that are running the same application but that are processing
different datasets. To cope with these variations and improve
our ability to locate similar jobs, we computed the distance
between two job names as the length of the longest common
prefix divided by the maximum length of the job names.

B. Predicting Job Completion Times

We identified the K-Nearest-Neighbors for the incoming job
based on the Heterogeneous Euclidean Overlap Metric, and
predicted the job completion times using two algorithms
namely: (i) the distance-weighted average algorithm [16], and
(ii) the locally-weighted linear regression [17], [20] algorithm
described below.

1) Distance-weighted average: The distance-weighted av-
erage predicts the job completion times by computing the
weighted average of the completion times of jobs in the neigh-
borhood of the incoming job. The weights are calculated using
a Gaussian smoothing kernel [16] function, K(d) = e

−d2
h ,

where the distance, d, is the Heterogeneous Euclidean Overlap
Metric, and the bandwidth, h, is a smoothing factor. The
Gaussian kernel function assigns a maximal weight of 1 to
jobs that are identical to the incoming job, and lower weights
to jobs that are further away. The kernel bandwidth modulates
the weight assigned to jobs–smaller bandwidths assign larger
weights to jobs that are nearer to the incoming job.

2) Locally-weighted linear regression: The locally-
weighted linear regression algorithm [17], [20] models job

completion times as a multi-variate linear function of the
features listed in Table VIII. A Gaussian smoothing kernel
is used to compute weights that bias the outcome of the
regression towards similar jobs. We measured the goodness
of fit of our linear models using the adjusted coefficient of
determination, R2, which explains the percentage of variation
that can be explained by the variables in our model. The
adjusted R2 adjusts for the number of parameters in the linear
model and ranges from 0 to 1. A value of 1 indicates that
the model perfectly explains the observed data. If we were
unable to compute the adjusted R2 value due to non-linear
relationships in the data, we reverted to the distance-weighted
average for our predictions.

We observed that some input features were linearly depen-
dent, i.e., collinear, in certain jobs. For example, some jobs
exhibited a strong correlation between the number of map
slots and the number of map input records. Linear regression
in the presence of collinearity led to unstable estimates, e.g.,
negative or very large estimates for the job completion times.
We detected collinearity by calculating the variance inflation
factor [21] and sequentially dropping collinear variables. The
variance inflation factor, 1

1−R2 , is derived from the coefficient
of determination, R2, which is computed by performing a
linear regression analysis of each independent variable using
the remaining independent variables. Collinearity exists if the
variance inflation factor exceeds 10.

C. Training

Our models need the following two parameters to be set:
(i) the kernel bandwidth, H , which serves as a smoothing
parameter for the distance-weighted average, and (ii) the size
of the neighborhood, K. The size of the neighborhood should
be large enough to generate robust linear models capable
of accurately predicting job completion times, and yet small
enough to exclude samples from dissimilar jobs which distort
the outcome of the regression. We set the values to H = 0.01
for the distance-weighted average, H = 1 for the locally-
weighted linear regression, and K = 1000 based on our
experiments.

VII. PREDICTION RESULTS

We analyzed two aspects of our performance prediction
algorithms namely: (i) the effect of scaling the input data size
on the accuracy of our algorithms, and (ii) the accuracy of
our prediction algorithms on the full dataset. We measured
the accuracy of our algorithms using the relative prediction
error, abs(predicted−actual)

actual , of job completion times.
Effect of scaling input data: We analyzed the perfor-

mance of the distance-weighted algorithm and the locally-
weighted linear regression algorithm at predicting job com-
pletion times when we scaled the map input sizes of three
frequently-run jobs in our dataset. The training data consisted
of 75,355 jobs whose map input sizes fell below the 75th

percentile of map input sizes for each of the three job types.
The test data consisted of 3,938 jobs whose map input sizes
fell in the top-25th percentile.

9

(a) Locally-weighted linear regression has a
mean prediction error of ∼26% compared to
70% for the distance-weighted algorithm.

(b) The mean prediction error of the linear
regression model remains relatively constant as
we scale the map input sizes.

(c) Large prediction errors were due to work-
load changes and performance problems.

Fig. 8. Trends in the relative prediction error as we scale the map input sizes of three frequently-run jobs.

Figure 8(a) shows that locally-weighted linear regression
performs better with a mean relative prediction error of 26%
compared to 70% for the distance-weighted algorithm. Figures
8(b) and 8(c) show the effect of scaling the map input sizes
and map slots on the relative prediction error. We measured
scale by computing the distance from the test jobs and their
nearest neighbors in the training data.

We observed that the mean prediction error remained rel-
atively constant as we scaled the map input sizes. However,
contrary to our expectations, the largest variance in prediction
errors occurred when the distance from the nearest neighbor
was smallest. A manual inspection of the top-20 jobs with the
largest prediction errors yielded the following sources of error:

– Performance problems: Performance problems due to
application hangs, process failures, and a configuration
problem which introduced a random 3-minute delay
when instantiating sockets [13] led to large prediction
errors in 35% of the jobs. An additional 15% of jobs
exhibited large prediction errors due to performance
problems in jobs in the training data which skewed the
results. Outlier filtering might reduce these errors.

– Workload changes: 40% of the large prediction er-
rors were due to workload changes where different
application-specific input arguments led to large varia-
tions in the job completion times. Our algorithms were
unable to detect these changes as we restricted them to
the generic Hadoop-specific input parameters.

– Poor linear models: We hypothesize that the errors in
10% of the jobs might be due to non-linear behavior that
we did not capture in our models.

Accuracy on full dataset: We used the locally-weighted
linear regression model to predict the job completion times
of successful, failed, and cancelled jobs for the full dataset
. The mean relative prediction error was high: 236% for
successful jobs, 1215% for failed jobs, and 888% for cancelled
jobs. Based on our previous observation, we hypothesize that
the large prediction errors are due to performance problems,

workload changes and poor linear models. When we restrict
our results to the 80th percentile of prediction errors, the mean
relative prediction error drops to 32% for successful jobs, 60%
for failed jobs, and 74% for incomplete jobs indicating that
the algorithm can detect failures.

VIII. RELATED WORK

Several studies [16], [17], [22] have applied instance-based
learning approaches to predict the performance of job com-
pletion times in grid environments. Our study uses a similar
approach to predict job completion times in MapReduce
workloads, and outlines the reasons for the errors we observe.

Our analysis of MapReduce workloads corroborates ob-
servations from previous studies of workloads on parallel
computer systems [18], [23], [24]. These studies observed that
the job durations and inter-arrival times followed heavy-tailed
distributions such as the log-uniform and Gamma distributions.
Li et al. [24] and Downey et al. [18] also show that user
behavior is uniform and predictable over short time intervals
allowing better predictions to be made for improving the job
scheduling.

Our previous work [6]–[8] extracted state-machines from
the Hadoop logs and diagnosed performance problems by ex-
ploiting peer-comparison to detect anomalies in the durations
of MapReduce states, and black-box OS performance counters.
We validated our algorithms using data collected through
fault-injection experiments on a test cluster instantiated on
Amazon’s EC2. Our analysis of the M45 dataset demonstrates
that most jobs had Maps and Reduces with runtimes that were
comparable amongst each other–thereby validating our peer-
comparison hypothesis for a diverse set of workloads.

Other studies of production traces of computer systems and
clusters have also focused on failure data and characteristics
[25]–[29]. All these studies focused on hardware failures,
except [27], which examined component and service failures.
[26], [28] examined specialized computer systems such as
single-fault-tolerant Tandem computers and mainframes, while
more recent studies examined High-Performance Computing

10

(HPC) clusters, and web-service/Internet architectures. Of
these studies, only [28] explicitly considered workload in con-
cert with the failure data. Also, these studies did not examine
specific workloads. The distinguishing features of our analysis
is that it provides insight on job and user characteristics
specific to the MapReduce workload, which is an important
class of workloads in today’s Cloud Computing.

Wang et al. [30] built a simulator for MapReduce workloads
which captures predicts the expected application performance
for varied MapReduce configurations. Their approach achieved
high prediction accuracy, ranging between 3.42% and 19.32%.
However, they require precise information on the compute
cycles spent per input byte for each application–this infor-
mation might not always be available. Instance-based learning
approaches attempt to estimate job completion times even in
the presence of uncertainty.

IX. CONCLUSION

We analyzed Hadoop logs from the 400-node M45 [3]
supercomputing cluster which Yahoo! made freely available
to select universities for systems research. Our studies tracks
the evolution in cluster utilization patterns from its launch
at Carnegie Mellon University in April 2008 to April 2009.
Job completion times and cluster allocation patterns followed
a long-tailed distribution motivating the need for fair job
schedulers [5] to prevent large jobs or heavy users from mo-
nopolizing the cluster. We also observed large error-latencies
in some long-running tasks indicating that better diagnosis and
recovery approaches are needed.

User tended to run the same job repeatedly over short inter-
vals of time thereby allowing us to exploit temporal locality to
predict job completion times. We compared the effectiveness
of a distance-weighted algorithm against a locally-weighted
linear algorithm at predicting job completion times when
we scaled the map input sizes of incoming jobs. Locally-
weighted linear regression performs better with a mean relative
prediction error of 26%.

ACKNOWLEDGMENT

The authors would like to thank Yahoo! for providing access
to the M45 cluster, and the researchers at CMU for the insights
they gave us on their workloads. This work is supported by the
NSF CAREER Award CCR-0238381 and grant CNS-0326453.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters.” Communications of the ACM, vol. 51, pp. 107–113, 2008.

[2] Hadoop, “Powered by Hadoop,” http://wiki.apache.org/hadoop/
PoweredBy.

[3] Yahoo!, “M45 supercomputing project,” 2009, http://research.yahoo.
com/node/1884.

[4] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
ACM Symposium on Operating Systems Principles, Big Sky, Montana,
Oct. 2009, pp. 261–276.

[5] Yahoo!, “Hadoop capacity scheduler,” 2008, https://issues.apache.org/
jira/browse/HADOOP-3445.

[6] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “SALSA:
Analyzing Logs as State Machines,” in USENIX Workshop on Analysis
of System Logs, San Diego, CA, Dec. 2008.

[7] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Ganesha:
Black-Box Diagnosis of MapReduce Systems,” in Workshop on Hot Top-
ics in Measurement and Modeling of Computer Systems (HotMetrics),
Seattle, WA, Jun. 2009.

[8] ——, “Blind Men and the Elephant: Piecing together Hadoop for diag-
nosis,” in International Symposium on Software Reliability Engineering
(ISSRE), Mysuru, India, Nov. 2009.

[9] T. A. S. Foundation, “Hadoop,” 2007, http://hadoop.apache.org/core.
[10] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on

large clusters,” in USENIX Symposium on Operating Systems Design
and Implementation, San Francisco, CA, Dec. 2004, pp. 137–150.

[11] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File System.” in
ACM Symposium on Operating Systems Principles, Lake George, NY,
Oct 2003, pp. 29 – 43.

[12] B. Ripley, “R’s MASS statistical package,” 2009, http://cran.r-project.
org/web/packages/VR/index.html.

[13] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Mochi:
Visual Log-Analysis Based Tools for Debugging Hadoop,” in USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), San Diego,
CA, Jun. 2009.

[14] T. A. S. Foundation, “The Map/Reduce Tutorial,” 2008, http://hadoop.
apache.org/common/docs/current/mapred tutorial.html.

[15] C. W. Gini, “Variability and mutability, contribution to the study of
statistical distributions and relations,” Studi Economico-Giuridici della
R. Universita de Cagliari, 1912, reviewed in: Light, R.J., Margolin,
B.H.: An Analysis of Variance for Categorical Data. J. American
Statistical Association, Vol. 66 pp. 534-544 (1971).

[16] W. Smith, “Prediction services for distributed computing,” in Interna-
tional Parallel and Distributed Processing Symposium, Long Beach, CA,
March 2007, pp. 1–10.

[17] N. H. Kapadia, J. A. Fortes, and C. E. Brodley, “Predictive application-
performance modeling in a computational grid environment,” in In-
ternational Symposium on High-Performance Distributed Computing.
Redondo Beach, CA: IEEE Computer Society, Aug. 1999, p. 6.

[18] A. B. Downey and D. G. Feitelson, “The elusive goal of workload char-
acterization,” SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, vol. 26, no. 4, pp. 14–29, 1999.

[19] R. D. Wilson and T. R. Martinez, “Improved heterogeneous distance
functions,” Journal of Artificial Intelligence Research, vol. 6, pp. 1–34,
1997.

[20] S. S. Chris Atkeson, Andrew Moore, “Locally weighted learning,”
Artificial Intelligence Review, vol. 11, pp. 11–73, Apr. 1997.

[21] G. W. Stewart, “Collinearity and least squares regression,” Statistical
Science, vol. 2, no. 1, pp. 68–84, 1987. [Online]. Available:
http://www.jstor.org/stable/2245615

[22] S. Krishnaswamy, S. W. Loke, and S. W. Loke, “Estimating computation
times of data-intensive applications,” IEEE Distributed Systems Online,
vol. 5, no. 4, 2004.

[23] U. Lublin and D. G. Feitelson, “The workload on parallel supercomput-
ers: modeling the characteristics of rigid jobs,” Journal of Parallel and
Distributed Computing, vol. 63, no. 11, pp. 1105–1122, Nov. 2003.

[24] H. Li, D. L. Groep, and L. Wolters, “Workload characteristics of a
multi-cluster supercomputer,” in Job Scheduling Strategies for Parallel
Processing, New York, NY, Jun. 2004, pp. 176–193.

[25] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” in Dependendable Systems and Net-
works, Philadelphia, PA, Jun. 2006.

[26] J. Gray, “A census of tandem system availability between 1985 and
1990,” in IEEE Transactions on Reliability, Oct. 1990.

[27] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why do Internet
services fail, and what can be done about it?” in USENIX Symposium
on Internet Technologies and Systems, Mar. 2003.

[28] R. Iyer, D. Rossetti, and M. Hsueh, “Measurement and modeling of
computer reliability as affected by system activity,” in ACM Transactions
on Computer Systems, Aug. 1986.

[29] R. Sahoo, M. Squillante, A. Sivasubramaniam, and Y. Zhang, “Failure
data analysis of a large-scale heterogeneous server environment,” in
Dependendable Systems and Networks, Florence, Italy, Jun. 2004.

[30] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A simulation approach
to evaluating design decisions in MapReduce setup,” in International
Symposium on Modelling, Analysis and Simulation of Computer and
Telecommunication Systems, London, UK, Sep. 2009.

