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An analysis of variance test for normality 
(complete samp1es)t 

BYS. S. SHAPIRO AND M. B. WILK 

General Electric Go. and Bell Telephone Laboratories, Inc. 

The main intent of this paper is to introduce a new statistical procedure for testing a 
complete sample for normality. The test statistic is obtained by dividing the square of an 
appropriate linear combination of the sample order statistics by the usual symmetric 
estimate of variance. This ratio is both scale and origin invariant and hence the statistic 
is appropriate for a test of the composite hypothesis of normality. 

Testing for distributional assumptions in general and for normality in particular has been 
a major area of continuing statistical research-both theoretically and practically. A 
possible cause of such sustained interest is that many statistical procedures have been 
derived based on particular distributional assumptions-especially that of normality. 
Although in many cases the techniques are more robust than the assumptions underlying 
them, still a knowledge that the underlying assumption is incorrect may temper the use 
and application of the methods. Moreover, the study of a body of data with the stimulus 
of a distributional test may encourage consideration of, for example, normalizing trans- 
formations and the use of alternate methods such as distribution-free techniques, as well as 
detection of gross peculiarities such as outliers or errors. 

The test procedure developed in this paper is defined and some of its analytical properties 
described in $2. Operational information and tables useful in employing the test are detailed 
in $ 3 (which may be read independently of the rest of the paper). Some examples are given 
in $4. Section5 consists of an extract from an empirical sampling study of the comparison of 
the effectiveness of various alternative tests. Discussion and concluding remarks are given 
in $6. 

2. THE W TEST FOR NORMALITY (COMPLETE SAMPLES) 

2.1. Motivation and early work 

This study was initiated, in part, in an attempt to summarize formally certain indications 
of probability plots. In  particular, could one condense departures from statistical linearity 
of probability plots into one or a few 'degrees of freedom' in the manner of the application 
of analysis of variance in regression analysis? 

In a probability plot, one can consider the regression of the ordered observations on the 
expected values of the order statistics from a standardized version of the hypothesized 
distribution-the plot tending to be linear if the hypothesis is true. Hence a possible method 
of testing the distributional assumptionis by means of an analysis of variance type procedure. 
Using generalized least squares (the ordered variates are correlated) linear and higher-order 
models can be fitted and an 3'-type ratio used to evaluate the adequacy of the linear fit. 

t Part of this research was supported by the Office of Naval Research while both authors were at  
Rutgers University. 



This approach was investigated in preliminary work. While some promising results 
were obtained, the procedure is subject to the serious shortcoming that the selection of the 
higher-order model is, practically speaking, arbitrary. However, research is continuing 
along these lines. 

Another analysis of variance viewpoint which has been investigated by the present 
authors is to compare the squared slope of the probability plot regression line, which under 
the normality hypothesis is an estimate of the population variance multiplied by a constant, 
with the residual mean square about the regression line, which is another estimate of the 
variance. This procedure can be used with incomplete samples and has been described 
elsewhere (Shapiro & Wilk, 1965b). 

As an alternative to the above, for complete samples, the squared slope may be com- 
pared with the usual symmetric sample sum of squares about the mean which is independent 
of the ordering and easily computable. It is this last statistic that is discussed in the re- 
mainder of this paper. 

2.2. Derivation of the W statistic 

Let m' = (ml,m,, ...,m,) denote the vector of expected values of standard normal 
order statistics, and let V = (vii) be the corresponding n x n covariance matrix. That is, if 
x, 6 x, 6 . . .x, denotes an ordered random sample of size n from a normal distribution with 
mean 0 and variance 1, then 

E ( x ) ~= mi (i= 1,2, ...,n), 

and cov (xi, xj) = vii (i,j = 1,2,...,n). 

Let y' = (y,, ...,y,) denote a vector of ordered random observations. The objective is 
to derive a test for the hypothesis that  this is a sample from a normal distribution with 
unknown mean p and unknown variance a,. 

Clearly, if the {y,} are a normal sample then yi may be expressed as 

y i = p + r x i  ( i =  1,2,...,n). 

It follows from the generalized least-squares theorem (Aitken, 1938; Lloyd, 1952) that the 
best linear unbiased estimates of p and a are those quantities that  minimize the quadratic 
form (y-pl  -am)' V-l (y-pl  --am), where 1' = (1,1, ...,1).These estimates are, respec- 
tively, 

m' V-I (ml' - lm') V-ly A 

'LI = 1'v-llm1v-lm- (11v-lm)2 

1' V-l(l??a' -ml') V-ly 
and a h 

= 1'8-I 1m'V-lm- (1'V-1m)2' 

For symmetric distributions, 1'V-lm = 0, and hence 

A m' 7-l~ 
= - y = , and 8 = -----

n 1 m' V-lm' 

Let 

denote the usual symmetric unbiased estimate of (n - 1)a2. 
The W test statistic for normality is defined by 



An analysis of variance test for normality 

where 

m' V-I
a' = (a,, ...,a,) = 

(rn'V-1 V-lm)t 

and 

Thus, b is, up to the normalizing constant C, the best linear unbiased estimate of the slope 
of a linear regression of the ordered observations, y,, on the expected values, mi, of the stand- 
ard normal order statistics. The constant C is so defined that the linear coefficients are 
normalized. 

It may be noted that if one is indeed sampling from a normal populatioii then the numer- 
ator, b2, and denominator, S2,of W are both, up to a constant, estimating the same quantity, 
namely a2.For non-normal populations, these quantities would not in general be estimating 
the same thing. Heuristic considerations augmented by some fairly extensive empirical 
sampling results (Shapiro & Wilk, 1964~)  using populations with a wide range of and 
p2values, suggest that the mean values of W for non-null distributions tends to shift 
to the left of that for the null case. Purther it appears that the variance of the null dis- 
tribution of W tends to be smaller than that of the non-null distribution. It is likely 
that this is due to the positive correlation between the numerator and denominator for a 
normal population being greater than that for non-normal populations. 

Note that the coefficients (a,) are just the normalized 'best linear unbiased' coefficients 
tabulated in Sarhan & Greenberg (1956). 

2.3. Some analytica2 properties of W 

LEMMA1. W is scale and origin invariant 

Proof. This follows from the fact that for normal (more generally symmetric) distribu- 
tions, 

COROLLARY1. W has a distribution which depends only on the sanzple size n, for samples 
from a normal distribution. 

COROLLARY W is statistically independent of S2and of 5,for samples from a normal 2. 
distribution. 

Proof. This follows from the fact that y and S2are sufficient for p and a2(Hogg & Craig, 
1956). 

COROLLARY = for any r. 3. E Wr Eb2r/ES2r, 


LEMMA2. The maximum value of W is 1. 


Proof. Assume ?j= 0 since W is origin invariant by Lemma 1. Hence 


Since 

because X a: = a'a = 1, by definition, then W is bounded by 1. This maximum is in fact 
.I 

achieved when yi = va,, for arbitrary 7. 

LEMMA3. The minimum value of TV is na!/(n -1). 



Pr0of.t (Due to C. L. Mallows.) Since W is scale and origin invariant, i t  suffices to con- 
n 

sider the maximization of 2;y! subject to the constraints Zyi = 0, Zaiyi = 1. Since this 
i=l 

is a convex region and Zy? is a convex function, the maximum of the latter must occur at  
one of the ( n- 1) vertices of the region. These are 

1 1 - (n- 1) 
9 9(%(a,+...+a,-,)' n(al+...+a,-,) n(al+.. . +a,-;Ja 

It can now be checked numerically, for the values of the specific coefficients {a,), that the 
n 


maximum of 2; y: occurs a t  the first of these points and the corresponding minimum value 
i=l 

of W is as given in the Lemma. 

LEMMA4. The half andfirst moments of W are given by 

and 

where R2 = mlV-lm, and C2= mlV-l V-lm. 

Proof. Using Corollary 3 of Lemma 1, 

E W* = EbIES and E W = Eb2/ES2. 

n - 1'/ ( and E S 2 = ( n - I ) @ .  

From the general least squares theorem (see e.g. Kendall & Stuart, vol. 11(1961)), 

and 

since var (8)= a2/m' V-lm = a2/R2,and hence the results of the lemma follosv. 
Values of these momen'ts are shown in Pig. 1 for sample sizes n = 3(1)20. 

LEMMA5 .  A joint distribution involving W is defined by 

over a region T on which the Oi's and W are not independent, and where K is a constant. 

1- Lemma 3 was conjectured intuitively and verified by certain numerical studies. Subsequently 
the above proof was given by C. L. Mallows. 

mailto:ES2=(n-I)@


An analysis of variance test for normality 

Proof.Consider an orthogonal transformation B such that y = Bu, where 
12 12 

u,= Cyi/@t and u2=lXaiyi=b. 
i=l i=l 

The ordered y,'s are distributed as 

After integrating out, u,, the joint density for u,, ...,u, is 

over the appropriate region T*.Changing to polar co-ordinates such that 

u2 = psinO,, etc, 

and then integrating over p, yields the joint density of O,, ...,On-, as 

K** cosn-3 0, cos n-4 02...cos On-3, 
over some region T**. 

From these various transformations 

,= b2-- u? - p2 sill2 0, = sin2 O,,
8 2  12

X .$ p2
i=l 

from which the lemma follows. The Oi's and W are not independent, they are restricted 
in the sample space T. 

Sample size, 9% 

Fig. 1. Moments of W, E ( W p ) ,n = 3(1)20,s = +,1. 

COROLLARY = 3, the density of W is4. For n 



Note that for n = 3, the it' statistic is equivalent (up to a constant multiplier) to the 
statistic (rangelstandard deviation) advanced by David, Hartley & Pearson (1954) and 
the result of the corollary is essentially given by Pearson & Stephens (1964). 

It has not been possible, for general n, to integrate out of the 8,'s of Lemma 5 to obtain 
an explicit form for the distribution of W. However, explicit results have also been given 
for n = 4, Shapiro (1964). 

2.4. Approxirnatio~zsassociated with the W test 

The {a,) used in the W statistic are defined by 

n 
ai = C rnjvij/C ( j= 1,2,. . . , n), 

j=1 


where rnj, vij and C have been defined in $2.2. To determine the ai directly it appears necessary 
to know both the vector of means m and the covariance matrix V. However, to date, the 
elements of V are known only up to samples of size 20 (Sarhan & Greenberg, 1956). Various 
approximations are presented in the remainder of this section to enable the use of W for 
samples larger than 20. 

By definition, 

nz' V-I nz' 8-I 
a = - -. -

(nz'V-1 v-lnt)B - C 

is such that a'a = 1. Let a* = m'V-1, then C2 = u*'a*. Suggested approximations are 

= 2nzi (i = 2, 3, . . . , n -1), 

and 

A comparisoil of a: (the exact values) and ti: for various values of i $. 1 and n = 5, 10, 
15, 20 is given in Table 1. (Note a4 = - It will be seen that the approximation is 
generally in error by less than 1%,particularly as n increases. This encourages one to trust 
the use of this approximation for n > 20. Necessary values of the mi for this approximation 
are available in Harter (1961). 

Table 1. Comparison of la$/ and \ti; 1 = 12nz,l, for selected values of 
i ( +  1) and n 

Exact 

Approx. 


Exact 

Approx. 


Exact 

Approx. 


Exact 

Approx. 
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A comparison of a: and &: for n = 6(1) 20 is given in Table 2. While the errors of this 
approximation are quite small for n < 20, the approximation and true values appear to 
cross over a t  n = 19. Further comparisons with other approximations, discussed below, 
suggested the changed formulation of 8: for n > 20 given above. 

Table 2. Comparison of a: and & f  

7% Exact Approximate " i ~  Exact Approximate 

6:usable but the 

Sample size, 1% 


Fig. 2. Plot of C2 = m'V-lV-lm of the sample size n.
and R2 = m'V-lm as f~~nctions 

What is required for the W test are the normalized coefficients {a,). Thus & f  is directly 
(i= 2, ...,n - 1), must be normalized by division by C = (m' V-1 V-lm):. 

A plot of the values of C2and of R2 = m' V-lm as a function of n is given in Fig. 2. The 
linearity of these may be summarized by the following least-squares equations: 

which gave a regression mean square of 7331.6 and a residual mean square of 0.0186, and 

with a regression mean square of 1725.7 and a residual mean square of 0.0016. 
Biom. j z  38 



These results encourage the use of the extrapolated equations to estimate C2 and R2 
for higher values of n. 

A comparison can now be made between values of C2from the extrapolation equation 
12 

and from using 
1 


For the case n = 30, these give values of 119.77 and 120.47,respectively. This concordance 
of the independent approximations increases faith in both. 

Plackett (1958) has suggested approximations for the elements of the vector a and R2. 
While his approximations are valid for a wide range of distributions and can be used with 
censored samples, they are more complex, for the normal case, than those suggested above. 
For the normal case his approximations are 

where F(mj) = cumulative distribution evaluated a t  mj, 

f(naj)= density function evaluated a t  mj, 

and a"*1 = -a"*n s  

Plackett's approximation to R2 is 

Plackett's a"," approximations and the present approximations are compared with the 
exact values, for sample size 20, in Table 3. I n  addition a consistency comparison of the 
two approximations is given for sample size 30. Plackett's result for a, (n=20) was the 
only case where his approximation was closer to the true value than the simpler approxima- 
tions suggested above. The differences in the two approximations for a, were negligible, 
being less than 0.5 %. Both methods give good approximations, being off no more than 
three units in the second decimal place. The comparison of the two methods for n = 30 
shows good agreement, most of the differences being in the third decimal place. The largest 
discrepancy occurred for i = 2;  the estimates differed by six units in the second decimal 
place, an error of less than 2 %. 

The two methods of approximating R2 were compared for n = 20. Plackett's method 
gave a value of 36.09, the method suggested above gave a value of 37.21 and the true 
value was 37.26. 

The good practical agreement of these two approximations encourages the belief that 
there is little risk in reasonable extrapolations for n > 20. The values of constants, for 
n > 20, given in $ 3  below, were estimated from the simple approximations and extrapola- 
tions described above. 

As a further internal check the values of a,, a,-, and a,-, were plotted as a function of 
n for n = 3(1) 50. The plots are shown in Fig. 3 which is seen to be quite smooth for each 
of the three curves a t  the value n = 20. Since values for n < 20 are 'exact' the smooth 
transition lends credence to the approximations for n > 20. 
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Table 3. Comparison of approximate values of a* = m'V-l 

Present approx. Exact Placltett 

-4.223 -4.215 
-2.815 -2.764 
-2.262 -2.237 
- 1.842 -1.820 
- 1.491 -1.476 
-1.181 -1.169 
-0.897 -0.887 
-0.630 -0.622 
-0.374 -0.370 
-0.124 -0.123 

-4.655 -4.671 
- 3.231 -3.170 
-2.730 -2.768 
-2.357 -2.369 
-2.052 -2.013 
- 1.789 -1.760 
- 1.553 - 1.528 
- 1.338 - 1.334 
- 1.137 - 1.132 
-0.947 -0.941 
-0.765 -0.759 
-0.589 -0.582 
-0.418 -0.413 
-0.249 -0.249 
-0.083 -0.082 

Sample size, ra 

Fig. 3. a, plotted as a function of sample size, ?z = 2(1) 50, for 
i = n, n- 1, n - 4  (n > 8). 



1.oo 

0.95 

0.90 

0.85 

W 

0.80 

0 75 

0 70 \ / 

0 65 
0 5 10 15 20 25 30 35 40 45 50 

Sample size, n 

Fig. 5. Selected empirical percentage points of W, n = 3(1)50. 
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Table 4. Some theoretical mome nts (p,) and 

$1 


0.9130 
.go19 
a9021 

0.9082 
.9120 
.9175 
.9215 
.9260 

0.9295 
a9338 
.9369 
.9399 
.9422 

0.9445 
.9470 
.9492 
.9509 
.9527 

0.9549 
.9558 
.9570 
.9579 
.9584 

0.9598 
-9607 
.9615 
a9624 
-9626 

0.9636 
.9642 
a9650 
-9654 
.9658 

0.9662 
.9670 
.9677 
~9678 
a9682 

0.0084 
a9691 
~9694  
-9695 
a9701 

0.9703 
~9710 
.9709 
.9712 
.9714 

Monte Carlo 

$2 

0.005698 

e005166 

.004491 


0.003390 
.002995 
~002470 
e002293 
.001972 

0.001717 

.001483 

.001316 

.001168 

.001023 


0.000964 

.000823 

.000810 

.000711 

.000651 


0.000594 

.000568 

.000504 

.000504 

.00045S 


0.00042 1 
.000404 
~000382 
.000369 
~000344 

0.000336 

.000326 

.000308 

.000293 

.000265 


0.000264 

.000253 

.000235 

.000239 

-000229 


0.000227 

.000212 

.000196 

.000193 

.000192 


0.000184 

.000170 

.000179 

.000165 

.000154 


moments (2,) 
f i  ,A% 

3 Pz 

-0.5930 
- .8944 
- .8176 

- 1.1790 
- 1.3229 
- 1.3841 
- 1.5987 
-1.6655 

- 1.7494 
- 1.7744 
- 1.7581 
- 1.9025 
- 1.8876 

- 1.7968 
- 1.9468 
-2.1391 
-2.1305 
-2.2761 

-2.2827 
-2.3984 
-2.1862 
-2.3517 
-2.3448 

-2.4978 
-2.5903 
-2.6964 
-2.6090 
-2.7288 

-2.7997 
-2.6900 
-3.0181 
-3.0166 
-2.8574 

-2.7965 
-3.1566 
-3.0679 
-3.3283 

-3.1719 


-3.0740 
-3.2885 
- 3.2646 
-3.0803 
-3.1645 

-3.3742 
-3.3353 
-3.2972 
-3.2810 
-3.3240 



2.5. Approximation to the distribution of W 

The complexity in the domain of the joint distribution of W and the angles (8,) in Lemma 5 
necessitates consideration of an approximation to the null distribution of W. Since only 
the first and second moments of normal order statistics are, practically, available, it follows 
that  only the one-half and first moments of W are known. Hence a technique such as the 
Cornish-Fisher expansion cannot be used. 

I n  the circumstance it seemed both appropriate and efficient to employ empirical samp- 
ling to obtain an approximation for the null distribution. 

Accordingly, normal random samples were obtained from the Rand Tables (Rand Corp. 
(1955)). Repeated values of W were computed for n = 3(1) 50 and the empirical percentage 
points determined for each value of n. The number of samples, m, employed was as follows: 

for n = 3(1) 20, m = 5000, 

Fig. 4 gives the empirical G.D.F.'s for values of n = 5, 10, 15, 20, 35, 50. Fig. 5 
gives a plot of the 1, 5 ,  10, 50, 90, 95, and 99 empirical percentage points of W for 
n = 3(1) 50. 

A check on the adequacy of the sampling study is given by comparing the empirical 
one-half and the first moments of the sample with the corresponding theoretical moments 
of W for n = 3(1) 20. This comparison is given in Table 4, which provides additional 
assurance of the adequacy of the sampling study. Also in Table 4 are given the sample 
variance and the standardized third and fourth moments for n = 3(1) 50. 

After some preliminary investigation, the 8, system of curves suggested by Johnson 
(1949) was selected as a basis for smoothing the empirical null W distribution. Details of 
this procedure and its results are given in Shapiro & Wilk (1965~) .  The tables of percentage 
points of W given in $3 are based on these smoothed sampling results. 

The objective of this section is to bring together all the tables and descriptions needed 
to execute the W test for normality. This section may be employed independently of 
notational or other information fsom other sections. 

The object of the W test is to provide an index or test statistic to evaluate the supposed 
normality of a complete sample. The statistic has been shown to be an effective measure 
of normality even for small samples (n < 20) against a wide spectrum of non-normal alter- 
natives (see $ 5  below and Shapiro & Wilk (1964a)). 

The W statistic is scale and origin invariant and hence supplies a test of the composite 
null hypothesis of normality. 

To compute the value of W, given a complete random sample of size n, x,, x2, ...,x,, 
one proceeds as follows: 

(i) Order the observations to obtain an ordered sample y, < y, < . . . < y,,. 
(ii) Compute 

n 12 

8 2  = I;(yi-g)2 = C (xi-q2. 
1 1 
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(iii) (a) If n is even, n = 2E, compute 

where the values of an-,+, are given in Table 5. 
(b) If n is odd, n = 2E+ 1, the computation is just as in (iii) (a), since a,+, = 0 when 

?z = 2E + 1. Thus one finds 
b = an(yn-Y,) + ...+a,+2(Yk+2-~,)> 

where the value of y,+,, the sample median, does not enter the computation of b. 
(iv) Compute W = b2/S2. 
(v) 1,2,5,  10,50,90,95, 98 and 99 % points of the distribution of Ware given in Table 6. 

Small values of W are significant, i.e. indicate non-normality. 
(vi) A more precise significance level may be associated with an observed W value by 

using the approximation detailed in Shapiro & Wilk (1965a). 

Table 5. Coeficients {a,-,+,) for the W test for normality, 
for n = 2(1)50. 



Table 5.  Co ef icients {a,-i+,) for the W test for normali ty,  
for n = 2(1)50 (cont.) 
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Table 6. Percentage points of the W test* for n = 3(1)50 

Level 
r A 

\ 

n 0.01 0.02 0-05 0.10 0.50 0.90 0.95 0.98 0.99 

3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000 
4 a687 a707 a748 a792 a935 .987 .992 .996 a997 
5 .686 a715 .762 a806 .927 .979 ,986 .991 .993 

6 0.713 0.743 0.788 0.826 0.927 0.974 0.981 0.986 0.989 
7 .730 a760 .803 a838 a928 a972 a979 a985 ,988 
8 .749 a778 .818 a851 a932 a972 a978 a984 .987 
9 a764 .791 a829 a859 a935 .972 .978 a984 .986 

10 a781 a806 a842 a869 a938 .972 .978 a983 a986 

11 0.792 0.817 0.850 0.876 0.940 0.973 0.979 0.984 0.986 
12 a805 a828 .859 a883 a943 a973 .979 .984 a986 
13 a814 a837 ,866 a889 a945 a974 a979 .984 a986 
14 .825 a846 a874 a895 .947 a975 ,980 a984 .986 
15 .835 a855 .881 .90P a950 a975 ,980 .984 .987 

16 0.844 0.863 0.887 0.906 0.952 0.976 0.981 0.985 0.987 
17 a851 .869 a892 a910 a954 a977 a981 a985 a987 
18 a858 a874 a897 a914 a956 a978 a982 a986 .988 
19 .863 .879 .901 .917 a957 .978 -982 a986 a988 
20 .868 a884 .905 a920 a959 .979 .983 a986 -988 

21 0.873 0.888 0.908 0.923 0.960 0.980 0.983 0.987 0.989 
22 .878 .892 a911 a926 a961 .980 ,984 .987 .989 
23 .881 .895 .914 a928 ~962  a981 .984 .987 ~ 9 8 9  
24 a884 a898 a916 a930 a963 a981 a984 a987 a989 
25 a888 a901 .918 .931 .964 .981 .985 a988 .989 

26 0.891 0.904 0.920 0.933 0.965 0.982 0.985 0.988 0.989 
27 a894 a906 a923 .935 .965 a982 a985 a988 a990 
28 a896 a908 a924 a936 .966 a982 .985 a988 a990 
29 .898 a910 ,926 .937 .966 .982 ,985 a988 .990 
30 a900 .912 a927 a939 a967 .983 a985 a988 a900 

31 0.902 0.914 0.929 0.940 0.967 0.983 0.986 0.988 0.990 
32 .904 a915 a930 .941 a968 a983 a986 a988 a990 
33 a906 .917 a931 .942 a968 a983 a986 a989 a990 
34 .908 a919 .933 a943 .969 a983 .986 a989 ,990 
35 a910 .920 a934 a944 .969 a984 a986 a989 .990 

36 0.912 0.922 0.935 0.945 0.970 0.984 0.986 0.989 0.990 
37 a914 .924 .936 a946 a970 ,984 a987 a989 a990 
38 a916 a925 a938 a947 a971 a984 .987 a989 ,990 
39 .917 ,927 .939 .948 .97l a984 a987 a989 a991 
40 a919 a928 a940 a949 a972 a985 a987 a989 a991 

41 0.920 0.929 0.941 0.950 0.972 0.985 0.987 0.989 0.991 
42 a922 a930 a942 a951 a972 .985 .987 a988 .991 
43 a923 a932 a943 a951 a973 a986 .987 .990 .991 
44 .924 .933 a944 .952 a973 a985 a987 a990 a991 
45 a926 a934 .945 a953 .973 .985 a988 a990 a991 

46 0.927 0.935 0.945 0.953 0.974 0.985 0.988 0.990 0.991 
47 a928 a936 .946 a954 a974 .985 .988 a990 a991 
48 a929 a937 .947 a954 ,974 a985 a988 ,990 ,991 
49 a929 a937 a947 a955 a974 a985 a988 a990 a991 
50 a930 .938 a947 a955 a974 a985 .988 a990 a991 

* Based on fitted Johnson (1949) SBapproximation, see Shapiro & Wilk (1965n) for detaild. 



To illustrate the process, suppose a sample of 7 observations were obtained, namely 
x l =  6 , x 2 =  1 , x 3 = - 4 , x 4 =  8 , x 5 = - 2 , x G = 5 , x 7 =  0. 

(i) Ordering, one obtains 

(iii) From Table 5, under ?z = 7, one obtains 

Thus b = 0.6233(8+4) +0*3031(6+2)+0*1401(5-0) = 10.6049. 

(iv) W = (10.6049)2/118= 0.9530. 

(v) Referring to  Table 6, one finds the value of W to be substantially larger than the 
tabulated 50 % point, which is 0.928. Thus there is no evidence, from the W test, of non- 
normality of this sample. 

Example 1. Snedecor (1946, p. 175), makes a test of normality for the following sample of 
weights in pounds of 11 men: 148, 154, 158, 160, 161, 162, 166, 170, 182, 195,236. 

The W statistic is found to be 0.79 which is just below the 1% point of the null distribu- 
tion. This agrees with Snedecor's approximate application of the Jb,  statistic test. 

Example 2. Kendall (1948, p. 194) gives an extract of 200 'random sampling numbers' 
from the Kendall-Babington Smith, Tracts for Computers No. 24. These were totalled, as 
number pairs, in groups of 10 to give the following sample of size 10: 303, 338, 406, 457, 
461, 469, 474, 489, 515, 583. 

The W statistic in this case has the value 0.9430, which is just above the 50 % point of the 
null distribution. 

Example 3. Davies et al. (1956) give an example of a 25 experiment on effects of five 
factors on yields of penicillin. The 5-factor interaction is confounded between 2 blocks. 
Omitting the confounded effect the ordered effects are: 

C ABC 
BC CD 
ACDE B 
BCE B D  
ACD BCD 
ABCE A B E  
D E  ABD 
B E  AC 
B D E  AD 
ADE ACE 
BCDE ABCD 
ABDE ,4B 
CDE CE 
D A 
=SE E 

I n  their analysis of variance, Davies et al. pool the 3- and 4-factor interactions for an error 
term. They do not find the pooled 2-factor interaction mean square to  be significant but 
note that  CE is significant a t  the 5 % point on a standard F-test. However, on the basis of a 
Bartlett test, they find that the significance of CE does not reach the 5 % level. 
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The overall statistical configuration of the 30 unconfounded effects may be evaluated 
against a background of a null hypothesis that these are a sample of size 30 from a normal 
population. Computing the W statistic for this hypothesis one finds a value of 0.8812, 
which is substantially below the tabulated 1 % point for the null distribution. 

One may now ask whether the sample of size 25 remaining after removal of the 5 main 
effects terms has a normal configuration. The corresponding value of W is 0.9326, which is 
above the 10 % point of the null distribution. 

To investigate further whether the 2-factor interactions taken alone may have a non- 
normal configuration due to one or more 2-factor interactions which are statistically 
'too large', the W statistic may be computed for the ten 2-factor effects. This gives 

which is well above the 50 % point, for n = 10. 
Similarly, the 15 combined 3 and 4-factor interactions may be examined from the same 

point of view. The W value is 0.9088, which is just above the 10 % value of the null distribu- 
tion. 

Thus this analysis, combined with an inspection of the ordered contrasts, would suggest 
that the A, C and E main effects are real, while the remaining effects may be regarded as a 
random normal sample. This analysis does not indicate any reason to suspect a real CE 
effect based only on the statistical evidence. 

The partitioning employed in this latter analysis is of course valid since the criteria 
employed are independent of the observations per se. 

I n  the situation of this example, the sign of the contrasts is of course arbitrary and hence 
their distributional configuration should be evaluated on the basis of the absolute values, 
as in half-normal plotting (see Daniel, 1959). Thus, the above procedure had better be 
carried out using a half-normal version of the W test if that were available. 

To evaluate the W procedure relative to other tests for normality an empirical sampling 
investigation of comparative properties was conducted, using a range of populations and 
sample sizes. The results of this study are given in Shapiro & Wilk (1964a), only a brief 
extract is included in the present paper. 

The null distribution used for the study of the W test was determined as described 
above. For all other statistics, except the x2goodness of fit, the null distribution employed 
was determined empirically from 500 samples. For the x2 test, standard x2 table values 
were used. The power results for all procedures and alternate distributions were derived 
from 200 samples. 

Empirical sampling results were used to define null distribution percentage points for 
a combination of convenience and extensiveness in the more exhaustive study of which the 
results quoted here are an extract. More exact values have been published by various 
authors for some of these null percentage points. Clearly one employing the Kolmogorov- 
Smirnov procedure, for example, as a statistical method would be well advised to employ 
the most accurate null distribution information available. However, the present power 
results are intended only for indicative interest rather than as a definitive description of a 
procedure, and uncertainties or errors of several percent do not materially influence the 
comparative assessment. 



Table 7 gives results on the power of a 5 % test for samples of size 20 for each of nine test 
procedures and for fifteen non-normal populations. The tests shown in Table 7 are: W; 
chi-squared goodnessof fit (x2); standardized 3rd and 4th moments, Jbl and b,; Kolmogorov-
Smirnov (KS) (Kolmogorov, 1933) ;CramBr-Von Mises (CVM) (Cramdr, 1928) ;a weighted, 
by Bl(1- P),CramBr-Von Mises (WCVM), where F is the cumulative distribution function 
(Anderson & Darling, 1954); Durbin's version of the Kolmogorov-Smirnov procedure (D) 
(Durbin, 196 1); rangelstandard deviation (u)(David et al. 1954). 

Table 7. Empiricul power for 5 % tests for selected alternative distributio~zs; 
samples all of size 20 

Population 

tit)le dP1 P2 W x2 <bl b2 KS CVM WCVM D u 


x2(1) 2.83 15.0 0.98 0.94 0.89 0.53 0.44 0.44 0.54 0.87 0.10 
~ " 2 )  2.00 9.0 ~ 8 4  .33 .74 .34 .27 ~ 2 3  .27 .42 .08 
x2(4) 1.41 6.0 .50 +13 .49 .27 .I8 .13 ~ 1 6  .I5 .06 
x2(10) 0.89 4.2 .29 .07 .29 .I9 . I1 . I0 ~ 1 1  ~ 0 7  .O6 
Non-cent.x20.73 3.7 .59 .10 .50 .20 .I9 .16 .I8 ~ 2 0  . lo  
Lognormal 6.19 113.9 .93 ~ 9 5  .89 .58 .44 .48 .62 .82 so6 
Cauchy - - .88 .41 .77 .81 .45 .55 .98 .85 .56 
Uniform 0 1.8 ~ 2 3  .11 .00 .29 .13 .09 .I0 .08 ~ 3 8  
Logistic 0 4.2 .08 .06 .12 ~ 0 6  .06 .03 .03 .05 .07 
B e t a ( 2 , I ) - 0 . 5 7  2.4 .35 .08 .08 ~ 1 3  ~ 0 8  .10 .I2 .I2 a23 
La Place 0 6.0 .25 .17 .25 .27 .07 .07 .29 .16 .19 
Poisson (1) 1.00 4.0 ~ 9 9  1.00 .26 .I1 ~ 5 5  .22 .31 1.00 .35 
Binomial, 0 2.5 .71 1.00 .02 .03 ~ 3 8  .15 .I7 1.00 .20 

(4, 0.5) 

"T(5,2.4) 0.79 2.2 ~ 5 5  ~ 1 4  .24 .20 .23 ~ 2 0  .22 -
 -

;FT(lO, 3.1) 0.97 2.8 ~ 8 9  .32 ~ 5 1  .24 ~ 3 2  .30 .30 - -

* Variates from this distribution T(a, A) are defined by y = aRh - (1 -R)h, where R is uniform 
(0, 1) (Hastings, Mosteller, Tukey & Winsor, 1947). Also note that (a)the non-central x2distribution 
has degrees of freedom 16, non-centrality parameter 1 ;  (b) the beta distribution has p = 2, q = 1in 
standard notation; (c) the Poisson distribution has expectation 1. 

In  using the non-scale and non-origin invariant tests the mean and variance of the 
hypothesized normal was taken to agree with the known mean and variance of the alter- 
native distribution. For the Cauchy the mode and intrinsic accuracy were used. 

The results of Table 7 indicate that the W test is comparatively quite sensitive to a wide 
range of non-normality, even with samples as small as n = 20. It seems to be especially 
sensitive to asymmetry, long-tailedness and to some degree to short-tailedness. 

The x2procedure shows good power against the highly skewed distributions and reason- 
able sensitivity to very long-tailedness. 

The db, test is quite sensitive to most forms of skewness. The b, statistic can usefully 
augment db, in certain circumstances. The high power of Jb, for the Cauchy alternative is 
probably due to the fact that, though the Cauchy is symmetric, small samples from i t  will 
often be asymmetric because of the very long-tailedness of the distribution. 

The KS test has similar properties to that of the CVM procedure, with a few exceptions. 
I n  general the WCVM test has higher power than KS or CVM, especially in the case of long- 
tailed alternatives, such as the Cauchy, for which WCVM ha,d the highest power of all the 
statistics examined. 

The use of Durbin's procedure improves the KS sensitivity only in the case of highly 
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skewed and discrete alternatives. Against the Cauchy, the D test responds, like db,, 
to the asymmetry of small samples. 

The u test gives good results against the uniform alternative and this is representative of 
its properties for short-tailed symmetric alternatives. 

The x2test has the disadvantages that the number and character of class intervals used 
is arbitrary, that all information concerning sign and trend of discrepancies is ignored and 
that, for small samples, the number of cells must be very small. These factors might explain 
some of the lapses of power for x2 indicated in Table 7. Note that for almost all cases the 
power of W is higher than that of x2. 

As expected, the db, test is in general insensitive in the case of symmetric alternatives 
as illustrated by the uniform distribution. Note that for all cases, except the logistic, 
,/b, power is dominated by that of the W test. 

Table 8. The eflect of mis-specicaton of parameters 

(1% = 20, 5 % test, assumed parameters are p= 0, a= 1) 

Actual parameters Tests 

,- A , Sample r A > 


P 0- PIC size KS CM WCVM D x2 

The b, test is not sensitive to asymmetry. Its performance was inferior to that of W 
except in the cases of the Cauchy, uniform, logistic and Laplace for which its performance 
was equivalent to that of W. 

Both the KS and CVM tests have quite inferior power properties. With sporadic exception 
in the case of very long-tailedness this is true also of the WCVM procedure. The D procedure 
does improve on the KS test but still ends up with power properties which are not as good 
as other test statistics, with the exceptions of the discrete alternatives. (In addition, the 
D test is laborious for hand computation.) 

The u statistic shows very poor sensitivity against even highly skewed and very long- 
tailed distributions. For example, in the case of the x2(1) alternative, the u test has power 
of 10 % while even the KS test has a power of 44 % and that for W is 98 %. While the u test 
shows interesting sensitivity for uniform-like departures from normality, it would seem 
that the types of non-normality that it is usually important to identify are those of asym- 
metry and of long-tailedness and outliers. 

The reader is referred to David et ul. (1954, pp. 488-90) for a comparison of the power of 
the b,, u and Geary's (1935) 'a '  (mean deviationlstandard deviation) tests in detecting 
departure from normality in symmetrical populations. Using a Monte Carlo technique, they 
found that Geary's statistic (which was not considered here) was possibly more effective 
than either b, or u in detecting long-tailedness. 

The test statistics considered above can be put into two classes. Those which are valid 



GPO S. S. SHAPIRO AND M. B. WILK 

for composite hypotheses and those which are valid for simple hypotheses. For the simple 
hypotheses procedures, such as x2,KS, CVM, WCVM and D, the parameters of the null 
distribution must be pre-specified. A study was made of the effect of small errors of specifica- 
tion on the test performance. Some of the results of this study are given in Table 8. The 
apparent power in the cases of mis-specification is comparable to that attained for these 
procedures against non-normal alternatives. For example, for p/a = 0.3, WCVM has 
apparent power of between 0-31 and 0.55 while its power against x2(2) is only 0.27. 

6. DISCUSSIONAND CONCLUDING REMARKS 

6.1. Evaluation of test 

As a test for the normality of complete samples, the W statistic has several good features- 
namely, that i t  may be used as a test of the composite hypothesis, that is very simple to 
compute once the table of linear coefficients is available and that the test is quite sensitive 
against a wide range of alternatives even for small samples (n < 20). The statistic is re- 
sponsive to the nature of the overall configuration of the sample as compared with the con- 
figuration of expected values of normal order statistics. 

A drawback of the W test is that for large sample sizes i t  may prove awkward to tabulate 
or approximate the necessary values of the multipliers in the numerator of the statistic. 
Also, i t  may be difficult for large sample sizes to determine percentage points of its dis- 
tribution. 

The W test had its inception in the framework of probability plotting. The formal use 
of the (one-dimensional) test statistic as a methodological tool in evaluating the normality 
of a sample is visualized by the authors as a supplement to normal probability plotting and 
not as a substitute for it. 

6.2. Extensions 

It has been remarked earlier in the paper that a modification of the present W statistic 
may be defined so as to be usable with incomplete samples. Work on this modified W* 
statistic will be reported elsewhere (Shapiro & Wilk, 19653). 

The general viewpoint which underlies the construction of the W and W* tests for 
normality can be applied to derive tests for other distributional assumptions, e.g. that a 
sample is uniform or exponential. Research on the construction of such statistics, including 
necessary tables of constants and percentage points of null distributions, and on their 
statistical value against various alternative distributions is in process (Shapiro & Wilk, 
19643). These statistics may be constructed so as to be scale and origin invariant and thus 
can be used for tests of composite hypothesis. 

It may be noted that many of the results of $2.3 apply to any symmetric distribution. 
The W statistic for normality is sensitive to outliers, either one-sided or two-sided. 

Hence it may be employed as part of an inferential procedure in the analysis of experimental 
data as suggested in Example 3 of $4. 

The authors are indebted to Mrs M. H. Becker and Mis H. Chen for their assistance in 
various phases of the computational aspects of the paper. Thanks are due to the editor 
and referees for various editorial and other suggestions. 
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