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An Analysis on Secure Communication

in Millimeter/Micro-Wave Hybrid Networks
Satyanarayana Vuppala, Member, IEEE, Sudip Biswas, Student Member, IEEE

and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—The secrecy outage of millimeter wave (mmWave)
overlaid micro wave (µWave) networks under the impact of
blockages is analyzed, and closed form as well as integral
expressions are provided. Specifically, using a network model that
accounts for uncertainties both in node locations and blockages,
we characterize the conditional connection outage probability
and the secrecy outage probability of hybrid networks with
multiple eavesdroppers under basic factors such as density of
eavesdropping nodes, antenna gain and blockage density. Upper
and lower bounds of the conditional secrecy outage probability
for both line-of-sight and non line-of-sight links are derived. As
a desirable side effect, certain factors such as blockages and
reduced antenna gain can decrease the secrecy outage probability
in mmWave networks. This can be considered as a tradeoff
between outage capacity and secrecy outage capacity with respect
to blockages. Hence, blockages which have been proved to be
detrimental for achieving higher data rates in mmWave systems,
can be helpful for systems with secrecy constraints. Finally, we
have shown the co-existence of mmWave and µWave networks
from a secrecy perspective.

Index Terms—Secrecy outage, random networks, blockages,
millimeter wave

I. INTRODUCTION

In recent years, the explosive growth of mobile data traffic

has led to an ever-growing demand for much higher capacity

and lower latency in wireless networks. It has culminated

in the development of the fifth generation (5G) wireless

communication systems, expected to be deployed by the year

2020, with key goals of data rates in the range of Gbps, billions

of connected devices, lower latency, improved coverage and

reliability, and low-cost, energy efficient and environment-

friendly operation. To meet the ever-increasing demands, and

keeping in mind that the current wireless spectrum is almost

saturated, it is imperative to shift the paradigm of cellular

spectrum to a new range of frequencies. In this regard,

millimeter wave (mmWave) bands with significant amounts

of unused or lightly used bandwidths appear to be a viable

way to move forward. With bands of 20-100 GHz available

for communication, mmWave can be the cornerstone in the

design of 5G networks.

MmWave bands are weak and cannot penetrate through

obstacles like buildings, concrete walls, vehicles, trees etc.

Due to these limitations, such bands were not considered
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suitable for cellular transmission for a long time. However,

recent studies and measurements [1], [2] have revealed that

the significant increase in omnidirectional path loss can be

compensated by the proportional increase in overall antenna

gain with appropriate beamforming. It was stated in [3] that

blockages cause substantial differences in the LOS and NLOS

path loss characteristics. Hence, it is important to appropriately

model the LOS and NLOS links in mmWave networks. The

measurements for path loss were carried out for 73 GHz

frequency in [4] and [5] where the first omnidirectional large-

scale path loss model was created for backhaul and mobile

access in New York City (Urban Environment).

The performance of mmWave cellular systems was analyzed

in [6] using real time propagation channel measurements. In

[7] a blockage model for mmWave was used to analyze the

rate and coverage area of such systems, a distance dependent

path loss model along with antenna gain parameters were

considered in [8] to characterize the propagation environment

in mmWave systems. While, recent literature [2], [6]–[8]

focuses on the coverage probability and transmission capacity,

physical layer security in mmWave communication has not yet

been properly explored.

The implementation of physical layer security in mmWave

communication systems is a very promising domain. Some

factors have been listed in [9] to leverage mmWave char-

acteristics for exploiting the physical layer security. On one

hand, the favorable factors of mmWave systems such as larger

bandwidth, directionality, large antenna arrays and short range

transmissions can be exploited to provide stronger physi-

cal layer security while on the other hand, the propagation

characteristics at mmWave frequencies needs to be modeled

precisely.

For example, the malicious user can implant highly direc-

tional antennas to intercept the communication. Also, larger

antenna arrays at the malicious user will give him higher

degrees of freedom to decode the message. Furthermore, the

addition of blockages may add uncertainty to the performance

of legitimate communication. This uncertainty may be bene-

ficial or a hindrance to the legitimate node, which we will

explore in a later section of the paper. It is of paramount

importance to characterize the achievable secrecy in mmWave

networks along with current micro wave (µWave) cellular

systems.

A great effort has been made to develop information-

theoretic security [10]–[12], which indicates the possibility

of securing communication links without cryptography and

in the presence of transparent eavesdroppers. The theoretical

foundations of information-theoretic security were led by
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Wyner, who introduced the concept of wire-tap channel and

analyzed the existence of a reliable transmission condition to

achieve perfect secrecy in discrete memoryless channels [10].

Since then, the concept of information-theoretic security, i.e.

physical layer security, has been extended to specific channels,

such as, additive white Gaussian noise (AWGN) channels by

Cheong and Hellman [11], and broadcast wireless channel by

Csiszár and Körner [12]. In this direction, channel propagation

effect has been taken into consideration. For instance, the se-

crecy capacity of wireless fading channels was investigated in

[13] based on the channel state information (CSI). Expressions

for the outage probability and average secrecy capacity of

quasi-static fading channels were derived in [14] by studying

both the perfect and imperfect CSI scenarios.

Noticeably, previous works in the area such as those afore-

mentioned are marked by significant abstraction from practical

applicability, with various factors of relevance ignored for

the sake of simplicity, to include: 1) the fact that wireless

channels are often subjected to fading and 2) the fact that

communicating devices often compose networks of unknown

topology (randomly distributed nodes).

A few decades later, the increasing prospect of putting infor-

mation theoretical secrecy concepts to actual use has motivated

the community to deepen its understanding of the inherent

secrecy capabilities of wireless systems by taking into account

more realistic conditions of the wireless medium. Addressing

point 1, for instance, the secrecy capacity of wireless fading

channels was investigated in [13], [15] with expressions for the

outage probability and average secrecy capacity of quasi-static

fading channels also derived expressions in [14]. Considering

point 2, and specifically when studying wireless secrecy in

random networks using stochastic-geometric tools [16], the

notion of secrecy graphs has emerged [17].

Following this trend, secrecy capacity scaling laws were

studied in [18] and recently a new perspective on the role of

node spatial distribution with wireless propagation mediums

and aggregate network interference on network secrecy has

been given in [19]. The secrecy capacity of unicast links in

the presence of eavesdroppers was investigated in [20], where

the transmission to the k-th legitimate node was based on the

order of the distance between the source and the destination.

Although there is an increasing tendency of research on intrin-

sic secrecy in random wireless networks, most current works

focus on µWave systems which do not take into consideration

the effect of blockages. Hence, it is imperative to devise a more

general model which can take into account blockage effects

and various wireless propagation mediums.

To the best of the authors’ knowledge, characterization

of secrecy outage considering blockages at the legitimate

user or eavesdropper has not yet been evaluated in mmWave

random networks. In this article, we consider a mmWave

overlaid µWave network in the presence of eavesdroppers. We

model the received signal-to-interference-noise ratio (SINR)

distributions at the user and eavesdroppers and consequently

the expressions for the connection outage probability and

secrecy outage probability of random mmWave networks in the

presence of eavesdroppers are derived. At this point we would

like to state that this model is applicable only to an outdoor

μWave 

BS
mmWave 

BS

Blockages

Eavesdroppers

Typical 

UE

Fig. 1: An illustration of a mmWave overlaid µWave network

model.

typical user. We consider a stochastic geometry approach to

characterize the spatially distributed µWave, mmWave base

stations (BSs) and the eavesdroppers. It is assumed that the

BSs and the eavesdroppers in the mmWave overlaid network

follow PPPs but are independent of each other.

The remainder of the paper is organized as follows. The

system model is described in Section II, where the formu-

lations of the blockage model and the received SINR’s are

briefly revised and preliminaries about perfect transmission

and association probabilities are discussed in Section III. In

Section IV, we characterize the connection and secrecy outage

probabilities for µWave links, while Section V models the

outage probabilities for mmWave links. Based on those derived

expressions, numerical results are drawn and briefly discussed

in Section VI. Finally, concluding remarks are offered in

section VII.

II. SYSTEM MODEL

We consider the secure downlink transmission in a hybrid

cellular network comprising of both mmWave and µWave

networks as shown in Fig. 1. The mmWave BSs are modeled as

a two dimensional homogeneous poisson point process (HPPP)

Φm with density λm, while the µWave BSs follow another

homogeneous PPP Φµ with density λµ. The eavesdroppers

also follow a PPP Φe with density λe. All the processes are

independent of each other. A typical user equipment (UE) is

assumed to be located at origin. A simple offloading technique

is adopted wherein the typical UE is offloaded to the µWave

network if the capacity achieved on the mmWave network

drops below a certain threshold. Similar offloading strategies

were analyzed in [8] and stated to be reasonable for mmWave

based networks.

Directional beamforming modeling: Due to the small wave-

length of mmWaves, directional beamforming can be exploited

for compensating the path loss and additional noise. Ac-

cordingly, antenna arrays are deployed at the transmitter and

receiver pairs. In our model, we assume all the transmit and

receiver pairs to be equipped with directional antennas with

sectorized gain pattern. In particular, we assume that both the

transmit and receiver pairs implement beamforming and main
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lobe is aligned in the direction of dominant propagation path

while side lobe directs energy in all other directions. Let θ
be the beamwidth of the main lobe. Then the antenna gain

pattern of node about some angle φ is given as [21]

Gq(θ) =

{

Gmax
q if|φ| ≤ θ

Gmin
q if|φ| ≥ θ

}

, (1)

where q ∈ UE,BS, φ ∈ [0, 2π) is the angle of boresight

direction, G
(max)
q and G

(min)
q are the array gains of main

and side lobes, respectively. Similarly, the user gain pattern

can also be modeled. However, following the approach as

used in [8], we consider omnidirectional antennas at the

UE. The beams of all non-intended links are assumed to be

randomly oriented with respect to each other and hence the

effective antenna gains on the interfering links are random.

For simplicity, we assume that the link between the BS and

the UEs is aligned and henceforth, we consider the gain to be

G.

Blockage modeling: We consider the blockages to be sta-

tionary blocks which are invariant with respect to directions.

Leveraging the modeling of blockage in [22], we consider a

two state statistical model for each and every link. The link

can be either LOS or NLOS. LOS link occurs when there is

a direct propagation path between the BS and the UE while

NLOS occurs when the link is blocked and the UE receives

the signal through reflection from a blockage. Let the LOS

link be of length r, then the probabilities of occurrence pL(.)
and pN(.) of LOS and NLOS states respectively can be given

as a function of r as

pL(r) = e−βr, pN(r) = 1− e−βr, (2)

where β is the blockage density.

Another model that has been considered in literature is a

fixed LOS probability model, as was depicted in [8]. Let the

LOS area within a circular ball of radius rD be centered around

the reference point. Then, if the LOS link is of length r, the

probability of the connection link to be LOS is given by pL
if r < rD and 0 otherwise. The parameters r and rD are

dependent on the geographical and deployment scenario of

the network. Our results are based on the data from [8].

SINR modeling: By a slight abuse of notation, we consider

Φm to be the set of interfering locations. The received SINR

for the typical UE can now be defined as

ζml
,

PmGl|hml
|2rl−αm

σ2
m +

∑

i∈Φm

PmGi|hmi
|2r−αm

i

, (3)

where Gl is the antenna array gain function, hml
is the fading

gain at the UE of interest, rl is the link length, σ2
m is the noise

power. hmi
denotes each interference fading gain and ri is the

distance from the interferer i to the typical UE.

Similarly, SINR at any eavesdropper can be given as

ζme
,

PmGe|hme
|2re−αm

σ2
m +

∑

i∈Φm

PmGi|hmi |2r−αm
i

. (4)

In mmWave networks, small scale fading does not have as

much of an impact on transmitted signals as compared to lower

TABLE I: Notations

Notation Description

Φµ Poisson Point Process (PPP) of µWave BS

λµ Density of µWave BS

Φm PPP of mmWave BS

λm Density of mmWave BS

Φe Poisson Point Process (PPP) of eavesdropper

λe Density of eavesdropper

ζµl The received SINR from µWave BS

ζml The received SINR from mmWave BS

m Nakagami-m Figure

Pµ Transmit power at µWave BS

Pm Transmit power at mmWave BS

αµ Path loss exponent for µWave systems

αm Path loss exponent for mmWave systems

Ge Antenna gain at eavesdropper

frequency systems. It is mentioned in literature [1], [2] that in

mmWave analysis, small scale fading can be ignored. How-

ever, to capture generalized propagation environment and for

analytical tractability, we consider Nakagami fading model1.

Under Nakagami-m channel model [16], the channel power

is distributed according to

Hm ∼ fHm
(x;m) ,

mmxm−1e−mx

Γ(m)
, (5)

where m is the Nakagami fading parameter and Γ(m) is the

gamma function.

µWave modeling: The µWave channels are modeled simi-

larly to its mmWave counterparts with the only exception that

the antennas2 are now omni-directional with transmitted signal

power Pµ at µWave BSs and path loss exponent αµ. It is to be

noted that blockage effects are neglected for µWave systems

due to very low penetration loss of µWave signals.

Under the consideration of separate encoding scheme at

each BS, ith BS sends an information symbol si through a

linear beamforming vector vi = [ν1i , · · · , νNt
i ]T with unit

norm, i.e., ||vi||2 = 1, i ∈ Φµ. Here, Nt is the number of

antennas at the ith µWave BS. Therefore, the received signal

at the typical UE can be given as

y =
√

Pµh1,lvlr
−αµ/2
l sl +

∑

i∈Φµ

h1,ivir
−αµ/2
i si + ω1, (6)

where h1,i = [h1
1,i, · · · , hNt

1,i ] ∈ C
1×Nt is the downlink

channel between ith µWave BS to the typical UE3 and each

entry is independently identically distributed (IID) complex

gaussian random variable with zero mean and unit variance.

ω denotes the additive Gaussian noise.

Without loss of generality, we consider a µWave UE located

at the origin. For notational simplicity, we remove the subscript

1 from the channel vector. Accordingly, the received SINR

1The choice of Nakagami-m fading to simulate the small scale fading is
commonly used in literature [1], [21], [22].

2We assume that the µWave BSs are equipped with Nt antennas and UEs
are equipped with single antenna.

3The subscript 1 in h1,l corresponds to the typical UE.
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for the typical UE and any eavesdropper can now be given

respectively as

ζµl
,

Pµ|hµl
vl|2rl−αµ

σ2
µ +

∑

i∈Φµ

Pµ|hµi
vi|2r−αµ

i

, (7)

ζµe
,

Pµ|hµe
vl|2re−αµ

σ2
µ +

∑

i∈Φµ

Pµ|hµi
vi|2r−αµ

i

. (8)

III. DEFINITIONS AND PRELIMINARIES

A. Perfect transmission characterization

In our system model, the communication links in both the

microwave and mmWave are assumed to be eavesdropped. To

combat this and enhance security, each link adopts a secrecy

coding scheme called Wyner code [10]. Hence, two kinds of

rates, namely the rate of transmitted confidential code words

Rs and the rate of the transmitted messages Rl, need to be

characterized at the transmitter. Depending on the choices of

Rl and Rs in the Wyner encoding scheme, the following

outage schemes are bound to happen.

Consider a scenario where a BS wishes to reliably and

securely transmit the confidential messages to its intended

user in the presence of eavesdroppers. In such a scenario, the

following definitions in [23] are worth mentioning here:

Non-zero capacity event: This occurs if the rate of trans-

mitted message Rℓ is below the capacity of the link and the

received message is decoded with an arbitrarily small error.

Non-zero secrecy capacity event: This happens if the rate

Rs −Rℓ is above the rate of the most detrimental eavesdrop-

ping link and the received message at the user provides no

information about the transmitter.

Remark 1: For given SINR thresholds Tl and Te, any

transmission is said to be perfect if ζml/µl
> Tl and ζe < Te

4.

However, due to the wireless medium of communication, it

is appropriate to characterize their corresponding non-outage

probabilities with the perfect transmission scheme.

Remark 2: Therefore, the transmission is said to be (θ, ǫ)-
perfect transmission if Pr{ζml/µl

> Tl} ≥ θ and Pr{ζe <
Te} ≥ ǫ where θ and ǫ denote the minimum non-outage

constraints at the user and the most detrimental eavesdropper

respectively.

Consequently, any transmission is said to be secure if and

only if (1,1)-perfect transmission is achieved. Additionally,

for (θ, ǫ)-perfect transmission, 1 − θ and 1 − ǫ represent

the maximum connection outage probability and maximum

secrecy outage probability respectively. Accordingly, we define

two important metrics of interest as given below.

Connection outage probability: We assume that the typical

UE associates itself with its strongest BS node. Thus, the

connection outage probability can occur when the UE is

4The subscripts µe and me are replaced with e hereinafter as the eaves-

dropper can operate in both mmWave or µWave frequencies. Tl , 2
Rl

− 1

and Te , 2
Re

−1 are the threshold SINR of any legitimate and eavesdropper
nodes, respectively.

connected to the strongest BS and if the received SINR falls

below Tl. It can be mathematically represented as

Pco(Tl) = Pr

[

max
x∈Φml/µl

ζ(x) < Tl

]

. (9)

Since the mmWave and µWave networks follow two inde-

pendent PPPs, it is possible to perform the analysis on both

the processes independently with an association probability.

Let pmm be the probability that the typical UE is offloaded to

the mmWave network, then pµ = 1− pmm is the probability

that the typical UE is offloaded to the µWave network.

Accordingly, the total connection outage probability can be

given as

Pco(Tl) = Pmm
co (Tl)pmm + Pµ

co(Tl)pµ (10)

where Pmm
co (Tl) and Pµ

co(Tl) denotes the conditional connec-

tion outage probabilities of mmWave and µWave networks,

respectively.

Secrecy outage probability: If the capacity of the channel

from the BS to any eavesdroppers is above the rate Re, i.e.,
log2(1+ζe) > Re, the security of the message is compromised.

In other words, the confidential message may not be perfectly

secure against the eavesdropper in R
2. The probability of this

event is known as secrecy outage probability [23], which is

denoted by Ps.

Assume a set of eavesdroppers that can cause secrecy outage

as Be = {i ∈ Φe : ζi > Te}. Hence, we can define

the indicator function, 1A(e), which equals to 1 when the

eavesdropper e is in the set Be. The secrecy outage probability

can thus be described as the probability that at least one of

the eavesdroppers in set Be causes a secrecy outage, which

can be written as [23],

Ps(Te)= 1−EΦml/µl

[

EΦe

[

EX

[

∏

e∈Be

(

1− 1A(e)
)

]

]

]

, (11)

= 1− EΦml/µl

[

EΦe

[

∏

e∈Φe

(

1− Pr
(

ζe > Te

)∣

∣

Φml/µl
,Φe

]

]

.

This follows from the independence of fading at each eaves-

dropper so that the expectation on X = (hme
/hµe

, hmi
/hµi

)
can be moved inside the product of Φe. Since it is difficult to

express Ps(Te), we consider the upper bound of equation (11)

which can be obtained by using the generating functional of

a PPP [23], [24] as5

Ps(Te) = 1−EΦml/µl

[

exp

[

−λe

∫

R2

Pr
(

ζe > Te

∣

∣

Φml/µl

)

de

]

]

.

(12)

Similar to connection outage probability characterization,

the total secrecy outage probability can be given as

Ps(Te) = Pmm
s (Te)pmm + Pµ

s (Te)pµ (13)

where Pmm
s (Te) and Pµ

s (Te) denotes the conditional secrecy

outage probabilities of mmWave and µWave networks, respec-

tively.

5Unless explicitly mentioned in the equations, we perform the analyses
using the secrecy outage expression for upper bound as given in (12).
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In addition, the lower bound of the secrecy outage proba-

bility can be obtained by considering only the nearest eaves-

dropper as

PLB
s (Te) =

∫

∞

0

Pr{ζe(r) > Te}fre(re)dre, (14)

where fre(r) represents the probability distribution function

(PDF) of the distance between the nearest eavesdropper to the

associated BS. As the eavesdroppers are distributed according

to a homogeneous PPP distribution with density λe, the

distribution of the nearest neighbor is shown in [24] as

fre(re) = 2πλere exp(−λπr2e ). (15)

B. Association probability

In this subsection, we give some qualitative comments

on µWave and mmWave tiers’ association probabilities. It

is assumed that the typical UE is associated with the best

BS, which provides the UE with the strongest signal. We

consider an identical bias factor Bµ or Bmm [25], [26], which

is always positive. When B = 1, no biasing is considered

and the association goes back to a traditional cell association

based on maximum received power or nearest node. We

consider that the UE is offloaded to either µWave or mmWave

network depending on the maximum received signal from BSs.

Leveraging the analysis from [25], we consider that the UE

is connected to the best BS in terms of long term averaged

biased received power. In such cases, the UE association is

generally conditioned on the least path loss distribution. So,

it is important to characterize such distributions in mmWave

networks under the effect of blockages. As mentioned earlier

in section II, any link i.e the distance between the UE and BS

in a mmWave network depends on the exponential blockage

probability model. Therefore, the least pathloss distribution in

a mmWave network is not the same as for the case of a µWave

network, as given in (15).

Lemma 1. The least path loss distribution in a mmWave

network can be given as

Fmm
ξl

(r)=1−exp

(

−πλm(rPmGlBm)
1

αN (16)

− 2πλm

β2 (1−e−β(rPmGlBm)

1
αL(1 + β(rPmGlBm)

1
αL ))

+ 2πλm

β2 (1−e−β(rPmGlBm)

1
αN (1 + β(rPmGlBm)

1
αN ))

)

.

Proof. The proof of this lemma can be obtained from the

proof of Theorem 1 of [27]. However, we present a sketch

of the proof here, since we repeatedly use the following

approach in later sections of the paper. Consider a point

process, where the points represent the path loss between the

UE and randomly placed BSs in a mmWave network. Let

φmm =
{

ξl ,
xαm
l

PmGlBm

}

be a homogeneous PPP of intensity

λm. Here, the distance is a random variable, and its LOS

state occurs with the probability of e−βx. By using Mapping

theorem [28, Theorem 2.34], the density function of this one

dimensional PPP under the effect of blockages can be given

as

Λ([0, r]) =

(rPmGlBm)

1
αL

∫

0

2πλmxe−βxdx (17)

+

(rPmGlBm)

1
αN

∫

0

2πλmx(1− e−βx)dx.

Using the void probability of a PPP and with the help of

(17), the least path loss distribution in a mmWave network can

be given as (16).

Proposition 1. The association probability that a typical UE

is connected to the µWave network is given by

pµ=2πλµ

∞
∫

0

r exp

(

−Λm

(

(

P̄mm

P̄µ

)

1
αm r

αµ

αm

))

e−πλµr
2

dr,

(18)

where P̄mm = PmGlBm; P̄µ = PµBµ and

Λm

(

P̄mm

P̄µ

1
αm r

αµ

αm

)

= πλm

(

P̄mm

P̄µ

)

1
αN r

αµ

αN (19)

− 2πλm

β2






1−e

−β

(

P̄mm

P̄µ

)

1
αN r

αµ

αN

(

1 + β
(

P̄mm

P̄µ

)

1
αN r

αµ

αN

)







+ 2πλm

β2






1−e

−β

(

P̄mm

P̄µ

)

1
αL r

αµ

αL

(

1 + β
(

P̄mm

P̄µ

)

1
αL r

αµ

αL

)






.

Proof. This proof can be obtained by leveraging results of

Lemma 1 and [25, Lemma 1]. A sketch of the proof is given

in Appendix A for the sake of completeness.

Similarly, one can obtain the association probability pmm

using the above analysis.

IV. SECRECY OUTAGE PROBABILITY: µWAVE LINK

In this section, we derive the conditional connection outage

probability and the conditional secrecy outage probability of

µWave links. Before proceeding further, we would like to

state that we will start this section with the noise limited

scenario. This is just to keep the analysis tractable with respect

to mmWave systems, where it has been explicitly mentioned

in [2], [6], [8] that these networks in urban settings tend to be

noise limited rather than interference limited. However, it is

different for µWave systems where interference dominates the

noise. Accordingly, we will also consider the case where both

noise and interference play equivalent roles in determining

the SINR. Let us first consider the noise limited case where

noise power dominates the interference power. Using (9),

the connection outage probability of any microwave link by

neglecting interference is given in Proposition 1.
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Proposition 2. The conditional connection outage probability

of a typical µWave link in mmWave overlaid cellular networks

is given as

Pµ
co(Tl) = exp

(

−πλµP
2
α
µ T

−2
α

ℓ EHµ

(

h
2
α
µl

))

. (20)

Proof. The proof is given in Appendix B.

Similarly, the conditional secrecy outage probability is given

in Proposition 2.

Proposition 3. The conditional secrecy outage probability of

a typical µWave link in mmWave overlaid cellular networks is

given as

Pµ
s (Te) = 1− (21)

× exp






−

2πλeΓ(
2
αµ

)

αµ

(

ATeσ
2
µ

Pµ

)

−2
αµ Nt
∑

i=1

(

Nt

i

)

(−1)i+1i
−2
αµ






.

Proof. Denoting the integral expression in (12) as M, we have

M =

∞
∫

0

Pr

(

Pµ|hµe
ve|2re−αµ

σ2
µ

> Te

)

, (22)

=

∞
∫

0

Pr

(

|hµe
ve|2 >

Tere
αµσ2

µ

Pµ

)

,

(a)
=

∞
∫

0

re



1−
(

1− e
−

ATer
αµ
e

Pµ

)Nt


 dre,

(b)
=

Nt
∑

i=1

(

Nt

i

)

(−1)i+1

∞
∫

0

ree
−

iATer
αµ
e

Pµ dre,

=
Γ( 2

αµ
)

αµ

(

ATeσ
2
µ

Pµ

)

−2
αµ Nt
∑

i=1

(

Nt

i

)

(−1)i+1i
−2
αµ ,

where (a) is the result of Hµ = |hµe
ve|2, which follows a chi-

square distribution [29] with 2Nt degrees of freedom and uses

the tight upper bound of gamma random variable of parameter

ξ as

Pr{Hµ < γ} < (1− e−Aγ)ξ, (23)

with A = ξ
(ξ!)−1/ξ and (b) is the result of binomial expansion.

This proof concludes by substituting the closed form expres-

sion of M in (12).

Now taking interference into account, the conditional se-

crecy outage probability can be derived similarly as

Pµ
s (Te) = 1− exp

(

−2πλe

Nt
∑

i=1

(

Nt

i

)

(−1)i+1 (24)

×
∞
∫

0

ree
−

iATeσ
2
µr

αµ
e

Pµ EIµ

[

e
−

iATer
αµ
e

Pµ
Iµ

]

dre



 ,

where EIµ [.] is the Laplace characterization of interference

from all other µWave BSs.

V. SECRECY OUTAGE PROBABILITY: MMWAVE LINK

In this section6, we derive the conditional connection outage

probability and the conditional secrecy outage probability of

mmWave cellular links. As discussed before, such networks in

urban settings tend to be noise limited rather than interference

limited, which is due to the fact that in the presence of

blockages, the signals received from unintentional sources

are close to negligible. In such densely blocked scenarios

(typical for urban settings), SNR provides a good enough

approximation to SINR for directional mmWave networks. As

mentioned before, in the following analysis we consider two

blockage models:

A. Random blockage model

Here, we leverage the modeling of blockage from [22]

where blockages are modeled randomly with LOS probability

of e−βr. In conjunction to the previous section, we char-

acterize the conditional secrecy outage probability without

considering interference in first part, and interference in the

second.

Proposition 4. The conditional connection outage probability

of a typical mmWave link for random blockage model is given

as

Pmm
co (Tl) = exp



−
∑

j∈L,N

2πλm

αj

(

PmGl

σ2
m

)

2
αj

(25)

×
∞
∫

Tl

y
−2
αj

−1

∞
∫

0

pj(
y
z )z

2
αj fHm

(z) dzdy



 .

Proof. The proof is given in Appendix C.

Corollary 1. The conditional connection outage probability

of the typical mmWave link for the case of Additive white

Gaussian noise (AWGN) is given as

Pmm
co (Tl)=exp



πλ
(

Tlσ
2
m

PmGl

)−
1
αN−2πλ

β2

∑

j∈L,N

(

PmGl

σ2
m

)

2
αj

(26)









e
−β

(

Tlσ
2
m

PmGl

)

−

1
αj (

−1− β
(

Tlσ
2
m

PmGl

)−
1
αj

)

















.

Proof. A detailed proof is given in Appendix D.

Proposition 5. The conditional secrecy outage probability of

a typical mmWave for random blockage model link can be

given as

Pmm
s (Te) = 1− exp



−2πλe

∑

j∈L,N

m
∑

i=1

(

m

i

)

(−1)i+1 (27)

×
∞
∫

0

ree
−

iATeσ
2
mr

αj
e

PmGe pj(re)dre



 .

6For tractable analysis, we take the interference into account only for the
case secrecy outage probability.
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Proof. The proof follows from the Proposition 2. However,

for better understanding, readers can follow the proof from

Appendix E.

LOS analysis: In mmWave systems, the performance gap

between LOS and NLOS regimes is quite large. Therefore, it

is of paramount importance to characterize the LOS regime.

Corollary 2. The conditional secrecy outage probability in

LOS regime is given as

Pmm
s (Te)= 1−exp

(

−2πλe

m
∑

i=1

(

m

i

)

(−1)i+1

[

PmGe

iATeσ2
m

(28)

−
√
πP

3/2
m e

β2PmGe

4iATeσ2
m

4(iATeσ2
m)3/2

erfc

(

β
√
PmGe

2
√

iATeσ2
m

)












.

Proof. Considering α = 2, the integral expression M in (12)

under LOS scenario follows from proposition 4 as

M = 2πλe

m
∑

i=1

(

m

i

)

(−1)i+1

∞
∫

0

ree
−

iATeσ
2
mr2e

PmGe e−βredre. (29)

Now, substituting the closed form expression of (29) in (12),

the desired proof is obtained.

Corollary 3. The lower bound of conditional secrecy outage

probability in LOS regime is given in (30) on top of the

following page.

Proof. Considering α = 2, the conditional secrecy outage

probability (14) under LOS scenario can be given as

PmmLB
s (Te)=

∫

∞

0

Pr{ζe(r) > Te}fre(re)e−βredre, (31)

=

∫

∞

0

Pr

{

PmGehme
r−α
e

σ2
m

> Te

}

fre(re)e
−βredre,

(a)
=

m
∑

i=1

(

m

i

)

(−1)i+1

∞
∫

0

e
−

iATeσ
2
mr2e

PmGe fre(re)e
−βredre,

(b)
= 2πλe

m
∑

i=1

(

m

i

)

(−1)i+1

∞
∫

0

ree
−

iATeσ
2
mr2e

PmGe e−πr2e e−βredre,

where (a) and (b) follow the same analyses as in proposition

2. Now, substituting the closed form expression of (31) in (12),

we obtain the desired proof.

At this point, it is worthwhile to mention some insights on

interference modeling in mmWave networks. As mentioned

earlier in beginning of this section, it is widely accepted

that interference may not play a significant role in urban

mmWave systems. However, Ad-hoc networks and indoor

mmWave systems may still be susceptible to some amount

of interference as depicted in [21]. In order to not to deviate

from the analysis, we now characterize conditional secrecy

outage probability by taking interference into account.

Thus, the conditional secrecy outage probability of a typical

mmWave link can be given as

Pmm
s (Te) = 1− exp



−2πλe

∑

j∈L,N

m
∑

i=1

(

m

i

)

(−1)i+1 (32)

×
∞
∫

0

ree
−

iATeσ
2
mr

αj
e

PmGe EIm

[

e
−

iATer
αj
e

PmGi
Im

]

pj(re)dre



 ,

where EIm [.] is the Laplace representation of interference

from all other mmWave BSs. The detailed characterization

of the above integral is given in Appendix D.

Since we model the links between the BSs and the typical

UE as LOS and NLOS which are independent of each other,

we leverage the notion of mark from stochastic geometry to

further split the Poisson point processes into two independent

LOS and NLOS sub processes. Therefore, the interference Im
can be expressed as

Im = IΦL
m + IΦN

m . (33)

Hence, the conditional secrecy outage probability of a

typical mmWave link can now be given as

Pmm
s (Te) = 1− exp



−2πλe

∑

j∈L,N

m
∑

i=1

(

m

i

)

(−1)i+1 (34)

×
∞
∫

0

ree
−

iATeσ
2
mr

αj
e

PmGe

∏

j

EIm

[

e
−

iATer
αj
e

PmGi
Ij
m

]

pj(re)dre



 .

B. Fixed LOS model

Leveraging the modeling of blockage in [8], we consider

a simple LOS model for each and every link7. At this

point, we would like to note that the adoption offixed LOS

probability model in our analysis enables faster calculations of

the connection and secrecy outage probability, as it simplifies

expressions for the evaluation of the numerical integrals. It has

been shown via simulations in [22], [30] that the error due to

such an approximation (LOS step model) is generally small in

dense mmWave networks, which also motivates the use of this

first-order approximation of the LOS probability function. This

significantly simplifies the dense network analysis. As shown

in [22], the step function approximation generally provides a

lower bound of the actual SINR distribution, and errors due

to the approximation become smaller when the base station

density increases.

Proposition 6. The conditional connection outage probability

of a typical mmWave link for random blockage model is given

as

Pmm
co (Tl) = exp



−
∑

j∈L,N

2πλm

αj

(

PmGl

σ2
m

)

2
αj

(ATl)
−2
αj (35)

×
m
∑

i=0

(

m

i

)

(−1)i+1i
−2
αj Γ

(

2
αj

, iAt
rd

)

)

.

7Here, we elucidate the conditional secrecy outage probability only. The
conditional connection outage probability follows easily from the previous
subsection with fixed pL.
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Pmm
s (Te)= 2−1

(

iATeσ
2
m

PmGe
+ π

)−1/2

−β e

β2

4





iATeσ
2
m

PmGe
+π



√
πerfc

(

β2−1

(

iATeσ
2
m

PmGe
+ π

)−1/2
)

4

(

iATeσ
2
m

PmGe
+ π

)−3/2

. (30)

Proof. The proof follows from Proposition 3.

Proposition 7. The conditional secrecy outage probability of

a typical mmWave link for fixed LOS Model is given as

Pmm
s (Te) =1−exp



−
∑

j∈L,N

pj
2πλer

2
d

αj

m
∑

i=1

(

m

i

)

(−1)i+1 (36)

×Eα−2
α

(

iATeσ
2
mr

αj

d

PmGe

))

,

where Ea(b) denotes the exponential integral.

Proof. The proof follows from Proposition 4.

LOS analysis: Similar to the previous analysis on LOS

using the random blockage model, here we characterize the

conditional secrecy outage probability for fixed blockage

model.

Corollary 4. The conditional secrecy outage probability using

the fixed blockage model can be given as

Pmm
s (Te)=1−exp

(

−pLπλe
PmGe

Teσ2
m

m
∑

i=1

(

m

i

)

(−1)i+1

i
(37)

×
(

1− exp
(

− i.ATeσ
2
mr2d

PmGe

)))

.

Proof. Consider α = 2, then the integral expression M in

(12) under LOS scenario is given as

M = 2πλe

m
∑

i=1

pL

(

m

i

)

(−1)i+1

∞
∫

0

ree
−

iATeσ
2
mr2e

PmGe dre. (38)

Therefore, by substituting the closed form expression of (38)

in (12), this proof concludes.

Corollary 5. The lower bound of conditional secrecy outage

probability in LOS regime is given as

PmmLB
s (Te) =

PmGe

2 (iATeσ2
m + πPmGe)

. (39)

Proof. Considering α = 2, the conditional secrecy outage

probability equation (14) under LOS scenario can be written

as

PmmLB
s (Te) =

∫

∞

0

Pr{ζe(r) > Te}fre(re)dre, (40)

(b)
= 2πλe

m
∑

i=1

(

m

i

)

(−1)i+1

∞
∫

0

ree
−

iATeσ
2
mr2e

PmGe e−πr2edre.

Similar to the previous proofs, this proof concludes by

substituting the closed form expression of (40) in (14).

Now, by taking interference into account, the conditional

secrecy outage probability of a typical mmWave link can now

be given as

Pmm
s (Te)=1−exp



−2πλe

∑

j∈L,N

pj

m
∑

i=1

(

m

i

)

(−1)i+1 (41)

×
∞
∫

0

ree
−

iATeσ
2
mr

αj
e

PmGe EIm

[

e
−

iATer
αj
e

PmGi
I

]

dre



 ,

where EIm [.] is the interference from all other mmWave BSs.

The characterization of EIm [.] follows from the previous sub-

section.

VI. NUMERICAL RESULTS

In this section, we validate the system model and also

verify the results derived in the propositions. In general, the

computations are done through Monte Carlo simulations which

are then used to validate the analytical expressions. Unless

stated otherwise, most of the values of the parameters used

are inspired from literature mentioned in the references. For

the system guidelines, we mention these parameters and their

corresponding values in Table II.

With the expressions already derived, we can now study the

availability of secrecy in random mmWave overlaid µWave

networks in the presence of randomly distributed eavesdrop-

pers. In particular, we analyze the effect of change of param-

eters such as Ge, α, λe and Te on conditional secrecy outage

probability in Figures 3, 4, 5 and 6. The latter part of numerical

section and figures are devoted to explaining the importance

of blockage modeling from secrecy perspective.

A network of cell radius of 200m is considered. The trans-

mit power is set at 30dBm for mmWave and 43dBm for µWave

BS with thermal noise density of -174dBm/Hz. We begin by

plotting the association probability, pµ of µWave network with

respect to mmWave network in Fig. 2. It can be seen from

the figure that the association probability of µWave network

increases with the density of µ BSs, which is quite obvious. It

can also be seen that increasing the path loss exponent reduces

pµ. However, one interesting observation from the figure is

that, the blockage parameter, β has a significant impact on the

association probability when the µWave network experiences

higher path loss. Accordingly, the typical UE associates itself

to the mmWave network when it experiences more path loss

in the µWave network. This result confirms that, the typical

UE is always associated with the best BS (either mmWave or

µWave), providing the strongest signal.
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TABLE II: Simulation Parameters

Notation Parameter Values

m Nakagami-m figure 10

λe Density 0.00001

Rs Target rate 0.1

α Path loss exponent 2, 3.5, 4

Ge Antenna gain 2, 3, 5, 10dB

Nt Antenna number at µWave BSs 10

Since, now we have established the association probabilities

of the typical UE for the mmWave and µWave networks,

hereinafter, we analyze the conditional secrecy and connection

outage probability in the following figures. Fig. 3 shows the

conditional secrecy outage probability as a function of λe

for both the µWave and mmWave link which follows from

(24) and (41). It is evident from Fig. 3a that interference is

beneficial for secrecy capacity in µWave systems from the

perspective of increasing uncertainty at the eavesdropper. This

is due to the fact that as the density of BS λµ increases, the

conditional secrecy outage probability decreases. However, in

mmWave systems, due to the blockages, interference doesn’t

play major role, which is clearly evident from Fig. 3b. It can

also be seen that the increase in directional antenna gain at

the eavesdropper increases the secrecy outage probability.

In Fig. 4, we plot the conditional secrecy outage probability

as a function of Te considering the random blockage model for

different values of eavesdroppers antenna gains and path loss

exponents. Fig. 4a shows that the conditional secrecy outage

probability decreases with the increase in Te. It is evident from

this figure that highly directional beamforming may not always

be useful from a secrecy perspective as the eavesdroppers too

will have high gains and can force the communication into

secrecy outage. Therefore, there is a trade-off between the

achievable outage capacity and secrecy outage capacity.

Similar to Fig. 4a, Fig. 4b is plotted as a function of Te

for different values of αN. From this figure, it can be seen

that conditional secrecy outage probability decreases with the

increase in α. It is more likely to have higher path loss

exponent in mmWave systems than µWave systems. Hence,

it is intuitively acceptable that higher values of path loss

exponents degrade the communication more. Consequently,

the eavesdropper receives less information from the BS.

As mentioned earlier, any perfect transmission takes place if

and only if the transmitted messages satisfy both the minimum

connection outage and secrecy outage constraints. Fig. 5 shows

the connection outage probability as a function of mmWave

BS density. The connection outage probability decreases as

the mmWave BS density increases. From this figure, It is

worthwhile to mention that the increase in pL provides better

communication from the BS to the typical UE. Henceforth,

to characterize any perfect transmission scheme, we opt for a

higher LOS probability and a decent mmWave BS density.
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Fig. 2: Association probability of µWave network with respect

to mmWave network. Here, Pm = 30dBm, Pµ = 43dBm,

λm = 0.0001, αL = 2, αN = 4.
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Fig. 3: conditional secrecy outage probability as a function of

λe. Parameters - mmWave: m=10, Te=15dB, µWave: m=10,

Te=1dB.
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Fig. 4: Conditional secrecy outage probability as a function of

Te considering generalized blockage model.

Fig. 6 shows the comparison between LOS and NLOS

scenarios under the fixed blockage model. It can be observed

from the figure that the conditional secrecy outage probability

decreases as we move from LOS scenario to NLOS scenario.

Hence, it is evident that the NLOS scenario helps the com-

munication to transmit the message securely. This is due to

the fact that the blockage density is higher in NLOS scenario,

which provides higher signal loss at the eavesdropper.

Fig. 7 shows the conditional secrecy outage probability as a

function of λe for mmWave link considering the two blockage

models described under various blockage probabilities. This

analysis follows from (28) and (37). It is clearly evident

from the figure that the outage probability decreases with the

increase in blockage density. It can also be seen from the

figure that the performance gap between the two models used

is minimal. While from a practical standpoint, the random

blockage model may intuitively sound more functional, the

fixed LOS model can be categorically stated to be more useful

in obtaining analytical closed form expressions.
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At this point, it is worthwhile to mention the fact that higher

path loss exponents, NLOS scenarios and dense blockage

environments can aid secrecy capacity in mmWave overlaid

µWave networks. In order to design a secure system in a hybrid

network, one should calculate the total secrecy outage prob-

ability from (13) with respect to association and conditional

secrecy outage probabilities of mmWave and µWave networks.

VII. CONCLUSION

The secrecy outage of mmWave overlaid µWave networks

under the impact of blockages was analyzed. A tradeoff

between outage capacity and secrecy outage capacity with

respect to blockages was seen. This can be expertly exploited

by network engineers to maintain a balance between higher

data rates and security. Furthermore, in mmWave systems high

antenna gains are usually preferred. However, this may not al-

ways be useful from a secrecy perspective as the eavesdroppers

too will have high gains and can force the communication into

secrecy outage. Moreover, higher path loss exponents, NLOS

scenarios and dense blockage environments were found to aid

secrecy capacity in such network models.

Our results are useful in quantifying the performance of

blockages on the conditional secrecy outage probability of

mmWave networks. Specifically, we would like to state that the

work presented in this paper gives the required initial analyses,

while reiterating some very important results, that can be

considered as a cornerstone for future works in enhancing

hybrid network security. We have also shown that co-existence

of mmWave and µWave networks from a secrecy perspective is

possible when the total secrecy outage probability with respect

to association and conditional secrecy outage probabilities of

mmWave and µWave networks is available.

APPENDIX A

PROOF OF PROPOSITION 1

Let pµ be the association probability of a typical user

connected to a µWave network, i.e., the probability that all

mmWave BSs have maximum path loss when the user is

connected to the nearest µWave BS. If rµ is the nearest µWave

BS node, then pµ can be represented as

pµ = Erµ

[

Pr
[

PµBµr
−αµ
µ > PmGlBmr−αm

m

]]

,

=

∞
∫

0

Pr
(

rαm
m

PmGlBm
>

r
αµ
µ

PµBµ

)

frµ(r)dr, (42)

where Pr
(

rαm
m

PmGlBm
>

r
αµ
µ

PµBµ

)

can be obtained by taking

complementary cumulative distribution function of equation

(16) in Lemma 1 and frµ(r) is obtained similar to equation

(15).

APPENDIX B

PROOF OF PROPOSITION 2

Let φµ =
{

xl ,
Pµ

σ2
µ
r
−αµ

l

}

be a path gain process. By using

Mapping theorem [28, Theorem 2.34], the density function of

this point process can be given as

λ(x) =
2πλµ

α

(

Pµ

σ2
µ

)

2
α
x
−2
α −1. (43)

Since our propagation process φµ is also affected by fading

Hµ, i.e φµ = {yi , hixi}, the density of this marked point

process using the displacement theorem [28] can be given as

λ̂(y) =

∞
∫

0

λ(x)ρ(x, y) dx, (44)

where

ρ(x, y) =
d

dy
(1− FHµ

(y/x)) = − y
x2 fHµ

(y/x). (45)

where Hµ = |h1,iv1|2 is chi-squared with 2Nt degrees

of freedom. For more insights on this fading distribution,

interested readers can refer to [29, Lemma 2].

Therefore (44) can now be given as

λ̂(y) =
1

α

∞
∫

0

2πλµ

(

Pµ

σ2
µ

)

2
α
x
−2
α −1ρ(x, y) dx

=
1

α

∞
∫

0

2πλµ

(

Pµ

σ2
µ

)

2
α
x
−2
α −1fHµ

(y/x) 1x dx

(z= y
x )

=
1

α
2πλµ

(

Pµ

σ2
µ

)

2
α
y
−2
α −1

∞
∫

0

z
2
α fHµ(z) dz

=
1

α
2πλµ

(

Pµ

σ2
µ

)

2
α
y
−2
α −1

EHµ

(

h
2
α
µl

)

. (46)

Using the void probability of a PPP and from the definition

of connection outage probability according to (9), the connec-

tion outage probability in (Tl,∞) can thus be given as

Pco(Tl) = exp



−
∞
∫

Tl

λ̂(y)dy



 (47)

= exp



−2πλµ

α

(

Pµ

σ2
µ

)

2
α
EHµ

(

h
2
α
µl

)

∞
∫

Tl

y
−2
α −1dy



 .

The proof concludes by evaluating the above integral in

equation (47).

APPENDIX C

PROOF OF PROPOSITION 4

Let φm =
{

xl =
PmGl

σ2
m

r
−αj

l

}

be a path gain process, where

j ∈ {L, N}. Similar to the proof of Proposition 1, by using

Mapping theorem [28], the density function under the effect

of blockages can be given as

λ(x) =
∑

j∈L,N

2πλm

αj

(

PmGl

σ2
m

)

2
αj pj(x)x

−2
αj

−1
. (48)

We can obtain the density of marked point process as below.

Now (48) becomes

λ̂(y)=
∑

j∈L,N

2πλm

αj

∞
∫

0

(

PmGl

σ2
m

)

2
αjpj(x)x

−2
αj

−1
ρ(x, y) dx, (49)

(z= y
x )

=
∑

j∈L,N

2πλm

αj

(

PmGl

σ2
m

)

2
αj y

−2
αj

−1

∞
∫

0

pj(
y
z )z

2
αj fHm(z) dz.
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Using the void probability of a PPP, the path gain distri-

bution for best relay in interval of (Tl,∞) can thus be given

as

Pco(Tl) = exp



−
∞
∫

Tl

λ̂(y)dy



 ,

= exp



−
∑

j∈L,N

2πλm

α

(

PmGl

σ2
m

)

2
αj

(50)

×
∞
∫

Tl

y
−2
αj

−1

∞
∫

0

pi(
y
z )z

2
αj fHm(z) dzdy



 .

APPENDIX D

PROOF OF COROLLARY 1

Similar to the proofs of previous Propositions 2 and 4, the

density function of a marked point process in AWGN case can

be given as

λ(x) =
∑

i∈L,N

2πλm

α

(

PmGl

σ2
m

)

2
αj pi(x)x

−2
α −1, (51)

=
2πλm

αL

(

PmGl

σ2
m

)

2
αL e−βP

1
αL x

−

1
αL x

−2
αL

−1

+
2πλm

αN

(

PmGl

σ2
m

)

2
αN

(

1− e−βP

1
αN x

−

1
αN

)

x
−2
αN

−1
.

Therefore, the connection outage probability can be simpli-

fied as

Pco(Tl) = exp



−
∞
∫

Tl

λ(x)dx





= exp



πλm

(

Tlσ
2
m

PmGl

)−
1
αN − 2πλm

β2

∑

j∈L,N

(

PmGl

σ2
m

)

2
αj

(52)









e
−β

(

Tlσ
2
m

PmGl

)

−

1
αj (

−1− β
(

Tlσ
2
m

PmGl

)−
1
αj

)

















.

APPENDIX E

CHARACTERIZATION OF SECRECY OUTAGE PROBABILITY

Let us denote the integrand in the (12) as M.

Therefore,

M=2πλe

∑

j∈L,N

∫

R2

Pr

{

PmGehme
r−α
e

σ2
m

> Te|j
}

dr, (53)

(a)
= 2πλe

∑

j∈L,N

∫

R2

(

1− Pr

{

hme
<

Ter
α
e σ

2
m

PmGe
|j
})

dr,

= 2πλe

m
∑

i=1

(

m

i

)

(−1)i+1

×





∞
∫

0

ree
−

iAσ2
mTer

αL
e

PmGe EIm

[

e
−

iATer
αL
e

PmGe
Im

]

e−βredre

+

∞
∫

0

ree
−

iATer
αN
e

PmGe EIm

[

e
−

iATeσ
2
mr

αN
e

PmGe
Im

]

(1−e−βre)dre



 ,

where (a) follows the same analyses as in Proposition 2.
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