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Abstract—The goal of exploration to produce diverse search
points throughout the search space can be countered by the
goal of selection to focus search around the fittest current
solution(s). In the limit, if all exploratory search points are
rejected by selection, then the behaviour of the metaheuristic
will be equivalent to one which performs no exploration at all
(e.g. hill climbing). The effects of selection on exploration are
clearly important, but our review of the literature indicates
limited coverage. To address this deficit, we introduce new
experiments which can specifically highlight the occurrence of
“failed exploration” and its effects through selection that can
trap a metaheuristic in a less promising part of the search space.
We subsequently propose new lines of research to reduce the
effects of selection and failed exploration which we believe are
distinctly different from traditional lines of research to increase
(pre-selection) exploration.

Index Terms—exploration, selection, metaheuristics, continu-
ous domain search spaces

I. INTRODUCTION

Exploration plays a critical role in the performance of meta-

heuristics. Two key exemplars of metaheuristics are Particle

Swarm Optimization (PSO) [1] and Differential Evolution

(DE) [2], and the role of exploration in these techniques

has been studied extensively as can be seen in recent sur-

veys [3], [4]. However, in their survey of PSO, Bonyadi

and Michalewicz also raise the concern that much of this

research has “only presented experimental results [on bench-

mark problem sets] and did not provide adequate discussion

(neither from theoretical perspective, nor general discussions)

on merits of the proposed approach.” [3] Extending from this

perspective that final performance is too indirect a method to

measure the effects of exploration during the search process,

we believe that this entire line of research could benefit from

a more direct experimental analysis of exploration.

The ability to measure exploration (and exploitation) is

hindered by their lack of precise definitions. In particular,

a broad survey of over 100 papers led Crepinšek, Liu, and

Mernik to the unexpected conclusion that “The fact that until

now exploration and exploitation have only been implicitly

defined in EAs comes as a big surprise.” [5] Our definitions

for continuous domains are based on dividing a multi-modal

search space into attraction basins which each have a sin-

gle local optimum. Each point in an attraction basin has a

monotonic path of increasing (for maxima) or decreasing (for

minima) fitness to its local optima. A search point (e.g. the

current position of a particle) is then defined to be performing

“exploration” if it is in a different attraction basin than its

reference solution(s) (e.g. a particle’s pbest position), and it

is defined to be performing “exploitation” if it is in the same

attraction basin as (one of) its reference solution(s).

Recent research [6] has built upon the above definitions to

highlight the crucial effects of selection on the exploratory

activities of metaheuristics. The role of selection (as imple-

mented in PSO, DE, and many other metaheuristics) is to

accept or reject a candidate search solution. In the case of PSO

and DE, this comparison is made with respect to a reference

solution (i.e. pbest or target) which will be replaced if the

search solution is accepted. For an exploratory search solution,

the act of selection can lead to four possible outcomes: suc-

cessful exploration, successful rejection, deceptive exploration,

and failed exploration.

These four categories occur because selection is based on

the fitness of the reference solution and the fitness of the search

solution, whereas the purported goal of exploration is to find

the most promising region of a search space. Our definitions

do not define the “promise” of a region of a search space, or

even what might be a “region of a search space”. However, we



can define an attraction basin and the fitness of an attraction

basin (i.e. the fitness of the locally optimal solution within

an attraction basin). For an exploratory search solution, these

four possible outcomes (represented pictorially in Fig. 1) are

described as follows for a minimization problem:

• Successful exploration: A fitter attraction basin repre-

sented by a fitter exploratory search solution is accepted

to replace the less fit reference solution from a less fit

attraction basin.

• Successful rejection: A less fit attraction basin repre-

sented by a less fit exploratory search solution is rejected

to keep the fitter reference solution from a fitter attraction

basin.

• Deceptive exploration: A less fit attraction basin repre-

sented by a fitter exploratory search solution is accepted

to replace the less fit reference solution from a fitter

attraction basin.

• Failed exploration: A fitter attraction basin represented by

a less fit exploratory search solution is rejected to keep

the fitter reference solution from a less fit attraction basin.

 

Successful Exploration 

Deceptive Exploration Failed Exploration  

Successful Rejection 

Fig. 1. Four categories of exploration after selection. In each sub-figure,
the red star represents the reference solution and the blue dot represents the
exploratory search solution.

We believe that the case of “failed exploration” provides

particular insight into the operation of metaheuristics. Specif-

ically, the existence of failed exploration demonstrates that

exploration is occurring in metaheuristics, so the standard

focus of increasing exploration may be misdirected. We in-

stead propose new lines of research to increase the rates of

successful exploration/decrease the rates of failed exploration.

The potential for these lines of research is highlighted by an

experiment which eliminates the occurrence of failed explo-

ration.

Before these experiments, we begin with a background into

typical perspectives of exploration in PSO and DE. We also

introduce the Rastrigin-based experiments that are used to

observe and measure failed exploration. These experimental

techniques are applied to PSO in Section III and to DE in

Section IV. We then conduct an experiment to show how

metaheuristics could theoretically perform if failed exploration

could be eliminated. Our discussion in Section VI contrasts

traditional lines of research to increase and/or improve explo-

ration with our suggested lines for future research. The paper

then closes with a brief summary.

II. BACKGROUND

This background section begins with some examples of how

the term “exploration” is typically used in the literature for

Particle Swarm Optimization and Differential Evolution. A key

feature of existing discussions of exploration is that they are

unconcerned with the effects of selection. In particular, the

effects of selection are greatly influenced by exploitation in

known attraction basins. The second subsection reviews an

experiment designed to highlight the effects of exploitation

and selection on future rates of failed exploration.

A. Exploration and Exploitation in the Literature

The following are several examples of how the term ex-

ploration is typically used in the literature for Particle Swarm

Optimization (PSO) [1]. “A larger inertia weight ω facilitates

global exploration (searching new areas) while a smaller

inertia weight tends to facilitate local exploration to fine-tune

the current search area.” [7] “Diversity is related to the notions

of exploration and exploitation: the more diverse a swarm is,

the more its particles are dispersed over the search space, and

the more the swarm is exploring.” [8] “exploration: global

search, exploring all over the search space to find promising

regions and exploitation: local search, exploiting the identified

promising regions to fine tune the search for the optimal

solution” [9].

The literature for Differential Evolution (DE) [2] uses the

term exploration with a similar connection to diversity and

parametric variations as shown in the following examples.

“PPCea . . . increases the scaling factor F and control param-

eter for crossover Cr to further explore unvisited regions

of the search space.” [10] “The desired equilibrium between

exploration and exploitation in evolutionary algorithms can be

achieved by controlling the population diversity.” [11] “At the

beginning of the evolution process, the mutation operator of

DE favors exploration. As evolution progresses, the mutation

operator favors exploitation. . . ” [12].

The search mechanisms used in PSO and DE lead to

distinctly different search trajectories. To create a common

context for all possible search trajectories, we focus only on an

individual step which involves a new search solution. Specif-

ically, we refer to search solutions and reference solutions,

and the classification of a search solution as exploratory or

exploitative occurs only in the context of the given reference

solution(s). For example, a high-speed particle which is nomi-

nally performing exploration can still visit the attraction basin

of its attractor/reference solution, and a diverse population of

n hill-climbers conducts no exploration.

We believe that the provided examples of exploration from

the literature are representative and that they demonstrate



two key weaknesses. The first weakness is that the presented

concepts for exploration largely ignore the effects of selection,

i.e. the process by which search solutions are accepted or

rejected in their bid to become reference solutions. In DE,

a population that is stuck at a local optimum might execute

a series of jumps that are repeatedly rejected, so its search

path might look like a star burst emanating from the original

reference solution. In PSO, the search trajectories of particles

may visit the periphery of many promising attraction basins,

but all of this exploration is wasted effort if the reference

solutions are never updated. [13]

The second weakness is that none of these common usages

for exploration includes a verification that a solution intended

to be exploratory is indeed in a different attraction basin.

When most researchers use the term “exploration”, they really

mean “potential for exploration”. Much like exploration pre-

selection and post-selection, the potential for exploration is

about the inputs for the search mechanism (e.g. random

selection from a large range) as opposed to the output from

that mechanism (e.g. a search solution that is in a distinctly

different part of the search space from existing reference

solutions). Without this verification, search solutions created

with mechanisms that have the “potential for exploration”

could instead lead to the creation of search solutions that our

definitions would classify as “exploitation”.

B. The Effect of Exploitation on Failed Exploration

The early exploitation of known attraction basins is actually

an important aspect of some metaheuristics. For instance, one

of the key features of DE is that it is self-scaling [2]: as

population members cluster around a subset of local optima in

the search space, the likelihood of producing shorter difference

vectors increases, and short difference vectors are likely to lead

to more exploitative solutions than exploratory solutions [12],

[14]. This clustering is likely initially caused by a search

solution (if the cluster represents multiple solutions in the

same attraction basin) that was generated by a search action

(e.g. the use of a large difference vector) that was intending to

produce an exploratory search solution. Higher values of the

difference vector scale F can prolong apparently exploratory

behavior, but even F > 1 does not prevent the population’s

convergence [14]. In general, the ability to converge through

self-scaling is viewed as a positive feature of DE, and this

feature is often initiated by exploitation in known attraction

basins.

The negative effects of exploitation in known attraction

basins are presented through a detailed study on the Rastrigin

function in [6]. The Rastrigin function shown in Equation 1 has

a regular fitness landscape in which every point with integer

values in all dimensions is a local optimum, and every other

point belongs to the attraction basin of the local optimum that

is determined by rounding each solution term to its nearest

integer value. These features make it possible to quickly and

easily determine the attraction basin of a search point and

the fitness of the local optimum of this attraction basin. For

brevity, we will use “the fitness of an attraction basin” to mean

the fitness of the (local) optimum of an attraction basin.

f(x) = 10n+

n
∑

i=1

(

x2
i − 10 cos (2πxi)

)

(1)

Metaheuristics which accept or reject a search solution

based on a comparison of its fitness with that of a refer-

ence solution expose themselves to the four categories of

exploration described in Fig. 1. The study in [6] focuses

on the category of failed exploration by generating a set of

exploratory search solutions in attraction basins whose fitness

is better than the reference solution’s attraction basin. It then

counts how many of these exploratory search solutions would

be accepted or rejected based on a comparison of the actual

fitness of the search and reference solutions. The potential

effects of exploitation and elitism are simulated by improving

the fitness of the reference solution.

For a reference solution that has not experienced any

local optimization (e.g. the first reference solution in a given

attraction basin), the study in [6] shows that failed exploration

occurs less than 50% of the time. However, if the reference

solution is moved as little as 50% of the distance towards its

local optimum (e.g. through exploitation), the rate of failed

exploration can increase to over 99%. Fig. 2 helps illustrate

this effect of how exploitation of reference solutions can lead

to increased rates of failed exploration.

 

Fig. 2. Exploitation of a reference solution (red star on left) lowers the
probability that future exploratory solutions from fitter attraction basins
(blue circles in middle) will survive selection, and this rejection represents
increasing rates of failed exploration.

Failed exploration is a problem in metaheuristics such as

PSO and DE that do not maintain any information from

rejected search solutions. For example, in an n-tuple bandit sit-

uation, Monte Carlo Tree Search can balance between known

and unexplored states [15]. Further, an ant that leads to a re-

jected overall solution in Ant Colony Optimization (ACO) [16]

can still update pheromone levels (if only by passive decay),

so exploration and exploitation can occur in tandem without

the negative effects presented above. However, the use of

elitism in PSO and DE (among many other metaheuristics)

leads to no benefits from failed exploration. Exploitation in



known attraction basins, which leads to increased rates of

failed exploration, can thus reduce the effectiveness of these

metaheuristics.

III. SELECTION AND EXPLORATION IN PSO

The previously described experimental procedure using the

Rastrigin function is now applied to Particle Swarm Op-

timization (PSO). Unlike the normal operation of PSO in

which only the fitness and position of each solution is known,

we can now observe and record the attraction basin and

the fitness of that attraction basin for all solutions. This

information allows us to explicitly state whether a current

position represents exploration or exploitation with respect to

its two attractors/reference solutions (i.e. its pbest and lbest

positions), and to determine the effect of selection on an

exploratory search solution (i.e. a classification into one of

the four sub-categories of successful exploration, successful

rejection, deceptive exploration, or failed exploration).

These experiments use a version of standard particle swarm

optimization [17] with a ring topology. The key parameters

specified from this standardization are χ = 0.72984, and

c1 = c2 = 2.05 for the velocity updates given in Equation 2.

Additional implementation details are the use of p = 50
particles [17], zero initial velocities [18] and “Reflect-Z”

for particles that exceed the boundaries of the search space

(i.e. reflecting the position back into the search space and

setting the velocity to zero) [19]. The source code for this

implementation is available online [20].

vi+1,d = χ
{

vi,d + c1ǫ1(pbesti,d − xi,d)

+ c2ǫ2(lbesti,d − xi,d)
} (2)

Experiments involve 30 independent trials in n = 30
dimensions using a fixed limit of 10, 000 · n total function

evaluations (FEs). Fig. 3 shows averages for the fitness of the

best overall solution, the fitness of its attraction basin, and

the fittest attraction basin represented by any pbest position.

The key observation that we wish to highlight in this figure is

the rapid convergence between the first and second plot lines.

This convergence indicates that the best overall solution in

PSO quickly approaches the local optimum in its attraction

basin. Since this best overall solution is also a pbest reference

solution, the study in [6] indicates that selection will cause

future opportunities for successful exploration to become

almost 100% cases of failed exploration instead (see Fig. 2).

We will now show that failed exploration continues to occur

in PSO even after the swarm has appeared to converge (i.e.

all three plot lines have plateaued at the same level), but it is

difficult to see this activity in aggregated data sets.

It is typical to present the results of experiments as the av-

erage of a statistically relevant set of trials (e.g. 30). However,

many insights into the operation of metaheuristics can be lost

through the process of averaging their behaviour. Two single

trials have been selected from the 30 used to create Fig. 3 to

highlight both good and bad search behaviours that might be

observed in PSO under typical operating conditions. The next

Fig. 3. PSO, average of 30 trials. The difference between the second and
third plot lines shows when the best solution is not from the fittest attraction
basin that is represented by the pbest positions. The upward movement of
the third plot line before convergence indicates that highly fit attraction basins
routinely have their pbest positions moved to less fit attraction basins

two figures plot the actual fitness of the current best overall

solution, the fitness of its attraction basin, and the fitness of the

best attraction basin of any pbest position (e.g. an estimate of

PSO’s potential performance with improved exploitation [13]).

In addition to the three plot lines (note: the second plot

line is often obscured by the first plot line), individual dots

display the fitness of attraction basins represented by ex-

ploratory search solutions (with respect to both pbest and

lbest positions) that were rejected under the category of failed

exploration. It is noted that the bands of the dots are a feature

of the Rastrigin function’s search space which has some levels

of fitness for attraction basins occur more frequently than

others. Specifically, the existence of the bands in these figures

does not imply anything about the reference solutions that led

to the shown instances of failed exploration (e.g. having a

fitness at the level of the gap).

Fig. 4 shows an example of PSO when it is operating well.

First, clusters of failed exploration around the 100 error level

stop around FE 40,000 which suggests that straggling particles

have been able to move towards much fitter attraction basins.

There is a clear step near FE 50,000 showing a new fittest

overall particle being found in the best overall attraction basin.

There is also very little failed exploration for attraction basins

that are fitter than the best overall solution. Conversely, Fig. 5

shows a particularly bad example of stalling in PSO. There

are two clear examples around FE 20,000 and FE 50,000

of pbest positions from highly fit attraction basins being

eliminated from the swarm (i.e. deceptive exploration). There

are also two large bands of dots representing a large amount

of failed exploration occurring in attraction basins that are

much fitter than the best overall solution. These dots indicate

that PSO is not suffering from a lack of exploration, and it is

instead suffering from an inability to achieve the category of

successful exploration for the exploration that it is performing.



Fig. 4. PSO, single trial that highlights “good” operation. The fittest particle
at least arrives at the local optimum of the fittest attraction basin among all
of the pbest positions

Fig. 5. PSO, single trial that highlights “poor” operation. Many fitter attraction
basins are visited by the particles, and some of these attraction basins are
even represented by pbest positions for a while. However, all of these
highly promising exploratory search solutions do not affect the overall search
trajectory, and the performance of the swarm does not benefit from this (pre-
selection) exploration

IV. SELECTION AND EXPLORATION IN DE

We again use the Rastrigin function to allow us to conduct

an in-depth analysis of exploration and the effects of selection

on Differential Evolution (DE). There are obviously many

limits to this study which are based on a single function. In

particular, Rastrigin is globally convex, has attraction basins of

similar size and shape, and it is highly regular and symmetric.

Nonetheless, we believe the insights are relevant, unique,

and likely to extend to a broad range of multi-modal fitness

landscapes and problem domains. In particular, the four sub-

categories for exploration that result from selection are not

specifically correlated to the limitations of the Rastrigin func-

tion. Thus, even though the exact effects will of course vary

for different functions, the ability to observe failed exploration

on the Rastrigin function provides useful insight into how

DE might face similar challenges in other multi-modal search

spaces.

yi = r1 + F (r2 − r3) (3)

Our experiments with DE use an implementation of

DE/rand/1/bin with typical parameters of population size

p = 50, crossover Cr = 0.9, and scale factor F = 0.8 [2],

[21]. Each population member xi is considered as a target for

replacement by a candidate solution that is constructed in two

steps: creation of an intermediate solution and crossover with

xi. During the creation of an intermediate solution yi from

three distinct random solutions r1, r2, and r3 in Equation 3,

the scale factor F affects the “step size” from r1 taken in the

direction of the “difference vector” created with r2 and r3.

x′

i,d =

{

yi,d ud ≤ Cr

xi,d ud > Cr
(4)

Equation 4 defines how this intermediate solution is then

crossed term-by-term in each dimension d of the search space

with the target solution xi to produce a new search/offspring

solution x′

i.

Fig. 6. DE, average of 30 trials. The difference between the second and third
plot lines shows that the best solution is often not from the fittest attraction
basin that is represented by any member of the population

The results for DE are shown in Fig. 6 which represents

the average performance of 30 trials on Rastrigin in n = 30
dimensions. It can be seen that the convergence of the fitness

of the best solution (first plot line) with the fitness of its

attraction basin (second plot line) occurs much more slowly

in DE than in PSO. According to the study in [6], this lack

of convergence can help reduce failed exploration, and it can

also be seen that successful exploration (as evidenced by the

downward trending of the second and third plot lines) ends

later in DE than in PSO. The nature of convergence in DE

benefits from further analysis of individual trials.

We again highlight two individual trials from the 30 used

to produce the aggregate results shown in Fig. 6. The dots in



Fig. 7. DE, single trial that highlights “good” operation. The third plot line
has relatively few upward motions which occur when the fittest attraction
basin represented in the population is replaced by a new reference solution
from a less fit attraction basin. There are also relatively few dots representing
failed exploration

Fig. 8. DE, single trial that highlights “poor” operation. There are a larger
number of upward movements in the third plot line, more dots representing
failed exploration, and less convergence between the first and second plot
lines. All of these factors reduce the performance of DE

these plots represent instances of failed exploration where the

exploratory nature of a search solution is first determined with

respect to the target reference solution. The first individual

trial (Fig. 7) demonstrates good performance in DE and the

second individual trial (Fig. 8) demonstrates poor performance

in DE. In Fig. 7, the three plot lines converge which means

that the best solution is approaching the local optimum in

its attraction basin, and that this attraction basin is the best

attraction basin among those represented by the entire pop-

ulation. There are also very few dots for failed exploration

below the second and third plot lines. In contrast, Fig. 8 shows

more dots of failed exploration below the third plot line, a

persistent gap between the second and third plot lines, and a

slower convergence of the first plot line to the second. These

observations suggest that multiple attraction basins are still

represented in the final population and that DE is having a

difficult time finding the local optimum in any of them.

It should also be noted that between DE (see Fig. 7 and

Fig. 8) and PSO (see Fig. 4 and Fig. 5), the second and

third plot lines in DE show much more oscillation. Upward

movements in these plot lines which represent the fitness of

the attraction basins indicate that deceptive exploration has

occurred. Reference solutions which approach local optima

greatly reduce both successful exploration and deceptive ex-

ploration. However, even though the best overall attraction

basin is often lost in DE, population diversity can support

ongoing improvement in the third plot line. We therefore

believe that the effects of (increased) deceptive exploration are

sufficiently small in popular population-based metaheuristics

(e.g. PSO and DE) that our primary focus can now be to

observe and reduce the effects of failed exploration.

V. ELIMINATING FAILED EXPLORATION IN PSO AND DE

The key contribution of the preceding experiments has

been to allow measurements and observations on the fitness

of attraction basins. If the goal of exploration is to find

“promising areas of the search space”, the fitness of the exact

search solution which is sampled from this promising area

should be irrelevant. By being able to measure both the fitness

of a solution and the fitness of its attraction basin, it is now

possible to specifically observe when the performance of a

metaheuristic is due to exploration (e.g. finding new attraction

basins with better fitness) or exploitation (e.g. finding a fitter

solution within an existing attraction basin).

The experimental design also allows the amount of failed

exploration to be observed. The plotted dots in the individual

trials (e.g. Fig. 4 and Fig. 5 for PSO) represent the fitness of

attraction basins for rejected exploratory search solutions that

are fitter than the attraction basins of their reference solutions.

When these dots are below the third plot line, they represent a

missed opportunity to move the overall search trajectory of the

metaheuristic closer to the global optimum. These dots also

indicate that metaheuristics which appear to have converged

(e.g. see Fig. 5) might still be performing large amounts of

exploration. Since a lack of exploration is not the limiting

factor in the performance of these metaheuristics, attempts to

increase (pre-selection) exploration (e.g. [3], [4]) might not be

the most effective means by which to improve the performance

of metaheuristics. We believe directly addressing and reducing

the levels of failed exploration might be a more productive line

of research.

The potential of this line of research is highlighted by

the following experiment which eliminates the occurrence of

failed exploration (and also deceptive exploration) in Particle

Swarm Optimization and Differential Evolution. This elimi-

nation is achieved by a simple modification to the objective

function. Taking advantage of the Rastrigin function which

allows us to easily determine the attraction basin for every

location in the search space, we make the fitness of a solution

to be the fitness of its attraction basin (with ties broken



by their actual fitness). In this experiment, the previously

described standard implementations of PSO and DE are still

used, and this allows us to isolate the effects of selection. The

search/exploration mechanisms employed by PSO and DE still

generate search solutions as before, but the modified fitness

function makes failed exploration (and deceptive exploration)

impossible.

The modified function evaluation is implemented for Ras-

trigin in n = 30 dimensions. Thirty independent trials are

performed using the same termination condition of 10, 000 · n

total function evaluations. Standard PSO converges to the

global optimum in 28 of the 30 trials (and to the second best

local optimum in the other two trials). Fig. 9 shows that this

convergence is rapid and monotonic when there is no failed

exploration, and that the fitness of the attraction basin of the

best solution/particle (e.g. gbest) matches the fittest attraction

basin of any particle (i.e. all of the attraction basins represented

by the pbest positions).

Fig. 9. PSO, average of 30 trials with failed exploration eliminated. The
fittest solution is always from the fittest known attraction basin, so the second
and third plot lines are identical

The implemented canonical version of DE is able to con-

verge to the global optimum for all 30 trials with the modified

fitness function. Fig. 10 shows that this convergence is rapid

and monotonic, and that the fitness of the attraction basin of

the best overall solution matches the fittest attraction basin for

all of the solutions in the population. The key purpose of these

experiments is to demonstrate that canonical versions of PSO

and DE can find the global optimum in a multi-modal search

space when failed exploration (and deceptive exploration)

is eliminated. Compared to the vast amounts of research

that attempt to increase (pre-selection) exploration [3], [4],

it appears that reducing failed exploration could be a more

promising line of attack.

VI. DISCUSSION

The conducted experiments leverage the simplicity of the

Rastrigin function, which allows the attraction basin and the

fitness of that attraction basin to be easily determined for every

Fig. 10. DE, average of 30 trials with failed exploration eliminated. The
fittest solution is always from the fittest known attraction basin, so the second
and third plot lines are identical

location in the search space. For more difficult problems (e.g.

composition functions [22]), the convoluted topologies can

make similar experiments impractical. However, increasing

problem difficulty tends to expose new limitations of meta-

heuristics (e.g. the curse of dimensionality [23]) as opposed

to reducing the effects of limitations exposed on simpler

problems. We are thus confident that the limitations identified

by our current experiments on the Rastrigin function will

be relevant to any metaheuristic which can experience failed

exploration.

Our experiments focus on the performance of PSO and

DE, which are two distinctly different metaheuristics. In the

experiments of Section V, the fitness evaluation has been

changed to eliminate the possibility of “failed exploration”

(and deceptive exploration). When it is no longer possible to

reject an exploratory search solution from a fitter attraction

basin because its fitness is worse than the fitness of a reference

solution from a less fit attraction basin, both PSO and DE

rapidly converge towards the global optimum. This result

suggests that the standard versions of PSO and DE do not

suffer from a lack of exploration.

The experiments on PSO in Section III and on DE in

Section IV show how well these metaheuristics perform in

practice. In particular, it should be noted that it is possible

for both PSO and DE to continuously perform exploration

even though their nominal performance (e.g. as represented

by the fitness of the best overall solution) has stalled. These

observations demonstrate the effects of failed exploration.

However, a large amount of the existing literature that attempts

to improve the performance of PSO and DE focuses on how

solutions are created and/or the diversity of the population. The

effects of selection and of failed exploration receive much less

attention in the literature.

In contrast to the extensive body of research which largely

ignores the effects of selection [3], [4], we propose two

alternate lines of research. Failed exploration occurs when an



exploratory search solution is rejected based on its fitness.

However, as much of the above work aims to increase diver-

sity, it is noted that a solution’s fitness measures neither its di-

versity (e.g. minimum distance away from a current member of

the population) nor novelty (e.g. being in a new area/attraction

basin regardless of distance from other solutions). Therefore,

attempts to address diversity or novelty which do not also

address the unrelated and often counter productive goals of

fitness-based selection criteria may not be able to overcome

this critical handicap. Fitness is a poor measure of the novelty

required for exploration. One line of suggested research is

to develop diversity or novelty based criteria for the selec-

tion/survival of exploratory search solutions.

Another line of suggested research is to design new se-

lection mechanisms for metaheuristics. For example, Leaders

and Followers [6] attempts to reduce failed exploration by

restricting comparisons to search solutions and reference so-

lutions with similar relative fitness with respect to their local

optima. The assumption is that the relative fitness of followers

will be similar to the relative fitness of leaders when these

two populations have similar median fitness. Although this

assumption has not been analyzed in detail, LaF does perform

better than base versions of PSO and DE in multi-modal search

spaces [6]. LaF is also simpler than these base versions (e.g.

has fewer parameters), let alone the modified versions of these

metaheuristics (e.g. with adaptive parameters [4]). To avoid the

proliferation of new metaphors and metaheuristics [24], this

line of research should attempt to focus on existing categories

for search techniques [25].

VII. SUMMARY

Large amounts of research has been dedicated towards

increasing “exploration” in metaheuristics. However, most of

this research focuses on exploration pre-selection, and on

the evaluation of exploratory search solutions based on their

fitness. We believe the effects of selection and its creation

of the four sub-categories of successful exploration, deceptive

exploration, successful rejection, and failed exploration are

also critical for the study of exploration in metaheuristics.

Our experimental analysis shows how the elimination of

failed exploration in an ideal case can greatly improve the

performance of PSO and DE in a multi-modal search space.

We suggest that the design of new selection mechanisms,

especially those based on new metrics which can more directly

measure the potential of exploratory search solutions, should

be pursued as a direction for future research.
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