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Abstract. The theoretical di�erences between the Hel-
mert de¯ection of the vertical and that computed from a
truncated spherical harmonic series of the gravity ®eld,
aside from the limited spectral content in the latter,
include the curvature of the normal plumb line, the
permanent tidal e�ect, and datum origin and orientation
o�sets. A numerical comparison between de¯ections
derived from spherical harmonic model EGM96 and
astronomic de¯ections in the conterminous United
States (CONUS) shows that correcting these systematic
e�ects reduces the mean di�erences in some areas.
Overall, the mean di�erence in CONUS is reduced from
ÿ0:219 arcsec to ÿ0:058 arcsec for the south±north
de¯ection, and from �0:016 arcsec to �0:004 arcsec for
the west±east de¯ection. Further analysis of the root-
mean-square di�erences indicates that the high-degree
spectrum of the EGM96 model has signi®cantly less
power than implied by the de¯ection data.

Key words. De¯ection of the vertical � Spherical
harmonic model �Normal plumb-line curvature

1 Introduction

High-degree spherical harmonic models of the Earth's
geopotential, whose development is motivated primarily
by needs for accurate global geoid modeling, may also
be used to compute other quantities, such as the
de¯ection of the vertical. The ampli®cation of errors in
such computations coming from inaccurate high-degree
coe�cients will not be considered here; this may be
studied independently in the context of ``ill-posed''
problems. On the other hand, such gravimetric de¯ec-
tions di�er not only quantitatively, but also in de®ni-
tion, from geometric de¯ections of the vertical. Aside

from the obvious limited resolution imposed by the
degree of truncation, vertical de¯ections from spherical
harmonic models di�er, in principle, from their geomet-
ric counterpart mostly because of the curvature of the
normal plumb line. This is a systematic e�ect that is
usually small, but may be signi®cant at very high ¯ight
altitudes: for example, if the spherical harmonic models
are used to compensate inertial navigation systems
(INS) for the e�ects of gravitation. A rigorous compar-
ison is presented here that identi®es this and all other
di�erences, including the question of permanent tide
e�ects. Subsequently, a numerical comparison between
astronomical and gravimetric de¯ections is used to
quantify these e�ects for the conterminous United
States and to evaluate the high-degree spectrum of the
EGM96 spherical harmonic model.

2 The geometric de¯ection of the vertical

The de¯ection of the vertical is an angle that describes
the deviation of the true vertical, as de®ned by the
direction of Earth's gravity vector, with respect to some
reference direction. The reference direction may be
de®ned purely geometrically or physically. The classic
geometric de®nition of the reference direction identi®es
it as the perpendicular to an ellipsoid (a geodetic datum)
that approximates the geoid, either locally or globally.

Alternatively, the reference direction may be associ-
ated with the direction of a gravity vector belonging to
some reference (or normal) gravity ®eld; this is the
physical de®nition. The normal gravity ®eld is de®ned to
be that ®eld generated by an ellipsoid containing all the
Earth's mass (including atmosphere) and rotating with
the Earth, and such that the ellipsoid is an equipotential
surface of the ®eld thus generated. Furthermore, the
ellipsoid should be a best approximation of the geoid
and should have its center at the Earth's center of mass.

The geometric ellipsoid (geodetic datum) and the el-
lipsoid of the reference gravity ®eld may be identical.
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However, in general, they di�er in any or all of the
following: size, shape, location, and orientation. In that
case, standard formulas exist to transform de¯ections of
the vertical from one to the other geometric reference
directions (see e.g. Heiskanen and Moritz 1967, p. 207;
Rapp 1992, p. 85).

The de®nitions of the de¯ection of the vertical are
described in the following paragraphs (Torge 1991; see
also Fig. 1). The Helmert de®nition is perhaps the most
common and corresponds to the classic geometric de®-
nition alluded to above. According to this de®nition, the
vertical de¯ection is the angle at a point, P, between the
gravity vector that, extended upward, de®nes the as-
tronomic zenith, and a straight line that passes through
the point, P, and is normal to the reference ellipsoid; this
line de®nes the geodetic zenith. In terms of south±north,
n, and west±east, g, components of the de¯ection, one
has (Pick et al. 1973, p. 432)

n � Uÿ /� 1

2
g2 tan/� 3rd order terms

g � �Kÿ k� cos/� 3rd order terms

�1�

where �U;K� are astronomic coordinates (latitude and
longitude) of the point and �/; k� are the corresponding
geodetic coordinates. In Eq. (1), it is assumed that the
north poles of the astronomic and geodetic coordinate
systems coincide.

The de¯ection components are small angles, on the
order of several arcseconds; and the higher-order terms
in Eq. (1) refer to terms proportional to powers of the
de¯ection components. Neglecting the second- and
higher-order terms, the de®nitions of Eq. (1) conform
also to the astronomically determined de¯ection, redes-
ignated as

nastro � Uÿ /; gastro � �Kÿ k� cos/;

Hastro � �nastro; gastro�T �2�

whereHastro is a two-component vector whose magnitude
is the total de¯ection angle (to ®rst-order approxima-
tion). The Helmert, or astronomic, de¯ection of the
vertical is the de¯ection that, when scaled by the
magnitude of gravity, is required in the inertial navigation
equations for horizontal positions and velocities (Britting
1971). It represents the horizontal component of the
gravity vector with respect to the local vertical in the
navigation frame, which is aligned with the ellipsoidal
normal.

Another de®nition is named after Pizzetti, who pre-
scribed the de¯ection of the vertical as the angle between
the gravity vector at a point on the geoid and the per-
pendicular to the ellipsoid. (The Helmert de¯ection at a
point on the geoid is also the Pizzetti de¯ection.) Pi-
zzetti's de®nition may be extended to points above the
geoid according to Molodensky's de®nition of the de-
¯ection as the angle at a point, P, between the gravity
vector at P and the normal gravity vector at the conju-
gate point, Q. This point, Q, is the intersection of a
spheropotential surface (spherop) with its normal
through P, where the normal potential of this spherop
equals the actual gravity potential at P.

The di�erence between the Helmert and Molodensky
de¯ections at a point is due to the curvature of the
normal plumb line. This e�ect occurs only in the south±
north component and is given to ®rst order by (Heis-
kanen and Moritz 1967, p. 196)

dnnorm:curv�h� � ÿd/norm:curv�h� � 0:17 hkm sin 2/�arcsec�
�3�

where hkm is the normal height in units of km. This e�ect
on the de¯ection is in the positive sense as a consequence
of the convergence from equator to pole of the
equipotential surfaces (spherops) of the normal gravity
®eld. With reference to Fig. 1, the following relationship
holds:

nastro � nHelmert � nMolodensky � dnnorm:curv �4�
Clearly, the e�ect of the normal curvature increases with
altitude of the point. Usually it is of little concern in low-
elevation terrain; however, the correction can become

Fig. 1. Relationships between di�erent de¯ections of the vertical
(n component)
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signi®cant at high altitudes, e.g. those navigated by an
INS.

The di�erence between the Helmert (or also Mo-
lodensky) and Pizzetti de¯ections has to do with the fact
that the point of de®nition is di�erent and subsequently
the actual gravity vector directions are di�erent (cur-
vature of actual plumb line). Thus, these di�erences are
due to the local non-parallelism of the equipotential
surfaces of the actual gravity ®eld. The Pizzetti de®ni-
tion is of no further concern here.

3 The gravimetric de¯ection of the vertical

The de¯ection of the vertical (speci®cally, Molodensky's
version) can be determined from gravimetric data, at
least under certain approximations. When thus deter-
mined, it is given the special name gravimetric de¯ection
of the vertical. Using the geometry of the gravity
vectors, the Molodensky de¯ection components, along
south±north and west±east directions, are given in a
local north-west-up (NWU) coordinate system (again,
neglecting non-linear terms) by

nMolodensky�P� � ÿ1
gP

g/�P � ÿ ÿ1cQ
c/�Q�

� ÿ 1

cQ
g/�P � ÿ c/�Q�
ÿ �ÿ dng

gMolodensky�P� � ÿ1
gP

gk�P� ÿ ÿ1cQ
ck�Q�

� ÿ 1

cQ
gk�P � ÿ ck�Q�� � ÿ dgg

�5�

where g/ and gk are horizontal components of the
gravity vector at P, and c/ and ck (ck � 0!) are
horizontal components of the normal gravity vector at
Q, all in the local NWU coordinate system aligned with
the ellipsoid normal through P. The quantities dng and
dgg are small e�ects due to approximating the divisor gP
by cQ, and are given by

dng �
g/�P �

gP

cQ ÿ gP

cQ
� nP

DgP

cQ

dgg �
gk�P �

gP

cQ ÿ gP

cQ
� gP

DgP

cQ

�6�

where DgP is the gravity anomaly.
The linear approximation in Eq. (5) is practically the

same as for the astronomic de¯ection, where the only
di�erence is due to the normal curvature that displaces
the normal zenith from the geodetic zenith; this is in-
consequential in the second-order term in Eq. (1).

Consider the disturbing potential, T, which is given
by

T � W ÿ U �7�
where W is the actual gravity potential and U is the
normal gravity potential. Then, noting that the gravity

vector is the gradient of the potential, one has from Eq.
(5)

nMolodensky�P � � ÿ 1

cQ

�
oW

�M � h�o/

����
P

ÿ oU
�M � h�o/

����
Q

�
ÿ dng

gMolodensky�P � � ÿ 1

cQ

�
oW

�N � h� cos/ ok

����
P

ÿ oU
�N � h� cos/ ok

����
Q

�
ÿ dgg

�8�
where N and M are the principal radii of curvature of
the ellipsoid and h is the ellipsoidal height of the point.

One may de®ne the gravimetric de¯ection of the
vertical as

ngrav�P � � ÿ 1

cQ

oT
�M � h� o/

����
P

ggrav�P � � ÿ 1

cQ

oT
�N � h� cos/ ok

����
P

Hgrav � �ngrav; ggrav�T

�9�

The gravimetric de¯ection is obtained from the hori-
zontal derivatives of the disturbing potential, T, at a
point. By ``horizontal'' one means perpendicular to the
ellipsoid normal that passes through the point. The
Molodensky de¯ections, Eqs. (8), would equal the
gravimetric de¯ections, Eqs. (9), by ignoring the small
terms, dng and dgg, and by assuming that the normal
gravity vectors at P and Q are parallel, i.e. by neglecting
the curvature of the normal plumb line between P and
Q. Thus

nMolodensky�P � � ngrav�P � � dnnorm:curv�fP � ÿ dng

gMolodensky�P � � ggrav�P � ÿ dgg

�10�

where fP is the height anomaly at P. Equations (10)
show the approximations made in determining the
Molodensky de¯ections gravimetrically [according to
Eqs. (9)].

The determination of the gravimetric de¯ection
comes directly from a solution to the disturbing poten-
tial. There are two classic formulations of this solution
in terms of a boundary-value problem, where gravi-
metric quantities, the gravity anomalies, constitute the
boundary values. These two forms are the Stokes for-
mula (Heiskanen and Moritz 1967; it is not considered
further here) and the spherical harmonic series:

T �r; h; k� � kM
r

X1
n�2

Xn

m�ÿn

a
r

� �n
Cn;m �Yn;m�h; k� �11�

where �r; h; k� are spherical polar coordinates, kM is the
product of Newton's gravitational constant and
the Earth's total mass (including atmosphere), a is the
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equatorial radius of the reference ellipsoid, and the
functions �Yn;m are spherical harmonic functions fully
normalized such that the coe�cients Cn;m are given by

Cn;m � a2

4pkM�nÿ 1�
ZZ

r
Dg�h; k��Yn;m�h; k� dr �12�

The zero-degree term �n � 0� is missing in Eq. (11)
under the assumptions that the normal ellipsoid contains
the mass, M, and that the geopotential on the geoid and
the normal potential on the ellipsoid are equal. [These
assumptions are immaterial for the gravimetric de¯ec-
tions of the vertical, Eq. (9), since they a�ect only the
constant bias of T.] The ®rst-degree �n � 1� terms are
omitted under the assumption that the coordinate
system is geocentric.

Equation (12) for the coe�cients Cn;m represents an
idealization, being in the ®rst place a spherical approx-
imation, where the gravity anomaly is related in spher-
ical approximation to the disturbing potential. Modern
spherical harmonic models are constructed with great
care to correct for these and other approximations
(Rapp and Pavlis 1990). Therefore, one may take Eq.
(11) to be devoid of all such approximations to the ex-
tent possible using the available data, and assume that
the set of spherical harmonic coe�cients fCn;mg has been
correspondingly corrected. Equation (11) thus repre-
sents the true disturbing potential outside a sphere
enclosing all terrestrial masses, where the atmosphere
and all extraterrestrial masses are assumed removed.
That is, the disturbing potential of Eq. (11) is given in
the non-tide, or tide-free system. It is to be noted that
the astronomic (Helmert) de¯ections are given in the
mean-tide system, since tidal corrections, amounting to
no more than a few hundredths of an arcsecond, are not
applied (R. Anderson, NIMA, pers. comm. 1997).

4 The permanent tidal e�ect on de¯ections of the vertical

A brief review of the tidal e�ects is in order. The
gravitational tidal potential due to an external point-
mass body, designated generically as B, is given
approximately by Torge (1991) as

VB�r;w; k� � DB�r�
"
cos2 w cos2 dB cos 2tB

� sin 2w sin 2dB cos tB

� 3 sin2 wÿ 1

3

� �
sin2 dB ÿ 1

3

� �#
�13�

where tB is the hour angle of the body

tB � k� tG ÿ aB �14�
and �aB; dB� are the right ascension and declination of
the body, while tG is the hour angle of the vernal
equinox at the Greenwich meridian (i.e. sidereal time).

The coordinates of the point of evaluation are given in
terms of geocentric latitude, w. The radial dependence of
VB is given by

DB�r� � 3

4
kMB

r2

r3B
�15�

where rB is the mean distance between the Earth and the
body. DB is known as Doodson's coe�cient and re¯ects
that Eq. (13) is a second-degree interior harmonic
potential.

The tidal potential, Eq. (13), varies in time, as viewed
at a point on the Earth, with di�erent periods: from
fortnightly (due to the moon) or semi-annually (due to
the sun) as the coordinates �aB; dB� vary, to diurnally
because of Earth's rotation described by tG. There is also
a constant part, the average over 18 years, that is not
zero; this is the permanent tide due to the (crudely) ap-
proximate coplanarity of the Earth±sun±moon system.
The sun and moon are the only extraterrestrial bodies of
consequence and one may denote

Vt�r;w; k� � Vsun�r;w; k� � Vmoon�r;w; k� �16�
The components of tilt of the Earth's equipotential
surface (e.g. geoid) due to the tidal potential are given by
(Vanicek 1980)

dnt � ÿ
oVt

cRow
; dgt � ÿ

oVt

cR coswok
�17�

where no distinction needs to be made between geodetic
and geocentric latitude. To get an idea of the rough
order of magnitude of the tidal tilt, consider that, with
appropriate values for the sun's and moon's mass,
Doodson's coe�cient is

Dsun�R� � Dmoon�R�
cR

� 0:013 arcsec �18�

Only the permanent tidal e�ect is of interest in the
numerical analysis presented later. Using accurate eph-
emerides (admittedly, extreme accuracy is not warrant-
ed) of the sun and moon over three 18-year periods,
Cartwright and Tayler (1971) analyzed the total ensuing
tidal potential and arrived at amplitudes for over 500
spectral constituents, including the constant (perma-
nent) component. Rapp (1983) used this permanent part
to infer a geoid deformation given by (Heikkinen 1978
did his own analysis and obtained the same result)

dN 0
t �

V 0
t

c
� 0:099ÿ 0:296 sin2 w�m� �19�

The corresponding permanent tilt in the geoid is,
therefore, given from Eq. (17) by

dn0t � 0:0096 sin 2w [arcsec]

dg0t � 0
�20�

Thus, only the south±north de¯ection of the vertical
experiences a permanent tidal deformation.

These results hold only for a rigid Earth. For the
more realistic elastic model, the Earth's surface itself
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deforms under the in¯uence of the tidal forces. The de-
formation occurs radially as well as tangentially. Fur-
thermore, this deformation redistributes terrestrial mass
and consequently generates an additional change in
gravitational potential. The tangential displacement is
characterized as a ratio, `, between the actual displace-
ment and that of a perfectly nonviscous ¯uid Earth. If
the Earth were ¯uid, then the horizontal displacement,
expressed in terms of the tidal potential as �1=c�oVt=ow,
would cause a change in the direction of the perpen-
dicular to the surface (equipotential, in this case) given
by ��1=c�oVt=ow�=R. The Earth is not ¯uid and this is
expressed by the ratio, `, so that the horizontal dis-
placement is actually �`=c�oVt=ow, and the change in
direction of the perpendicular is ��`=c�oVt=ow�=R.

The deformation changes the gravitational potential
by a fraction of the tidal potential due to the mass re-
distribution, so that for the deformed Earth the total
change in potential is �1� k�Vt. The unitless numbers k
and ` are named after A.E.H. Love (Love numbers) and
have observed values (Lambeck 1988) of
k � 0:29; ` � 0:08. The total tidal e�ect on the (south±
north) de¯ection is therefore

dntd � ÿ�1� k� oVt

cRow
� ` oVt

cRow
�21�

and the permanent tilt is modi®ed to

dn0td � 0:012 sin 2w [arcsec]

dg0td � 0
�22�

The following relationship holds:

ngravmean tide � ngravtide-free � dn0td �23�
That is, the de¯ection becomes more positive with a
further ¯attening of the equipotential surfaces due to the
tidal attraction.

5 Practical di�erences between gravimetric
and helmert de¯ections

A ®nite set of computed spherical harmonic coe�cients
constitutes a model for the disturbing potential in free
space, meaning that the series of Eq. (11) is truncated at
some degree, nmax. In addition, a particular model has
errors associated with the uncertainties of the computed
coe�cients, which, in turn, arise from data measurement
uncertainties and errors due to unaccounted approxi-
mations. The errors due to measurement uncertainty
may be characterized statistically by a variance/covari-
ance matrix for the coe�cients; other errors can be
quanti®ed to some extent in terms of upper bounds.
Rarely, however, are detailed and accurate error statis-
tics obtainable for the entire set of coe�cients, due to
limitations in computer power and knowledge about the
actual statistics or characteristics of the data errors. This
is especially true for the higher-degree parts of the
model, whereas it is computationally tractable to

determine the low-degree error statistics using rigorous
least-squares adjustments of satellite orbit perturbation
observations. High-degree statistics of the model usually
comprise a set of estimated standard deviations for the
coe�cients.

Let the computed coe�cients be denoted by fĈn;mg;
then the model for the disturbing potential is given by

T̂ �r; h; k� � kM
r

Xnmax

n�2

Xn

m�ÿn

a
r

� �n
Ĉn;m �Yn;m�h; k� �24�

The gravimetric de¯ections of the vertical are then
obtained by di�erentiation according to Eq. (9)

n̂grav�r; h; k�
ĝgrav�r; h; k�

( )
� ÿ 1

c
kM
r2
Xnmax

n�2

Xn

m�ÿn

a
r

� �n
Ĉn;m

� ÿ o
oh

o
sin h ok

( )
��Y n;m�h; k��

�25�

where a further spherical approximation is made in the
direction of the derivative, being orthogonal to the
radius from the origin, rather than the normal to the
ellipsoid. The e�ect of this approximation applies only
to the south±north component and can be evaluated
using the equation (see Fig. 2)

o
�M � h�o/ � ÿ cos m

o
roh
ÿ sin m

o
or

� ÿ o
r oh
ÿ m

o
or

�26�

where m is the angle between the meridian radius of
curvature and the spherical radius

m � /ÿ w � f �1ÿ 1
2f � sin 2/ �27�

f is the ¯attening of the ellipsoid. The longitudinal
derivative is una�ected, because

∂
∂r

∂
r∂ψ

−

∂
(M+h)∂φ−

h

ν

ν

M

ψ φ

Fig. 2. Partial derivatives along di�erent horizons
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o
�N � h� cos/ ok

� o
r sin h ok

�28�

Thus, we have the following error terms:

n̂grav�r; h; k� � ngrav�r; h; k� � dnm � dntrunc � dncoeff:err
ĝgrav�r; h; k� � ggrav�r; h; k� � dgtrunc � dgcoeff:err

�29�
where, from Eq. (26) and with the de®nition of gravity
disturbance, dg, the derivative error is

dnm � m
dgP

cQ
�30�

The truncation error of Eq. (25) is given by

dntrunc
dgtrunc

� �
� 1

c
kM
r2

X1
n�nmax�1

Xn

m�ÿn

a
r

� �n
Cn;m

� ÿ o
oh

o
sin h ok

( )
��Y n;m�h; k��

�31�

and the error due to harmonic coe�cient error is

dncoeff:err
dgcoeff:err

� �
�ÿ 1

c
kM
r2
Xnmax

n�2

Xn

m�ÿn

a
r

� �n
dCn;m

� ÿ o
oh

o
sin h ok

( )
��Y n;m�h; k��

�32�

Note that if the coordinates of the point of evaluation
are given as geodetic coordinates �h;/; k� then these
must be transformed to geocentric coordinates �r; h; k�
before evaluating Eq. (25). Also, the normal gravity c in
Eq. (25) should be evaluated at the point of computa-
tion; replacing it with the approximation kM=r2 intro-
duces a potentially signi®cant error of up to 1 part in 500
of the de¯ection.

Other di�erences between gravimetric and astro-
nomic de¯ections of the vertical include the o�set of the
center of mass from the ellipsoid center and the non-
parallelism of the coordinate axes. In particular, if there
is a small translation �Dx;Dy;Dz� at the geocenter be-
tween datums, then

dntrans � sin/ cos k
Dx

M � h
� sin/ sin k

Dy
M � h

ÿ cos/
Dz

M � h

dgtrans � sin k
Dx

N � h
ÿ cos k

Dy
N � h

�33�

Orientation di�erences, as represented by small rotation
angles �xx;xy ;xz� with the pivot point being the
geocenter, cause de¯ection changes given by

dnrot � sin kxx ÿ cos kxy

dgrot � ÿ sin/ cos kxx ÿ sin/ sin kxy � cos/ xz
�34�

In Eqs. (33) and (34), �h;/; k� are the geodetic co-
ordinates of the point of evaluation of the de¯ection
components. It is noted that orientation di�erences may
be due to misalignments of astronomic as well as geo-
detic reference systems.

6 Recapitulation

Combining Eqs. (4), (10), (23), (29), (33) and (34), we
have the following relationship between the Helmert
de¯ection and the gravimetric de¯ection as computed
from a spherical harmonic model of the disturbing
potential:

n̂astro�P� � n̂gravtide-free�P� � dn0td � dnnorm:curv�fP �
� dnnorm:curv�H�P � ÿ dng ÿ dntrans ÿ dnm

ÿ dntrunc ÿ dncoeff:err ÿ dnrot ÿ dnastro:err
ĝastro�P� � ĝgrav�P � ÿ dgtrunc ÿ dgcoeff:err ÿ dgg ÿ dgtrans

ÿ dgrot ÿ dgastro:err
�35�

where the spherical harmonic model is assumed to be in
the tide-free system and astronomic observation errors
are also included. Missing from Eq. (35) is the periodic
tidal e�ect on the Helmert de¯ection (which was not
computed for the data to be analyzed in this paper), as
well as the time-varying e�ects due to atmospheric and
other mass redistributions. The constant atmospheric
attraction (important for terrestrial gravity anomalies,
with a maximum value of 0.87mgal) in the horizontal
direction is due to the lateral mass inhomogeneities, the
largest of which results from the air being displaced by
local terrain. This is about 0.05% (air±crustal density
ratio) of the terrain correction for de¯ections and thus
less than 1 milliarcsecond and negligible.

Table 1 gives an otherwise full account of the di�er-
ences between the two types of de¯ections, Helmert and
gravimetric, Eq. (25), in terms of root-mean-square
(rms) values of each of the correction terms. Some of
these di�erences are a consequence of di�erences in the
de®nitions, others result from approximations to the
de®nition. The values were obtained with H� � 2 km,
/ � 45�, rms�Dg� � 42mgal, rms�dg� � 46 mgal,
rms�f� � 30m and rms�n� � 5 arcsec.

Clearly, the truncation error followed by the pre-
dicted inaccuracy in the spherical harmonic model
contribute the most to the di�erence between the Hel-
mert de¯ection and the spherical harmonic model de-
¯ection. This is not an unexpected result, since the model
is limited in resolution to about 50 km, while there is
signi®cant power in the de¯ection signal at higher res-
olution. Also, the astronomic observational error asso-
ciated with the Helmert de¯ection represents a
substantial contribution. However, regionally all of
these errors take on a random character, while the e�ects
of next signi®cance (numbers 1, 4, 5, 8 and 9 in Table 1)
are quite systematic. It is noted that the normal curva-
ture correction is de®nitely the most prominent of these,
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not only especially in mountainous areas, but particu-
larly at higher ¯ight altitudes. Certain e�ects can be
safely neglected, for example, item numbers 2 and 3 in
Table 1. Also, with the possible exception of the normal
curvature correction, all other systematic e�ects may be
neglected in the traditional reduction of geodetic quan-
tities to the ellipsoid.

7 Numerical results

The object of this section is to compare astronomic
de¯ections of the vertical with de¯ections computed
from high-degree spherical harmonic models. The
astronomic de¯ection data for the comparisons were
provided by the National Imagery and Mapping Agency
(NIMA, pers. commun.). The spherical harmonic mod-
els considered are the OSU91A model (Rapp et al. 1991)
and the recently constructed EGM96 model (Lemoine
et al. 1996). Both models are complete to degree and
order nmax � 360 and are functions of geocentric spher-
ical polar coordinates �r; h; k�. The comparison is
restricted to the conterminous United States (CONUS).

The total number of astronomic de¯ections is 3678
and they are distributed unevenly across CONUS. Each
astronomic de¯ection data record consists of two com-
ponents, nastro; gastro, the orthometric height, and the
geodetic latitude and longitude �/; k� in the WGS84
reference system. Also included is a standard deviation
for each de¯ection component. Of the 3678 observed
de¯ections, 117 have a combined standard deviation,���������������

r2
n � r2

g

q
, that is greater than 1 arcsec. (Oddly, most of

these are situated along the 35th parallel and along the
eastern Florida coast.) These observed de¯ections were
deleted from the analysis, leaving a total of 3561 de-
¯ections (Fig. 3). In this reduced set, the rms of the
standard deviations for nastro is 0.293 arcsec, and for
gastro it is 0.394 arcsec.

The spherical harmonic models are given in terms of
spherical harmonic coe�cients fĈn;mg, with respect to
the GRS80 normal gravity ®eld, for all degrees and or-

ders up to the maximum degree �nmax � 360�. Each co-
e�cient is also associated with a given standard
deviation. For the evaluation of the spherical harmonic
model, Eq. (25), the orthometric height for each astro-
nomic de¯ection point was added to the geoid undula-
tion obtained from the EGM96 model in order to obtain
the ellipsoidal height, h; then the geodetic coordinates
�h; /; k� were converted to spherical polar coordinates
�r; h; k�. The normal gravity appearing in Eq. (25) was
evaluated at the point of computation using ®rst-order
upward continuation of the normal gravity formula.

Due to the vastness and variability in terrain within
CONUS, this total area was divided into six regions
approximately evenly separating north from south and
central from eastern and western parts (Fig. 4). These
regions approximately delineate rough (west), moderate
(east) and smooth (central) terrain, where further north±
south distinctions may also be anticipated. In each of
these areas the astronomic de¯ections and those implied
by the spherical harmonic model may be characterized
brie¯y by their maximum, minimum, mean and rms
values, as in Table 2. The di�erences between the two
types of de¯ections, both with respect to OSU91A and
EGM96, are similarly characterized.

Note that H � jHj is the magnitude of the de¯ection
vector, and that DH � jDHj represents the magnitude of
the di�erence in de¯ection vectors, not the di�erence in
magnitudes. Table 3 gives the corresponding statistics of
the di�erences for each individual region. The rms val-
ues in these tables are computed by

rms
j
�zj� �

����������������
1

N

XN

j�1
z2j

vuut ; z � n; g; H; Dn; Dg; DH �36�

where N is the number of de¯ections in a region.
Considering just the rms values, it is seen in Table 2

that the rms astronomic de¯ection is signi®cantly larger
than the rms de¯ection implied by either spherical har-
monic model, where the discrepancy is largest in the
mountainous regions. Also, the EGM96 model captures
slightly more de¯ection information than does the

Table 1. Di�erences between
the Helmert de¯ection compo-
nent, n, and the de¯ection as
given by a truncated spherical
harmonic series (nmax = 360)
[some of these also hold for g;
see Eq. (35)]

E�ect Equation
reference

rms value, arcsec
(where appropriate)

1. Di�erence between Helmert and Molodensky de¯ection (3) 0.34 (hkm = 2)
2. Actual gravity approximated by normal gravity (6) 0.0002
3. Di�erence between Molodensky and gravimetric de¯ection (10) 0.005
4. Di�erence between mean-tide and tide-free systems (23) 0.012
5. Horizontal derivative approximation (30) 0.032
6. Harmonic series truncation at degree 360 (T/Ra model) (31) 3.7
7. Harmonic coe�cient error (EGM96b predicted) (32) 1.27
8. Coordinate origin di�erences (ITRF90c)WGS84) (33) <0.018
9. Coordinate axes misalignmentd (ITRF90)WGS84) (34) <0.020
10. Astronomic observation error (CONUSe) ± 0.31

a Tscherning/Rapp model, Tscherning and Rapp (1974).
b Joint NASA/NIMA Earth Gravity Model, Lemoine et al. (1996).
c International Terrestrial Reference Frame 1990, McCarthy (1992).
d Large z-axis rotation of the astronomic system (FK4 catalogue) will cause greater di�erences.
e Conterminous United States, provided by NIMA (National Imagery and Mapping Agency).
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OSU91A model. This is veri®ed by the di�erences be-
tween the astronomic de¯ections and the spherical har-
monic de¯ections. Table 3 shows a systematic

improvement, though slight, in the de¯ections computed
by EGM96 versus OSU91A. Of particular interest are
the mean di�erences, which could imply systematic

Fig. 3. Locations of 3561 astronomic de¯ections of the vertical

Fig. 4. Delineation of six area of CONUS, roughly by type of terrain
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errors in one or the other (or both) de¯ection types.
These mean di�erences, however, do vary from one
region to the next, being somewhat larger in the more
mountainous areas. Table 4 gives the rms and mean
de¯ections and di�erences between model and astro-
nomic de¯ections for the entire CONUS as one region.

The theoretical di�erences between astronomic de-
¯ections and spherical harmonic model de¯ections are
given by Eq. (35). Each of the calculable systematic
correction terms in Eq. (35) is applied to the spherical
harmonic model EGM96. The resulting corrected model
de¯ections are then compared, again, to the astronomic
de¯ections. Only the mean di�erences are computed
since the rms, maximum and minimum di�erences will
not di�er substantively from the corresponding uncor-
rected di�erences. The term �ÿdnm� is computed from
Eq. (30) using the gravity disturbance implied by
EGM96. The combined term ��dnnorm:curv� is computed
from Eq. (3) using the orthometric height plus geoid
undulation implied by EGM96. The terms �ÿdntrans�
and �ÿdgtrans� are computed using Eq. (33) for the
WGS84 to ITRF90 coordinate translations (McCarthy
1992)

Dx � xITRF90 ÿ xWGS84 � ÿ0:06m
Dy � yITRF90 ÿ yWGS84 � �0:52m �37�
Dz � zITRF90 ÿ zWGS84 � �0:22m
The terms �ÿdnrot� and �ÿdgrot� are computed using
Eq. (34) for the WGS84 to ITRF90 coordinate rotations
(McCarthy 1992)

xx � �0:0183 arcsec
xy � ÿ0:0003 arcsec �38�
xz � �0:0070 arcsec
It is assumed that the di�erences between ITRF90 and
ITRF94 (to which EGM96 refers) are negligible.
Finally, the term ��dn0td� is computed according to
Eq. (22) and terms �ÿdng� and �ÿdgg� are neglected (in
accordance with the discussion of Table 1). Table 5 gives
the mean e�ects of each of these corrections per region,
as well as the total mean di�erences of the corrected and
astronomic de¯ection components. The values that
reduce these di�erences are highlighted in bold type, as
are the corrected di�erences that show improvement.
Corresponding rms values of these di�erences change
insigni®cantly from the uncorrected di�erences.

Table 4. Essential statistics of the astronomic and model-implied
vertical de¯ections and their di�erences

CONUS (3561 pts) Mean value rms value

n00 g00 Q00 n00 g00

astro )0.91 )0.14 6.79 4.27 5.28
OSU91A )1.15 )0.19 5.46 3.42 4.26
EGM96 )1.13 )0.12 5.73 3.61 4.45

Dn00 Dg00 DQ00 Dn00 Dg00
OSU91)aastro )0.24 )0.06 4.39 2.85 3.35
EGM96)astro )0.22 0.02 4.27 2.81 3.22
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For the entire region, CONUS, the mean di�erence
for the south±north de¯ection component was reduced,
as a consequence of applying the systematic corrections,
from ÿ0:219 arcsec to ±0.058 arcsec; and for the west±
east component, it was reduced from +0.016 arcsec to
+0.004 arcsec.

From Table 1, the largest di�erences between the
model and astronomic de¯ections are caused by the
truncation of the spherical harmonic series. Neglecting
all systematic errors in Eq. (35), one has

n̂gravtideÿfree�P � ÿ n̂astro�P � � dntrunc � dncoeff:err � dnastro:err

ĝgrav�P � ÿ ĝastro�P� � dgtrunc � dgcoeff:err � dgastro:err �39�
In terms of variances, one may assume that the errors on
the right side are uncorrelated and obtain an approxi-
mate expression of the error variance for the de¯ection
vector. In order to work with a single number, let

r2
H � trM�HHT�
� r2

n � r2
g �40�

where M��� represents a global average or statistical
expectation, as the case may be; and zero mean values
are assumed. Then, from Eq. (39)

r2
H; tot � r2

H; trunc � r2
H; coeff:err � r2

H; astro:err �41�
For EGM96, r2

H; coeff:err � �1:80 arcsec�2, and for the
3561 astronomic de¯ections, the rms of the error
variances is r2

H; astro:err � �0:49 arcsec�2. Therefore, using

the entry in the last row of Table 4, a reasonable
estimate of the truncation error variance for CONUS is

r̂2
H; trunc � �4:27�2 ÿ �1:80�2 ÿ �0:49�2

� �3:84 arcsec�2
�42�

With a view toward evaluating this empirical value of
r2

H; trunc, Fig. 5 shows the degree variances of the de-
¯ection vector, in the sense of Eq. (40), given by

r2
H; n � n�n� 1�

Xn

m�ÿn

C2
n;m �43�

for the OSU91A and EGM96 models, where the units of
radians-squared in Eq. (43) are converted to arcseconds-
squared in the ®gure. Also included in this ®gure are
putative analytic approximations and continuations for
the high degrees. They are based on the Tscherning/
Rapp degree variance model (included for comparison;
Tscherning and Rapp 1974)

r2
H; n�T=R�

� 1

c2
425:28 n�n� 1�

�nÿ 1� �nÿ 2� �n� 24� �0:999617�
n�2 �rad2�

�44�

where c � 9:8� 105, and a linear combination of
spherical reciprocal distance (R/D) models

100 200 300 400 500
Degree, n
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0.40
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rc
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c
]2

Tscherning/Rapp model

R/D-1
R/D-2

OSU91A

EGM96

Fig. 5. Degree variances for the vertical de¯ection from spherical harmonic models EGM96 and OSU91A, as well as from analytical
approximations

20



r2
H; n�R=D� � n�n� 1�

c2R2

Xp

j�1
s2j �1ÿ qj�qn

j �rad2� �45�

where R � 6 371 000 and s2j is given in units of �m2=s2�.
The parameter values given in Table 6 pertain to the
R/D models shown in Fig. 5.

These parameter values are purely empirical based on
the following criteria. Both R/D model degree variances
should approximate the EGM96 degree variances from
degree 100 to degree 200. R/D-1 model degree variances
should yield the estimated truncation standard error
given in Eq. (42). R/D-2 model degree variances should
approximate EGM96 degree variances from degree 100
to degree nmax � 360.

Table 7 compares the truncation errors implied by
the degree variance models to the empirical truncation
error for CONUS derived from a comparison of as-
tronomic and EGM96 de¯ections. It is clear that this
latter truncation error, given by Eq. (42), is consistent
only with an analytic degree variance model that can-
not ®t the observed degree variances at degrees greater
than 200. This means that the high-degree spectrum
(greater than degree 200) of the EGM96 model has less
power than the de¯ection data would suggest. A note
of caution must accompany this conclusion, since it is
based on only a relatively small part of the globe. For
example, the rms de¯ection from the EGM96 degree
variances is 6.57 arcsec, whereas for CONUS, from
Table 4, it is 5.73 arcsec (but this would imply an rms
truncation error even smaller than 1.33 arcsec in Table
7). Moreover, the distribution of astronomic de¯ec-
tions on which the analysis is based is not uniform
even in this small part (namely, CONUS). Neverthe-
less, this analysis represents an evaluation of
the EGM96 model against data that have strong
high-frequency informational content and that are
representative of a variety of signal strengths of the
anomalous gravity ®eld.

8 Summary

A careful theoretical development of the di�erences
between astronomic vertical de¯ections and de¯ections
implied by 360-degree spherical harmonic models shows
that several systematic di�erences are signi®cant at the
level of a few hundredths of an arcsecond, or more. By
far the largest di�erence is the e�ect due to the curvature
of the normal plumb line. Accounting for this and other
calculable systematic di�erences due to the permanent
tide and datum translation and rotation reduces the
mean di�erences between these two types of de¯ections
in the conterminous US (CONUS) by about 75% , from
ÿ0:219 arcsec toÿ 0:058 arsec and from +0.016 arcsec
to +0.004 arsec, in their respective components. It is
seen from Table 5 that the normal plumb-line curvature
correction contributes most to the reduction of the mean
di�erences in mountainous areas, as expected. This also
reinforces the fact that large curvature corrections may
need to be applied to gravimetric de¯ections computed
at ¯ight altitudes, if these are to be used in inertial
navigation systems.

Since de¯ections of the vertical are rich in high-fre-
quency gravitational information, observed values of the
astronomic (or Helmert) de¯ections are well suited to
assess the high-degree spectrum of a geopotential model
like EGM96. Figure 5 clearly shows the improvement of
EGM96 over OSU91A in the power of the signal at
degrees greater than 100. However, when comparing
EGM96 de¯ections with astronomic de¯ections in
CONUS, the EGM96 de¯ections appear to be too
smooth at degrees greater than 200. This conclusion is
obtained by trying to ®t, without success, models of the
power remaining in the observed de¯ections after
EGM96 is removed to that suggested by EGM96. It
follows that the EGM96 model may be under-powered
in the high-degree spectrum (say, beyond degree 200).
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