
J
H
E
P
1
2
(
2
0
1
9
)
0
0
4

Published for SISSA by Springer

Received: September 17, 2019

Accepted: November 19, 2019

Published: December 2, 2019

An analytic approach to BCFTd
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Abstract: We develop an analytic approach to Boundary Conformal Field Theory

(BCFT), focussing on the two-point function of a general pair of scalar primary opera-

tors. The resulting crossing equation can be thought of as a vector equation in an infinite-

dimensional space V of analytic functions of a single complex variable. We argue that in

a unitary theory, functions in V satisfy a boundedness condition in the Regge limit. We

identify a useful basis for V, consisting of bulk and boundary conformal blocks with scaling

dimensions which appear in OPEs of the mean field theory correlator. Our main achieve-

ment is an explicit expression for the action of the dual basis (the basis of linear functionals

on V) on an arbitrary conformal block. The practical merit of our basis is that it trivializes

the study of perturbations around mean field theory. Our results are equivalent to a BCFT

version of the Polyakov bootstrap. Our derivation of the expressions for the functionals

relies on the identification of the Polyakov blocks with (suitably improved) boundary and

bulk Witten exchange diagrams in AdSd+1. We also provide another conceptual perspec-

tive on the Polyakov block expansion and the associated functionals, by deriving a new

Lorentzian OPE inversion formula for BCFT.
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1 Introduction

The study of boundary conditions in conformal field theory has a long and storied history.

Boundary CFTs (BCFTs) have manifold physical applications, including surface phenom-

ena in statistical mechanics (e.g., [1]) the worldsheet description of D-branes in string

theory, formal quantum field theory (see e.g., [2] for supersymmetric examples), condensed

matter (e.g., [3, 4]), and holography [5, 6].1 They are also a very attractive playground to

develop analytic bootstrap methods [8–18].2 This comes about because the simplest non-

trivial BCFT correlator (the two-point bulk correlator) is a function of a single conformal

cross ratio.3 Some preliminary analytic observations were already made in [24], but the time

is ripe to revisit this problem. Much analytic control has been achieved recently [25–28] in

the study of the CFT1 four-point function, which also depends on a single cross ratio. We

can then look forward to analyze a case of similar complexity but greater physical interest.

We will consider the two-point function of a general pair of scalar primary operators

in the presence of a conformal boundary condition. The resulting crossing equation can be

thought of as a vector equation in an infinite-dimensional space of holomorphic functions

of a single complex variable, namely the cross-ratio. Our first goal will be to clarify which

vector space we are talking about. In particular, we will argue that it only contains

functions satisfying a suitable boundedness condition in the BCFT version of the Regge

limit. This is because both individual conformal blocks, and infinite sums of conformal

blocks which give rise physical correlators have this property.

Our main achievement in this paper is the construction of a useful basis for this vector

space, in the spirit of [27]. The basis consists of bulk and boundary conformal blocks with

scaling dimensions which appear in the bulk and boundary OPEs of the mean field theory

correlator. The two natural boundary conditions for mean field theory, Neumann and

Dirichlet, each give rise to its own basis. Expressing the crossing equation in this basis leads

to an infinite set of sum rules on the CFT data appearing in the bulk and boundary OPEs.

1We refer to [7] for a recent review and guide to the literature.
2In two dimensional rational CFTs, the beautiful work of Cardy [19, 20] still provides the prototype of

how the study of boundary conditions can lead to analytic insights into the full theory.
3The positivity property that is essential for the numerical conformal bootstrap [21] does not hold in

this case, making the development of exact methods all the more interesting. See however [22] for some

approximate results obtained by Gliozzi’s truncation method [23], which also does not rely on positivity.
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This is equivalent to saying that the sum rules can be derived from the crossing equation

by acting on it with elements of the dual basis. The dual basis consists of linear functionals

each of which annihilates all but one bulk or boundary conformal block of mean field theory.

Although the sum rules are valid non-perturbatively, the primary practical merit of

our basis is that it trivializes the study of perturbations around mean field theory. Indeed,

the sum rule associated to a given mean-field operator allows us to solve for the pertur-

bative OPE data of that operator since the contribution of all other mean-field operators

is suppressed by one order in perturbation theory in that sum rule. In particular, we can

imagine perturbing the mean-field correlator by adding an individual “single-trace” con-

formal block in either channel with a general scaling dimension and small OPE coefficient.

On its own, this operation is not consistent with crossing symmetry. We can fix it by giving

small anomalous dimensions and anomalous OPE coefficients to the mean-field operators.

There is a unique way to do this, provided by expanding the single-trace conformal block

in our basis of mean-field conformal blocks.4 This result is analogous to the achievements

of the analytic bootstrap for the four-point function in higher d, which allow one to find the

corrections to the OPE data of the mean-field double-trace operators in a given channel

due to the presence of individual conformal blocks in the crossed channels [29–35]. In the

BCFT context, perturbation theory around free theory in the ǫ-expansion was addressed in

the nice work [18]. It would be interesting to explore the relation of their methods to ours.

There is an illuminating way of reformulating the idea of last paragraph. We see that

for any bulk scaling dimension ∆, there exists a unique function which lies in our vector

space, whose bulk OPE only contains the bulk conformal block of dimension ∆ and bulk

mean-field conformal blocks and whose boundary OPE only contains boundary mean-field

conformal blocks. We will call this function the bulk Polyakov block of dimension ∆. The

analogous definition gives also the boundary Polyakov blocks. If we want to deform the

mean-field two-point function by a bulk conformal block of dimension ∆, we see that self-

consistency requires that we should supplement it by corrections to the mean-field operators

so that we are in fact adding the full Polyakov block to the correlator. It is not difficult

to argue that Polyakov blocks are computed by exchange Witten diagrams in AdSd+1 and

Neumann or Dirichlet boundary condition imposed at AdSd ⊂ AdSd+1.

The above line of reasoning leads us to conclude that a general BCFT two-point func-

tion can be expanded not only using the bulk or boundary conformal blocks, but also as

a sum of bulk and boundary Polyakov blocks, with the same spectrum and coefficients as

those appearing in the OPEs. The cancellation of spurious mean-field conformal blocks is

equivalent to the sum rules discussed above. In other words, we recover a BCFT version of

Polyakov’s approach to the conformal bootstrap [36], recently revisited using the language

of Mellin space in [37–39].

Reference [28] offered an alternative point of view on the mean-field basis and Polyakov

bootstrap for the crossing equation of the CFT1 four-point function using a Lorentzian OPE

inversion formula. Inspired by that work, we will sketch the derivation of a Lorentzian

inversion formulae for both bulk and boundary OPE of the BCFT two-point function and

explain its connection to the rest of our logic.

4In the Neumann case, there is also a single-parameter contact-term ambiguity discussed later.
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While the present paper focuses on a rather abstract analysis of the analytic boot-

strap program for BCFT, there are a number of possible future applications. As stated

above, our basis is particularly useful for performing perturbation theory around mean

field theory. Since every CFT with a holographic dual reduces to mean field theory when

the bulk is weakly coupled, our results can be used to bootstrap boundary conditions of

holographic CFTs. In general, our equations can be employed to explore the conformal

manifold of boundary conditions of a fixed CFTd [40, 41]. While conformal manifolds are

rare in theories containing a stress-tensor, they are common for nonlocal theories. Confor-

mal boundary conditions are nonlocal theories since they always come with an associated

higher-dimensional theory and certainly do not contain a d − 1-dimensional stress-tensor.

Therefore, we expect that a fixed CFTd generically admits nontrivial conformal manifolds

of conformal boundary conditions [42, 43]. A very interesting recent example of this set-up

is [44], which considers 3D CFTs with abelian flavour symmetry on the boundary of a free

gauge field in 4D half-space. Another important example arises in string theory, where

families of boundary conditions correspond to the moduli space of D-branes [45].

Since our sum rules work for the two-point functions of general pairs of scalar primary

operators, it will be interesting to use them to generalize the ǫ-expansion analysis of [18]

to more general operators in the Wilson-Fisher theory.

Finally, while the conformal bootstrap of CFT four-point function with external oper-

ators with spin is rather complicated due to the large number of tensor-structures involved,

the situation for the BCFT two-point function is much more favorable. It would be inter-

esting to generalize our analysis in that direction too.

The rest of the paper is organized as follows. Section 2 gives a more detailed overview of

our logic. The most important technical work needed, namely the computation of the OPE

of exchange Witten diagrams in both channels, is performed in detail section 3. In section 4,

we derive Lorentzian OPE inversion formulae for the BCFT two-point function and explain

their connection to the rest of this paper. In section 5, we analyze a family of conformal

boundary conditions for mean-field theory interpolating between Neumann and Dirichlet

and use it to check the consistency of our proposal. In particular, we give a closed formula

determining the boundary spectrum for an arbitrary value of the deformation parameter.

Note added. While our work was being completed, we became aware of [46], which has

substantial overlap with our results in sections 2 and 3. A detailed presentation of this

subset of our results was delivered by one of us at Caltech in July 2018 [47].

2 Outline

2.1 Kinematics

Let us first recap some basic kinematics (see, e.g., [24, 48] for detailed presentations).

We consider a Euclidean CFT in d dimensions, in the half-space x⊥ ≡ xd > 0, with

boundary conditions at x⊥ = 0 that preserve the appopriate SO(d, 1) subgroup of the

original SO(d + 1, 1) conformal symmetry. The correlator of two bulk scalar operators of

– 3 –
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dimensions ∆1 and ∆2 takes the form

G(x, y) := 〈O1(x)O2(y)〉 =
1

|2x⊥|∆1 |2y⊥|∆2
G(ξ) , (2.1)

where ξ is the unique cross ratio,

ξ =
(x− y)2

4x⊥y⊥
=

(~x− ~y)2 + (x⊥ − y⊥)
2

4x⊥y⊥
. (2.2)

ξ takes positive real values when the two operators live in the Euclidean signature or are

spacelike separated in the Lorentzian signature. As familiar, we can expand the two-point

function in two inequivalent OPE limits, the bulk limit ξ → 0 and the boundary limit

ξ → +∞,

G(ξ) =
∑

O

λO g
B
∆O(ξ) =

∑

Ô

µ
Ô
gb∆Ô

(ξ) . (2.3)

Here gB and gb denote the bulk and boundary conformal blocks (whose well-known ex-

pressions will be reviewed in section 2), and the two sums run over the set of bulk primary

operators {O} or boundary primary operators {Ô} that appear in the respective OPEs.5

2.2 Regge limit and the spaces V and U

In any unitary CFT, G(ξ) is a complex analytic function of ξ, with branch point singularities

at ξ = 0 and ξ = ∞, dictated respectively by the bulk and boundary OPEs. When we

continue to the Lorentzian signature such that the time direction runs along the boundary,

we find that the configurations where O1 and O2 are timelike separated are described

by the analytic continuation of G(ξ) to ξ < 0 around the branch-point at ξ = 0. This

regime includes the interesting limit ξ → −1, which we dub the Regge limit. Physically,

the Regge limit corresponds to configurations where O2 approaches the light-cone of the

mirror reflection of O1, with the boundary acting as the mirror (figure 1).

As we show in appendix A, G(ξ) obeys a suitable boundedness condition in the BCFT

Regge limit, analogously to what happens in the more standard Regge limit of a CFTd

four-point function. This condition takes the form

|G(ξ)| . (ξ + 1)−
∆1+∆2

2 for ξ → −1+ (Regge boundedness) . (2.4)

For a given choice of bulk external dimensions ∆1 and ∆2, we define the space V as

the space of complex analytic functions {G(ξ)} that have (at worst) the same branch point

singularities at ξ → 0 and ξ → ∞ of a physical two-point function, and that are “bounded”

in the Regge limit, i.e., they diverge at most as in (2.4).

We will also find it useful to define a smaller space U ⊂ V , the space of “Regge super-

bounded” functions. The function F ∈ U if and only if F ∈ V and further obeys

|F(ξ)| . (ξ + 1)−
∆1+∆2−1

2
+ǫ for ξ → −1+ (Regge super-boundedness) , (2.5)

with some ǫ > 0. As we show in appendix A, both bulk and boundary conformal blocks

are Regge bounded, as long as the unitary bound ∆i > d/2− 1 is satisfied.

5As a general rule, we will use hatted symbols and a lower case “b” for boundary objects, and unhatted

symbols and a capital “B” for bulk objects.
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<latexit sha1_base64="oTju9A9A1h5o9NFzY/M4jOggSn0=">AAACCXicbVBLSgNBFHwTfzH+oi7dNAbBVZgRQZdBN+6MYD6QDKGn503SpOdjd48QhpzAA7jVI7gTt57CE3gNe5JZaGJBQ1H1Hq+6vERwpW37yyqtrK6tb5Q3K1vbO7t71f2DtopTybDFYhHLrkcVCh5hS3MtsJtIpKEnsOONr3O/84hS8Ti615ME3ZAOIx5wRrWR3H5I9YhRkd1OB86gWrPr9gxkmTgFqUGB5qD63fdjloYYaSaoUj3HTrSbUak5Ezit9FOFCWVjOsSeoRENUbnZLPSUnBjFJ0EszYs0mam/NzIaKjUJPTOZh1SLXi7+6ykTZYT+wnkdXLoZj5JUY8Tm14NUEB2TvBbic4lMi4khlEluPkDYiErKtCmvYppxFntYJu2zumPXnbvzWuOq6KgMR3AMp+DABTTgBprQAgYP8Awv8Go9WW/Wu/UxHy1Zxc4h/IH1+QP87pri</latexit><latexit sha1_base64="oTju9A9A1h5o9NFzY/M4jOggSn0=">AAACCXicbVBLSgNBFHwTfzH+oi7dNAbBVZgRQZdBN+6MYD6QDKGn503SpOdjd48QhpzAA7jVI7gTt57CE3gNe5JZaGJBQ1H1Hq+6vERwpW37yyqtrK6tb5Q3K1vbO7t71f2DtopTybDFYhHLrkcVCh5hS3MtsJtIpKEnsOONr3O/84hS8Ti615ME3ZAOIx5wRrWR3H5I9YhRkd1OB86gWrPr9gxkmTgFqUGB5qD63fdjloYYaSaoUj3HTrSbUak5Ezit9FOFCWVjOsSeoRENUbnZLPSUnBjFJ0EszYs0mam/NzIaKjUJPTOZh1SLXi7+6ykTZYT+wnkdXLoZj5JUY8Tm14NUEB2TvBbic4lMi4khlEluPkDYiErKtCmvYppxFntYJu2zumPXnbvzWuOq6KgMR3AMp+DABTTgBprQAgYP8Awv8Go9WW/Wu/UxHy1Zxc4h/IH1+QP87pri</latexit><latexit sha1_base64="oTju9A9A1h5o9NFzY/M4jOggSn0=">AAACCXicbVBLSgNBFHwTfzH+oi7dNAbBVZgRQZdBN+6MYD6QDKGn503SpOdjd48QhpzAA7jVI7gTt57CE3gNe5JZaGJBQ1H1Hq+6vERwpW37yyqtrK6tb5Q3K1vbO7t71f2DtopTybDFYhHLrkcVCh5hS3MtsJtIpKEnsOONr3O/84hS8Ti615ME3ZAOIx5wRrWR3H5I9YhRkd1OB86gWrPr9gxkmTgFqUGB5qD63fdjloYYaSaoUj3HTrSbUak5Ezit9FOFCWVjOsSeoRENUbnZLPSUnBjFJ0EszYs0mam/NzIaKjUJPTOZh1SLXi7+6ykTZYT+wnkdXLoZj5JUY8Tm14NUEB2TvBbic4lMi4khlEluPkDYiErKtCmvYppxFntYJu2zumPXnbvzWuOq6KgMR3AMp+DABTTgBprQAgYP8Awv8Go9WW/Wu/UxHy1Zxc4h/IH1+QP87pri</latexit><latexit sha1_base64="oTju9A9A1h5o9NFzY/M4jOggSn0=">AAACCXicbVBLSgNBFHwTfzH+oi7dNAbBVZgRQZdBN+6MYD6QDKGn503SpOdjd48QhpzAA7jVI7gTt57CE3gNe5JZaGJBQ1H1Hq+6vERwpW37yyqtrK6tb5Q3K1vbO7t71f2DtopTybDFYhHLrkcVCh5hS3MtsJtIpKEnsOONr3O/84hS8Ti615ME3ZAOIx5wRrWR3H5I9YhRkd1OB86gWrPr9gxkmTgFqUGB5qD63fdjloYYaSaoUj3HTrSbUak5Ezit9FOFCWVjOsSeoRENUbnZLPSUnBjFJ0EszYs0mam/NzIaKjUJPTOZh1SLXi7+6ykTZYT+wnkdXLoZj5JUY8Tm14NUEB2TvBbic4lMi4khlEluPkDYiErKtCmvYppxFntYJu2zumPXnbvzWuOq6KgMR3AMp+DABTTgBprQAgYP8Awv8Go9WW/Wu/UxHy1Zxc4h/IH1+QP87pri</latexit>

O2
<latexit sha1_base64="N1sR0uFCcN/Rp5+DPqeArKjORu4=">AAACCXicbVDLSsNAFL3xWeur6tJNsAiuSlIEXRbduLOCfUAbymRy0w6dTOLMRCihX+AHuNVPcCdu/Qq/wN9w0mahrQcGDufcyz1z/IQzpR3ny1pZXVvf2Cxtlbd3dvf2KweHbRWnkmKLxjyWXZ8o5ExgSzPNsZtIJJHPseOPr3O/84hSsVjc60mCXkSGgoWMEm0krx8RPaKEZ7fTQX1QqTo1ZwZ7mbgFqUKB5qDy3Q9imkYoNOVEqZ7rJNrLiNSMcpyW+6nChNAxGWLPUEEiVF42Cz21T40S2GEszRPanqm/NzISKTWJfDOZh1SLXi7+6ykTZYTBwnkdXnoZE0mqUdD59TDlto7tvBY7YBKp5hNDCJXMfMCmIyIJ1aa8smnGXexhmbTrNdepuXfn1cZV0VEJjuEEzsCFC2jADTShBRQe4Ble4NV6st6sd+tjPrpiFTtH8AfW5w/+h5rj</latexit><latexit sha1_base64="N1sR0uFCcN/Rp5+DPqeArKjORu4=">AAACCXicbVDLSsNAFL3xWeur6tJNsAiuSlIEXRbduLOCfUAbymRy0w6dTOLMRCihX+AHuNVPcCdu/Qq/wN9w0mahrQcGDufcyz1z/IQzpR3ny1pZXVvf2Cxtlbd3dvf2KweHbRWnkmKLxjyWXZ8o5ExgSzPNsZtIJJHPseOPr3O/84hSsVjc60mCXkSGgoWMEm0krx8RPaKEZ7fTQX1QqTo1ZwZ7mbgFqUKB5qDy3Q9imkYoNOVEqZ7rJNrLiNSMcpyW+6nChNAxGWLPUEEiVF42Cz21T40S2GEszRPanqm/NzISKTWJfDOZh1SLXi7+6ykTZYTBwnkdXnoZE0mqUdD59TDlto7tvBY7YBKp5hNDCJXMfMCmIyIJ1aa8smnGXexhmbTrNdepuXfn1cZV0VEJjuEEzsCFC2jADTShBRQe4Ble4NV6st6sd+tjPrpiFTtH8AfW5w/+h5rj</latexit><latexit sha1_base64="N1sR0uFCcN/Rp5+DPqeArKjORu4=">AAACCXicbVDLSsNAFL3xWeur6tJNsAiuSlIEXRbduLOCfUAbymRy0w6dTOLMRCihX+AHuNVPcCdu/Qq/wN9w0mahrQcGDufcyz1z/IQzpR3ny1pZXVvf2Cxtlbd3dvf2KweHbRWnkmKLxjyWXZ8o5ExgSzPNsZtIJJHPseOPr3O/84hSsVjc60mCXkSGgoWMEm0krx8RPaKEZ7fTQX1QqTo1ZwZ7mbgFqUKB5qDy3Q9imkYoNOVEqZ7rJNrLiNSMcpyW+6nChNAxGWLPUEEiVF42Cz21T40S2GEszRPanqm/NzISKTWJfDOZh1SLXi7+6ykTZYTBwnkdXnoZE0mqUdD59TDlto7tvBY7YBKp5hNDCJXMfMCmIyIJ1aa8smnGXexhmbTrNdepuXfn1cZV0VEJjuEEzsCFC2jADTShBRQe4Ble4NV6st6sd+tjPrpiFTtH8AfW5w/+h5rj</latexit><latexit sha1_base64="N1sR0uFCcN/Rp5+DPqeArKjORu4=">AAACCXicbVDLSsNAFL3xWeur6tJNsAiuSlIEXRbduLOCfUAbymRy0w6dTOLMRCihX+AHuNVPcCdu/Qq/wN9w0mahrQcGDufcyz1z/IQzpR3ny1pZXVvf2Cxtlbd3dvf2KweHbRWnkmKLxjyWXZ8o5ExgSzPNsZtIJJHPseOPr3O/84hSsVjc60mCXkSGgoWMEm0krx8RPaKEZ7fTQX1QqTo1ZwZ7mbgFqUKB5qDy3Q9imkYoNOVEqZ7rJNrLiNSMcpyW+6nChNAxGWLPUEEiVF42Cz21T40S2GEszRPanqm/NzISKTWJfDOZh1SLXi7+6ykTZYTBwnkdXnoZE0mqUdD59TDlto7tvBY7YBKp5hNDCJXMfMCmIyIJ1aa8smnGXexhmbTrNdepuXfn1cZV0VEJjuEEzsCFC2jADTShBRQe4Ble4NV6st6sd+tjPrpiFTtH8AfW5w/+h5rj</latexit>

O1
<latexit sha1_base64="AjXQwLWQ27mxtavbDvTFC3A2tC8=">AAACCXicdVBLSgNBEO2Jvxh/UZduGoPgapgWMboLunFnBPOBZAg9PTVJk56P3T1CGHICD+BWj+BO3HoKT+A17EkiaNQHBY/3qqiq5yWCK+0471ZhYXFpeaW4Wlpb39jcKm/vNFWcSgYNFotYtj2qQPAIGpprAe1EAg09AS1veJH7rTuQisfRjR4l4Ia0H/GAM6qN5HZDqgeMiuxq3CO9csWxqw45OyH4NyG2M0EFzVDvlT+6fszSECLNBFWqQ5xEuxmVmjMB41I3VZBQNqR96Bga0RCUm02OHuMDo/g4iKWpSOOJ+n0io6FSo9AznfmRat7LxT89ZU4ZgD+3XgenbsajJNUQsen2IBVYxziPBftcAtNiZAhlkpsHMBtQSZk24ZVMMl/v4/9J88gmjk2ujyu181lGRbSH9tEhIqiKaugS1VEDMXSLHtAjerLurWfrxXqdthas2cwu+gHr7RNrH5sq</latexit><latexit sha1_base64="AjXQwLWQ27mxtavbDvTFC3A2tC8=">AAACCXicdVBLSgNBEO2Jvxh/UZduGoPgapgWMboLunFnBPOBZAg9PTVJk56P3T1CGHICD+BWj+BO3HoKT+A17EkiaNQHBY/3qqiq5yWCK+0471ZhYXFpeaW4Wlpb39jcKm/vNFWcSgYNFotYtj2qQPAIGpprAe1EAg09AS1veJH7rTuQisfRjR4l4Ia0H/GAM6qN5HZDqgeMiuxq3CO9csWxqw45OyH4NyG2M0EFzVDvlT+6fszSECLNBFWqQ5xEuxmVmjMB41I3VZBQNqR96Bga0RCUm02OHuMDo/g4iKWpSOOJ+n0io6FSo9AznfmRat7LxT89ZU4ZgD+3XgenbsajJNUQsen2IBVYxziPBftcAtNiZAhlkpsHMBtQSZk24ZVMMl/v4/9J88gmjk2ujyu181lGRbSH9tEhIqiKaugS1VEDMXSLHtAjerLurWfrxXqdthas2cwu+gHr7RNrH5sq</latexit><latexit sha1_base64="AjXQwLWQ27mxtavbDvTFC3A2tC8=">AAACCXicdVBLSgNBEO2Jvxh/UZduGoPgapgWMboLunFnBPOBZAg9PTVJk56P3T1CGHICD+BWj+BO3HoKT+A17EkiaNQHBY/3qqiq5yWCK+0471ZhYXFpeaW4Wlpb39jcKm/vNFWcSgYNFotYtj2qQPAIGpprAe1EAg09AS1veJH7rTuQisfRjR4l4Ia0H/GAM6qN5HZDqgeMiuxq3CO9csWxqw45OyH4NyG2M0EFzVDvlT+6fszSECLNBFWqQ5xEuxmVmjMB41I3VZBQNqR96Bga0RCUm02OHuMDo/g4iKWpSOOJ+n0io6FSo9AznfmRat7LxT89ZU4ZgD+3XgenbsajJNUQsen2IBVYxziPBftcAtNiZAhlkpsHMBtQSZk24ZVMMl/v4/9J88gmjk2ujyu181lGRbSH9tEhIqiKaugS1VEDMXSLHtAjerLurWfrxXqdthas2cwu+gHr7RNrH5sq</latexit><latexit sha1_base64="AjXQwLWQ27mxtavbDvTFC3A2tC8=">AAACCXicdVBLSgNBEO2Jvxh/UZduGoPgapgWMboLunFnBPOBZAg9PTVJk56P3T1CGHICD+BWj+BO3HoKT+A17EkiaNQHBY/3qqiq5yWCK+0471ZhYXFpeaW4Wlpb39jcKm/vNFWcSgYNFotYtj2qQPAIGpprAe1EAg09AS1veJH7rTuQisfRjR4l4Ia0H/GAM6qN5HZDqgeMiuxq3CO9csWxqw45OyH4NyG2M0EFzVDvlT+6fszSECLNBFWqQ5xEuxmVmjMB41I3VZBQNqR96Bga0RCUm02OHuMDo/g4iKWpSOOJ+n0io6FSo9AznfmRat7LxT89ZU4ZgD+3XgenbsajJNUQsen2IBVYxziPBftcAtNiZAhlkpsHMBtQSZk24ZVMMl/v4/9J88gmjk2ujyu181lGRbSH9tEhIqiKaugS1VEDMXSLHtAjerLurWfrxXqdthas2cwu+gHr7RNrH5sq</latexit>

ξ > 0
<latexit sha1_base64="urJba91Y8DtIPuOvKwQqWQWYdYo=">AAACAXicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoCcJevEYwU0CyRJmZ3uTIbMPZmbFsOTkB3jVT/AmXv0Sv8DfcJLsQRMLGoqqbrq7/FRwpW37yyqtrK6tb5Q3K1vbO7t71f2DlkoyydBliUhkx6cKBY/R1VwL7KQSaeQLbPujm6nffkCpeBLf63GKXkQHMQ85o9pIbu+RX9n9as2u2zOQZeIUpAYFmv3qdy9IWBZhrJmgSnUdO9VeTqXmTOCk0ssUppSN6AC7hsY0QuXls2Mn5MQoAQkTaSrWZKb+nshppNQ48k1nRPVQLXpT8V9PmVOGGCys1+Gll/M4zTTGbL49zATRCZnGQQIukWkxNoQyyc0DhA2ppEyb0ComGWcxh2XSOqs7dt25O681rouMynAEx3AKDlxAA26hCS4w4PAML/BqPVlv1rv1MW8tWcXMIfyB9fkDUUSXMA==</latexit><latexit sha1_base64="urJba91Y8DtIPuOvKwQqWQWYdYo=">AAACAXicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoCcJevEYwU0CyRJmZ3uTIbMPZmbFsOTkB3jVT/AmXv0Sv8DfcJLsQRMLGoqqbrq7/FRwpW37yyqtrK6tb5Q3K1vbO7t71f2DlkoyydBliUhkx6cKBY/R1VwL7KQSaeQLbPujm6nffkCpeBLf63GKXkQHMQ85o9pIbu+RX9n9as2u2zOQZeIUpAYFmv3qdy9IWBZhrJmgSnUdO9VeTqXmTOCk0ssUppSN6AC7hsY0QuXls2Mn5MQoAQkTaSrWZKb+nshppNQ48k1nRPVQLXpT8V9PmVOGGCys1+Gll/M4zTTGbL49zATRCZnGQQIukWkxNoQyyc0DhA2ppEyb0ComGWcxh2XSOqs7dt25O681rouMynAEx3AKDlxAA26hCS4w4PAML/BqPVlv1rv1MW8tWcXMIfyB9fkDUUSXMA==</latexit><latexit sha1_base64="urJba91Y8DtIPuOvKwQqWQWYdYo=">AAACAXicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoCcJevEYwU0CyRJmZ3uTIbMPZmbFsOTkB3jVT/AmXv0Sv8DfcJLsQRMLGoqqbrq7/FRwpW37yyqtrK6tb5Q3K1vbO7t71f2DlkoyydBliUhkx6cKBY/R1VwL7KQSaeQLbPujm6nffkCpeBLf63GKXkQHMQ85o9pIbu+RX9n9as2u2zOQZeIUpAYFmv3qdy9IWBZhrJmgSnUdO9VeTqXmTOCk0ssUppSN6AC7hsY0QuXls2Mn5MQoAQkTaSrWZKb+nshppNQ48k1nRPVQLXpT8V9PmVOGGCys1+Gll/M4zTTGbL49zATRCZnGQQIukWkxNoQyyc0DhA2ppEyb0ComGWcxh2XSOqs7dt25O681rouMynAEx3AKDlxAA26hCS4w4PAML/BqPVlv1rv1MW8tWcXMIfyB9fkDUUSXMA==</latexit><latexit sha1_base64="urJba91Y8DtIPuOvKwQqWQWYdYo=">AAACAXicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoCcJevEYwU0CyRJmZ3uTIbMPZmbFsOTkB3jVT/AmXv0Sv8DfcJLsQRMLGoqqbrq7/FRwpW37yyqtrK6tb5Q3K1vbO7t71f2DlkoyydBliUhkx6cKBY/R1VwL7KQSaeQLbPujm6nffkCpeBLf63GKXkQHMQ85o9pIbu+RX9n9as2u2zOQZeIUpAYFmv3qdy9IWBZhrJmgSnUdO9VeTqXmTOCk0ssUppSN6AC7hsY0QuXls2Mn5MQoAQkTaSrWZKb+nshppNQ48k1nRPVQLXpT8V9PmVOGGCys1+Gll/M4zTTGbL49zATRCZnGQQIukWkxNoQyyc0DhA2ppEyb0ComGWcxh2XSOqs7dt25O681rouMynAEx3AKDlxAA26hCS4w4PAML/BqPVlv1rv1MW8tWcXMIfyB9fkDUUSXMA==</latexit>

−1 < ξ < 0
<latexit sha1_base64="65Hbu5mU98QJkY+zabA41U9JImw=">AAACBHicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh5yCHrxGME8IFnC7GxvMmT2wcysGJZc/QCv+gnexKv/4Rf4G06SPWhiQUNR1U13l5cIrrRtf1mFldW19Y3iZmlre2d3r7x/0FJxKhk2WSxi2fGoQsEjbGquBXYSiTT0BLa90c3Ubz+gVDyO7vU4QTekg4gHnFFtpM6ZU+s98prdL1fsqj0DWSZOTiqQo9Evf/f8mKUhRpoJqlTXsRPtZlRqzgROSr1UYULZiA6wa2hEQ1RuNrt3Qk6M4pMglqYiTWbq74mMhkqNQ890hlQP1aI3Ff/1lDlliP7Ceh1cuRmPklRjxObbg1QQHZNpIsTnEpkWY0Mok9w8QNiQSsq0ya1kknEWc1gmrfOqY1edu4tK/TrPqAhHcAyn4MAl1OEWGtAEBgKe4QVerSfrzXq3PuatBSufOYQ/sD5/ALa/l+Y=</latexit><latexit sha1_base64="65Hbu5mU98QJkY+zabA41U9JImw=">AAACBHicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh5yCHrxGME8IFnC7GxvMmT2wcysGJZc/QCv+gnexKv/4Rf4G06SPWhiQUNR1U13l5cIrrRtf1mFldW19Y3iZmlre2d3r7x/0FJxKhk2WSxi2fGoQsEjbGquBXYSiTT0BLa90c3Ubz+gVDyO7vU4QTekg4gHnFFtpM6ZU+s98prdL1fsqj0DWSZOTiqQo9Evf/f8mKUhRpoJqlTXsRPtZlRqzgROSr1UYULZiA6wa2hEQ1RuNrt3Qk6M4pMglqYiTWbq74mMhkqNQ890hlQP1aI3Ff/1lDlliP7Ceh1cuRmPklRjxObbg1QQHZNpIsTnEpkWY0Mok9w8QNiQSsq0ya1kknEWc1gmrfOqY1edu4tK/TrPqAhHcAyn4MAl1OEWGtAEBgKe4QVerSfrzXq3PuatBSufOYQ/sD5/ALa/l+Y=</latexit><latexit sha1_base64="65Hbu5mU98QJkY+zabA41U9JImw=">AAACBHicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh5yCHrxGME8IFnC7GxvMmT2wcysGJZc/QCv+gnexKv/4Rf4G06SPWhiQUNR1U13l5cIrrRtf1mFldW19Y3iZmlre2d3r7x/0FJxKhk2WSxi2fGoQsEjbGquBXYSiTT0BLa90c3Ubz+gVDyO7vU4QTekg4gHnFFtpM6ZU+s98prdL1fsqj0DWSZOTiqQo9Evf/f8mKUhRpoJqlTXsRPtZlRqzgROSr1UYULZiA6wa2hEQ1RuNrt3Qk6M4pMglqYiTWbq74mMhkqNQ890hlQP1aI3Ff/1lDlliP7Ceh1cuRmPklRjxObbg1QQHZNpIsTnEpkWY0Mok9w8QNiQSsq0ya1kknEWc1gmrfOqY1edu4tK/TrPqAhHcAyn4MAl1OEWGtAEBgKe4QVerSfrzXq3PuatBSufOYQ/sD5/ALa/l+Y=</latexit><latexit sha1_base64="65Hbu5mU98QJkY+zabA41U9JImw=">AAACBHicbVDLSgNBEOyNrxhfUY9eBoPgxbArgh5yCHrxGME8IFnC7GxvMmT2wcysGJZc/QCv+gnexKv/4Rf4G06SPWhiQUNR1U13l5cIrrRtf1mFldW19Y3iZmlre2d3r7x/0FJxKhk2WSxi2fGoQsEjbGquBXYSiTT0BLa90c3Ubz+gVDyO7vU4QTekg4gHnFFtpM6ZU+s98prdL1fsqj0DWSZOTiqQo9Evf/f8mKUhRpoJqlTXsRPtZlRqzgROSr1UYULZiA6wa2hEQ1RuNrt3Qk6M4pMglqYiTWbq74mMhkqNQ890hlQP1aI3Ff/1lDlliP7Ceh1cuRmPklRjxObbg1QQHZNpIsTnEpkWY0Mok9w8QNiQSsq0ya1kknEWc1gmrfOqY1edu4tK/TrPqAhHcAyn4MAl1OEWGtAEBgKe4QVerSfrzXq3PuatBSufOYQ/sD5/ALa/l+Y=</latexit>

ξ < −1
<latexit sha1_base64="jK/JwwkLYlNTlTwkkJoCRIzav7E=">AAACAnicbVDLSsNAFL2pr1pfVZdugkVwY0lE0IWLohuXFewD2lAmk5t27GQSZiZiCd35AW71E9yJW3/EL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqLC2vrK4V10sbm1vbO+XdvaaKU0mxQWMey7ZPFHImsKGZ5thOJJLI59jyh9cTv/WAUrFY3OlRgl5E+oKFjBJtpGb3kV2euL1yxak6U9iLxM1JBXLUe+XvbhDTNEKhKSdKdVwn0V5GpGaU47jUTRUmhA5JHzuGChKh8rLptWP7yCiBHcbSlND2VP09kZFIqVHkm86I6IGa9ybiv54ypwwwmFuvwwsvYyJJNQo62x6m3NaxPcnDDphEqvnIEEIlMw/YdEAkodqkVjLJuPM5LJLmadV1qu7tWaV2lWdUhAM4hGNw4RxqcAN1aACFe3iGF3i1nqw36936mLUWrHxmH/7A+vwBvjWXZg==</latexit><latexit sha1_base64="jK/JwwkLYlNTlTwkkJoCRIzav7E=">AAACAnicbVDLSsNAFL2pr1pfVZdugkVwY0lE0IWLohuXFewD2lAmk5t27GQSZiZiCd35AW71E9yJW3/EL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqLC2vrK4V10sbm1vbO+XdvaaKU0mxQWMey7ZPFHImsKGZ5thOJJLI59jyh9cTv/WAUrFY3OlRgl5E+oKFjBJtpGb3kV2euL1yxak6U9iLxM1JBXLUe+XvbhDTNEKhKSdKdVwn0V5GpGaU47jUTRUmhA5JHzuGChKh8rLptWP7yCiBHcbSlND2VP09kZFIqVHkm86I6IGa9ybiv54ypwwwmFuvwwsvYyJJNQo62x6m3NaxPcnDDphEqvnIEEIlMw/YdEAkodqkVjLJuPM5LJLmadV1qu7tWaV2lWdUhAM4hGNw4RxqcAN1aACFe3iGF3i1nqw36936mLUWrHxmH/7A+vwBvjWXZg==</latexit><latexit sha1_base64="jK/JwwkLYlNTlTwkkJoCRIzav7E=">AAACAnicbVDLSsNAFL2pr1pfVZdugkVwY0lE0IWLohuXFewD2lAmk5t27GQSZiZiCd35AW71E9yJW3/EL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqLC2vrK4V10sbm1vbO+XdvaaKU0mxQWMey7ZPFHImsKGZ5thOJJLI59jyh9cTv/WAUrFY3OlRgl5E+oKFjBJtpGb3kV2euL1yxak6U9iLxM1JBXLUe+XvbhDTNEKhKSdKdVwn0V5GpGaU47jUTRUmhA5JHzuGChKh8rLptWP7yCiBHcbSlND2VP09kZFIqVHkm86I6IGa9ybiv54ypwwwmFuvwwsvYyJJNQo62x6m3NaxPcnDDphEqvnIEEIlMw/YdEAkodqkVjLJuPM5LJLmadV1qu7tWaV2lWdUhAM4hGNw4RxqcAN1aACFe3iGF3i1nqw36936mLUWrHxmH/7A+vwBvjWXZg==</latexit><latexit sha1_base64="jK/JwwkLYlNTlTwkkJoCRIzav7E=">AAACAnicbVDLSsNAFL2pr1pfVZdugkVwY0lE0IWLohuXFewD2lAmk5t27GQSZiZiCd35AW71E9yJW3/EL/A3nLZZaOuBC4dz7uXee/yEM6Ud58sqLC2vrK4V10sbm1vbO+XdvaaKU0mxQWMey7ZPFHImsKGZ5thOJJLI59jyh9cTv/WAUrFY3OlRgl5E+oKFjBJtpGb3kV2euL1yxak6U9iLxM1JBXLUe+XvbhDTNEKhKSdKdVwn0V5GpGaU47jUTRUmhA5JHzuGChKh8rLptWP7yCiBHcbSlND2VP09kZFIqVHkm86I6IGa9ybiv54ypwwwmFuvwwsvYyJJNQo62x6m3NaxPcnDDphEqvnIEEIlMw/YdEAkodqkVjLJuPM5LJLmadV1qu7tWaV2lWdUhAM4hGNw4RxqcAN1aACFe3iGF3i1nqw36936mLUWrHxmH/7A+vwBvjWXZg==</latexit>
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Figure 1. Left: the Regge limit of a two-point function in the presence of a conformal boundary

condition. The thick vertical line represents the (timelike) boundary. In the Regge limit, O2

approaches the lightcone of the mirror reflection of O1. Right: to reach the Regge limit, we should

start with G(ξ) in the Euclidean regime ξ > 0 and analytically continue to ξ → −1. In doing so,

we need to go around the branch point ξ = 0.

2.3 Mean field theory

To state our main point we first need to recall another bit of kinematics, the definition

of mean field theory. In mean field theory, the n-point correlator of the “elementary”

scalar operator ϕ is simply given by its disconnected part, i.e. it factorizes into products

of two-point functions. In the presence of a boundary, the form of the mean field theory

two-point function depends on a choice of boundary conditions. The two obvious choices

are Neumann and Dirichlet boundary conditions,6

〈ϕ(x)ϕ(y)〉Neumann =
1

(2x⊥)∆ϕ(2y⊥)∆ϕ

(
ξ−∆ϕ + (ξ + 1)−∆ϕ

)
, (2.6)

〈ϕ(x)ϕ(y)〉Dirichlet =
1

(2x⊥)∆ϕ(2y⊥)∆ϕ

(
ξ−∆ϕ − (ξ + 1)−∆ϕ

)
. (2.7)

The boundary OPE of ϕ predicts the existence of an infinite tower of boundary modes ϕ̂n,

with n ∈ Z≥0, of dimensions

∆̂n = ∆ϕ + 2n (Neumann) , ∆̂n = ∆ϕ + 2n+ 1 (Dirichlet) . (2.8)

For concreteness, in most of the paper we will pick Neumann as our reference boundary

condition. In addition to the identity and to ϕ, the bulk operator spectrum of the mean

field theory consists of the usual multi-trace composite operators — normal ordered prod-

ucts of ϕ sprinkled with derivatives. Similarly, the boundary spectrum consists of the

boundary identity, of the single-trace modes {ϕ̂n} and of their multi-trace composites. An

equivalent and very useful definition of mean field theory is provided by the holographic

correspondence. The theory of a single free scalar field in AdSd+1 is dual to CFTd mean

field theory. The BCFT case is obtained by introducing an AdSd boundary in AdSd+1, with

suitable (Neumann or Dirichlet) boundary conditions [6, 49]. The resulting “half-space”

6Both choices preserve the Z2 symmetry ϕ → −ϕ so one-point functions are zero.
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geometry is what we denote by hAdSNd+1 and hAdSDd+1 for the Neumann and Dirichlet

cases, respectively.

2.4 From functionals to Polyakov blocks, and back

Our main contention is that the space of super-bounded functions U admits a natural basis

“adapted” to mean field theory. The basis functions are bulk and boundary conformal

blocks with quantized dimensions, as dictated by our reference Neumann mean field theory.7

Let us first consider the case ∆1 6= ∆2. We claim that the following set functions is a

basis for U ,

gB∆N
with ∆N = ∆1 +∆2 + 2N , N ∈ Z≥0 , (2.9)

gb
∆̂i

n
with ∆̂i

N = ∆̂i + 2n , n ∈ Z≥0 , i = 1, 2 .

A basis for the dual space U∗ is given by the set of functionals {ωM , ω̂
(j)
m }, defined by

dualizing the primal basis (2.9),

ωM (gB∆N
) = δMN , ωM (gb

∆̂i
n
) = 0 (2.10)

ω̂(j)
m (gB∆N

) = 0 , ω̂(j)
m (gb

∆̂i
n
) = δmn δ

ij .

Our main goal is to find explicit expressions for the action of the functionals {ωM , ω̂
(j)
m } on

bulk and boundary conformal blocks of arbitrary dimension. We will proceed somewhat

indirectly. The first step is the definition of the “Polyakov blocks”.

Polyakov blocks. The bulk Polyakov block of dimension ∆ is defined as the unique

function in U , which admits the following bulk and boundary conformal block expansions,8

PB
∆ = gB∆ +

∑

N

aN gB∆N
=
∑

m,i

b(i)m gb
∆̂

(i)
m
, (2.11)

for some coefficients aN and b
(i)
m . Acting on this equation with the functionals {ωM , ω̂

(j)
m }

and using the orthonormality relations (2.10) we immediately find

aN = −ωN (gB∆) , b(i)m = ω̂(i)
m (gB∆) . (2.12)

Clearly, if we were somehow handed an expression for the bulk Polyakov block of general

dimension ∆, we could perform its conformal block expansion and find the action of our

basis of functionals on the general bulk conformal block. Similarly, the boundary Polyakov

block of dimension ∆̂ is defined as the unique function in U with conformal block expansions

Pb
∆̂
= gb

∆̂
+
∑

n,i

c(i)n gb
∆̂i

n
=
∑

N

dN gB∆N
. (2.13)

7An analogous statement holds if one chooses Dirichlet mean field theory as the reference BCFT. We

will come back to the choice of reference boundary conditions in section 5.
8The Polyakov blocks depend on the choice of boundary conditions for the reference mean field theory.

To avoid cluttering, we do not indicate explicitly that we are choosing Neumann boundary conditions, but

this should be understood throughout.
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Using (2.10), we immediately find

c(i)n = −ω̂(i)
n (gb

∆̂
) , dN = ωN (gb

∆̂
) , (2.14)

i.e. the boundary Polyakov block of dimension ∆̂ encodes the action of the functionals on

the boundary conformal block with the same dimension.

Polyakov = Witten. We are now approaching the punchline. There is, in fact, an

independent way to define the Polyakov blocks. We just need to recall that bulk and

boundary exchange Witten diagrams in hAdSd+1 have conformal block expansions precisely

of the form (2.11) and (2.13), respectively. The boundary exchange Witten diagram is

Regge super-bounded, and it must then coincide with the boundary Polyakov block,

Pb
∆̂
≡ Wboundary

∆̂
. (2.15)

On the other hand, the bulk exchange Witten diagram is Regge bounded, but not super-

bounded, i.e. it belongs to V but not to U . Fortunately, there is a simple fix. The basic

Witten contact diagram in hAdSd+1 (with Neumann b.c. and a non-derivative vertex)

belongs to V, but not to U , and admits bulk and boundary conformal block expansions

featuring precisely the set (2.9) of conformal blocks,

Wcontact =
∑

N

aN gB∆N
=
∑

n,i

â(i)n gb
∆̂i

n
. (2.16)

It follows that we can “improve” the bulk exchange Witten diagram by adding to it a term

proportional to the contact diagram, such that the sum belongs to U . All in all,

PB
∆ ≡ Wbulk

∆ + θ∆Wcontact , (2.17)

where θ∆ is a computable coefficient. This will then be our strategy to find the action of

our basis of functionals on general conformal blocks. We will “just” need to perform the

conformal block expansion of the (improved) exchange Witten diagrams. To that end, we

will have to overcome some technical hurdles, especially for the crossed channel expansions

of the Witten diagrams (i.e., the boundary expansion of the bulk exchange diagram, and

the bulk expansion of the boundary exchange diagram). The requisite technical work is

performed in section 3.

It should now also be becoming clear why we had to introduce the notion of Regge

super-boundedness as opposed to mere boundedness. The reason is that the equality of

the bulk and boundary OPEs of the contact diagram (2.16) gives a linear relation among

our proposed basis vectors in the space V. Since the contact diagram is Regge bounded

but not super-bounded, this relation disappears when restricting to U . Had we chosen to

work with the Dirichlet boundary condition, we would not be force to introduce U .

The Polyakov block expansion. It follows from the definitions (2.11), (2.12) and (2.13),

(2.14) that assuming the BCFT two-point function (2.3) is Regge super-bounded, it admits

the following curious representation,

G(ξ) =
∑

O

λO PB
∆(ξ) +

∑

Ô

µ
Ô
Pb

∆̂
(ξ) . (2.18)
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The two sums run over the same bulk and boundary spectra of the usual conformal block

expansions (2.3), and with the same OPE coefficients. To show the validity of this repre-

sentation, we can replace the Polyakov blocks by (say) their bulk channel conformal block

expansions,

G =
∑

O

λO g
B
∆ −

∑

O

λO
∑

N

ωN (gB∆) g
B
∆N

+
∑

Ô

µ
Ô

∑

N

ωN (gb∆
Ô
) gB∆N

(2.19)

=
∑

O

λO g
B
∆ +

∑

N

gB∆N
ωN


−

∑

O

λO g
B
∆ +

∑

Ô

µ
Ô
gb∆

Ô


 .

The expression in the bracket is identically zero thanks the crossing equation (2.3), and

we have thus recovered the bulk conformal block expansion of G. The only potentially

subtle point in this derivation is swapping the order of the infinite sums (over N and

over {O} , {Ô}).9 One may also prove (2.18) by replacing the Polyakov blocks by their

expansion in the boundary channels, and follow entirely analogous steps.

The representation (2.18) is somewhat analogous to the one conjectured long ago by

Polyakov [36] (and reproposed recently in [37–39]) for the four-point function of identical

scalar operators in CFTd. In that context, Polyakov blocks are defined to be fully crossing

symmetric, so that one is effectively summing over the s, t and u channels, which are all

equivalent for identical scalar operators. In our context, the bulk and boundary channels

are inequivalent and one necessitates the introduction of two kinds of “Polyakov” blocks.

The existence of a Polyakov block representation for the four-point function in CFT1 has

been recently demonstrated in [27], following a similar logic as the one we have used here.

The Polyakov block turns out to be the crossing-symmetrized sum of Witten exchange

diagrams, plus a multiple of the contact diagram, needed to achieve super-boundedness.

The status of a Polyakov block representation in CFTd is still unclear (at least to us),

see [27, 39, 50] for recent discussions.

The case ∆1 = ∆2. The action of the functionals in the equal dimension case can be

obtained by carefully taking the limit ∆1 → ∆2. Alternatively, we recognize that in this

limit the two sets of boundary blocks in the basis (2.9) become degenerate with each other,

and to preserve completeness we need to introduce derivatives of the boundary blocks with

respect to the conformal dimension. The basis then reads (with ∆1 = ∆2 ≡ ∆ϕ):

gB∆N
with ∆N = 2∆+ 2N , N ∈ Z≥0 , (2.20)

gb
∆̂n

with ∆̂N = ∆̂ + 2n , n ∈ Z≥0 ,

∂gb
∆̂n

with ∆̂N = ∆̂ + 2n , n ∈ Z≥0 ,

where ∂gb
∆̂n

stands for the derivative of gb
∆̂

with respect to ∆̂, evaluated at ∆̂ = ∆̂n. The

dual basis {ωN , ω̂n , ω̃n} is defined by the orthonormality conditions


ωN

ω̂n

ω̃n



[
gB∆M

gb
∆̂m

∂gb
∆̂m

]
=



δNM

δnm
δnm


 . (2.21)

9We were not able to prove that this swapping is allowed in general but we are optimistic. It will be

important to return to this very important point in future.
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The analysis performed above for ∆1 6= ∆2 can be repeated with the obvious modifications

in the equal dimensions case. For example, the boundary conformal block decompositions

of the Polyakov blocks now read

PB
∆ =

∑

m

ω̂m(gB∆)g
b
∆̂m

+
∑

m

ω̃m(gB∆)∂g
b
∆̂m

, (2.22)

Pb
∆̂
= gb

∆̂
−
∑

m

ω̂m(gb
∆̂
)gb

∆̂m
−
∑

m

ω̃m(gb
∆̂
)∂gb

∆̂m
, (2.23)

while (2.16) gets replaced by

Wcontact =
∑

N

λN gB∆N
=
∑

n

λ̂n g
b
∆̂n

+
∑

n

λ̃n ∂g
b
∆̂n

. (2.24)

2.5 From U∗ to V∗

A generic BCFT two-point function is Regge bounded, but not necessarily super-bounded.

Our real interest is in the space V of Regge bounded functions, and in its dual space

V∗. Fortunately, extending the previous analysis to these physically relevant spaces takes

only some minor additional work. The only complication is that the functions (2.9) (for

∆1 6= ∆2) or (2.20) (for ∆1 = ∆2) are not quite linearly independent in V. As we have

noted, the basic Witten contact diagram Wcontact belongs to V but not to U . Its bulk and

boundary conformal block decompositions ((2.16) or (2.24)) imply that the putative basis

vectors obey one linear relation.

The inclusion U ⊂ V implies V∗ ⊂ U∗: a functional acting on the space of super-

bounded fun is not necessarily a good functional on the space of bounded functions. Indeed

(focusing for definiteness on the equal dimension case), it is easy to see that the basis

elements of U∗ defined by the orthonormality relations (2.21) are not good functionals on

V. For example, acting with ωN on both conformal block expansions (2.24) of Wcontact ∈ V
we find λN = 0 for all N , which is an obvious contradiction. The issue is of course that

we have not yet taken into account the linear relation. Heuristically, we need to remove

one functional from U∗ in order to obtain V∗. This is easily accomplished by taking linear

combinations of the basis of U∗, such that the resulting functionals annihilate the difference

of the l.h.s. and r.h.s. in Wcontact. For example, we could decide to “remove” ω0 and take

as a complete set of functionals in V∗ the linear combinations

ωN + γN ω0 , ω̂m + γ̂m ω0 , ω̃n + γ̃n ω0 , N ≥ 1 ,m, n ≥ 0 , (2.25)

where γN , γ̂m and γ̃n are determined by requiring that these linear combinations respect

the existence of the contact linear relation.

The bottom-line is that the above linear combinations of functionals lead to sum rules

which are valid constraints on the OPE data in the bulk and boundary expansions of a

general scalar two-point function in a unitary BCFT.

2.6 Connection to the Lorentzian inversion formulae

There is an alternative point of view on the above logic provided by the Lorentzian OPE

inversion formula for the BCFT two-point function. We will write down Lorentzian in-

version formulae for both the bulk and boundary OPEs. The formulae express the OPE
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coefficient functions in each channel as weighted integrals of the correlator in Lorentzian

configurations. More precisely, both the bulk and boundary formulae involve the double

discontinuity around the boundary OPE singularity and a single discontinuity around the

bulk OPE singularity. These discontinuities annihilate precisely the set of boundary and

bulk mean-field conformal blocks which form the basis for our vector space discussed earlier.

The Lorentzian formulae lead to the Polyakov sum rules in the following way. If we

insert a single bulk conformal block of dimension ∆ into the Lorentzian formulae, we get

back the coefficient functions of the bulk Polyakov block of dimension ∆, and similarly for

the boundary conformal and Polyakov block. When applying the formulae to a general

two-point function, the boundary dDisc must be expanded using the boundary OPE and

the bulk Disc using the bulk OPE. Combined with the previous sentence, we see that by

inserting these OPEs into the Lorentzian formula, we obtain the coefficient function of our

correlator as a sum over the coefficient functions of bulk and boundary Polyakov blocks,

with the same spectrum and OPE coefficients that appear in the bulk and boundary OPEs.

The construction also gives us a better understanding of the linear functionals which

form the dual basis for the primal basis of mean-field bulk and boundary conformal blocks.

The functionals arise simply by taking residues of the Lorentzian inversion kernels at the

mean-field scaling dimensions.

Our method does not yield an explicit expression for the inversion kernels of the

Lorentzian formulae. Instead, consistency with the Euclidean formula dictates that the

double discontinuity of Lorentzian inversion kernel is the conformal partial wave. We give

an explicit formula for the kernels in the special case ∆1 = ∆2 + 1.

3 Witten diagrams with Neumann boundary condition

3.1 Representation in terms of probe-brane diagrams

In this paper we will consider tree-level Witten diagrams in an hAdSd+1 space which is a

half of an AdSd+1 space. Using the Poincaré coordinates, it is defined by

ds2 =
dz20 + d~z2 + dz2⊥

z20
, z⊥ ≥ 0 . (3.1)

In addition to the conformal boundary at z0 = 0, the hAdSd+1 space also has an AdSd
boundary defined by z⊥ = 0. Let us specify the boundary conditions. For fields φ living in

the bulk of hAdSd+1 we impose the Neumann boundary condition on the AdSd boundary

(and we denote the hAdSd+1 space with this choice of boundary condition as hAdSNd+1)

∂z⊥φ(z0, ~z, z⊥)
∣∣
z⊥=0

= 0 . (3.2)

However for the boundary fields φ̂(z0, ~z) that live only on the AdSd boundary there is no

such constraint. The Witten diagrams are then constructed by using the hAdSN
d+1 Green’s

functions which obey the boundary condition (3.2), and the AdSd Green’s functions. More

precisely, the hAdSNd+1 bulk-to-bulk propagator G̃∆
BB(z, w) satisfies the defining equation

(�d+1 +M2)G̃∆
BB(z, w) = δ(d+1)(z, w) , (3.3)
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with M2 = ∆(∆ − d). As a result of (3.2), the propagator G̃∆
BB(z, w) has to satisfy the

boundary condition

∂z⊥G̃
∆
BB(z, w)

∣∣
z⊥→0

= 0 , ∂w⊥G̃
∆
BB(z, w)

∣∣
w⊥→0

= 0 . (3.4)

We also have the AdSd bulk-to-bulk propagator G̃∆̂
BB(z, w) where both z and w are re-

stricted to be on AdSd. The propagator G̃∆̂
BB(z, w) satisfies the AdSd equation of motion

(�d + M̂2)G̃∆̂
BB(z, w) = δ(d)(z, w) (3.5)

where

M̂2 = ∆̂(∆̂− d+ 1) . (3.6)

We will also need the bulk-to-boundary propagators G̃∆
B∂(z, ~x). These bulk-to-boundary

propagators can be obtained from the bulk-to-bulk propagators by sending one point to

the conformal boundary.

In terms of the hAdSNd+1 propagators, we define three types of Witten diagrams with

the Neumann boundary condition. The simplest diagram is a contact Witten diagram

(figure 2a) which comes from a quadratic coupling on AdSd. It is defined to be10

W contact
Neum (x, y) =

∫

AdSd

ddw

wd
0

G̃∆1
B∂(w, x)G̃

∆2
B∂(w, y) . (3.7)

We also define the bulk channel exchange Witten diagram (figure 2b) where the external op-

erators exchange a dimension ∆ hAdSd+1 field with the AdSd boundary via a cubic coupling

W bulk
Neum(x, y) =

∫

AdSd

ddw

wd
0

∫

hAdS+d+1

dd+1z

zd+1
0

G̃∆
BB(w, z)G̃

∆1
B∂(z, x)G̃

∆2
B∂(z, y) . (3.8)

Finally, we define the boundary channel exchange Witten diagram (figure 2c) where an

AdSd field with dimension ∆̂ is exchanged

W boundary
Neum (x, y) =

∫

AdSd

ddw1

wd
10

ddw2

wd
20

G̃∆̂
BB(w1, w2)G̃

∆1
B∂(w1, x)G̃

∆2
B∂(w2, y) . (3.9)

However it is not the most convenient to work with the hAdSNd+1 propagators because

of the nontrivial boundary condition. Instead we will shortly see that we can express the

above Witten diagrams in terms the probe-brane Witten diagrams, where only the usual

AdS propagators are used.

The probe-brane set up is given by an AdSd+1 space with an AdSd brane inserted at

z⊥ = 0 and corresponds to an interface.11 The AdSd brane coincide with the z⊥ = 0 slice

of AdSd+1, and causes no back reaction to the geometry of the latter. In the probe-brane

setup the AdSd+1 bulk-to-bulk propagator satisfies the equation of motion

(�d+1 +M2)G∆
BB(z, w) = δ(d+1)(z, w) , (3.10)

10Because we will seldom use contact Witten diagrams with derivatives in the contact vertex, whenever

we write W contact we mean by default the zero-derivative contact diagram.
11This is the simplest version of the Karch-Randall setup [5, 51].
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(a) contact diagrams (b) bulk channel exchange dia-

grams

(c) boundary channel exchange

diagrams

Figure 2. Tree level Witten diagrams in hAdSN

d+1. The semi-disk represents the hAdSN

d+1 space

which terminates at an AdSd, represented by the horizontal line.

with no boundary condition when z⊥ or w⊥ goes to zero. The AdSd bulk-to-bulk propagator

G∆̂
BB(z, w) is the same as in the hAdSd+1 case

G∆̂
BB(z, w) ≡ G̃∆̂

BB(z, w) . (3.11)

The bulk-to-boundary propagators are obtained by taking the boundary limit of the cor-

responding bulk-to-bulk propagator. For concreteness, let us recall below the explicit

expressions of the propagators

G∆
BB(w, z) =

Γ(∆)

2π
d
2Γ(∆− d

2 + 1)
u−∆

2F1

(
∆,

2∆− d+ 1

2
, 2∆− d+ 1,−4

u

)
, (3.12)

G∆̂
BB(w, z) =

Γ(∆̂)

2π
d−1
2 Γ(∆̂− d−1

2 + 1)
u−∆̂

2F1

(
∆̂,

2∆̂− d+ 2

2
, 2∆̂− d+ 2,−4

u

)
, (3.13)

G∆
B∂(z, x) =

(
z0

z20 + (~z − ~x)2 + (z⊥ − x⊥)2

)∆

(3.14)

where we have defined

u =
(~w − ~z)2 + (w⊥ − z⊥)

2 + (w0 − z0)
2

w0z0
. (3.15)

We now define the following probe-brane Witten diagrams (figures 3, 4, 5) similar to those

that we have defined in hAdSd+1

W contact(x, y) =

∫

AdSd

ddw

wd
0

G∆1
B∂(w, x)G

∆2
B∂(w, y) , (3.16)

W bulk(x, y) =

∫

AdSd

ddw

wd
0

∫

AdSd+1

dd+1z

zd+1
0

G∆
BB(w, z)G

∆1
B∂(z, x)G

∆2
B∂(z, y) , (3.17)

W boundary(x, y) =

∫

AdSd

ddw1

wd
10

ddw2

wd
20

G∆̂
BB(w1, w2)G

∆1
B∂(w1, x)G

∆2
B∂(w2, y) . (3.18)

Notice that the integration region of z has now been extended to the entire AdSd+1.
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Figure 3. A contact Witten diagram W contact in the probe brane setup. The disk represent

AdSd+1 space and the horizontal line represent the AdSd interface.

Figure 4. A bulk channel exchange Witten diagram W bulk in the probe brane setup.

Figure 5. A boundary channel exchange Witten diagram W boundary in the probe brane setup.

To express the hAdSNd+1 diagrams in terms of the AdSd+1 diagrams, we notice that the

hAdSNd+1 propagators can be constructed using the method of images. It is easy to check

that the following combination

G̃∆
BB(z, w) = G∆

BB(z, w) +G∆
BB(z, w̄) (3.19)

satisfies the equation of motion (3.3) and the boundary condition (3.4) for w⊥ → 0. Here

we have defined z̄ = (z0, ~z,−z⊥) to be the mirror point of z with respect to z⊥ = 0. Note

that G∆
BB(z, w) only depends on the combination u defined in (3.15), and the quantity u

is invariant under reflection with respect to z⊥ = 0. We can therefore rewrite (3.19) as

G̃∆
BB(z, w) =

1

2

(
G∆

BB(z, w) +G∆
BB(z, w̄) +G∆

BB(z̄, w) +G∆
BB(z̄, w̄)

)
(3.20)

which manifests the symmetry between z and w. The boundary condition (3.4) for z⊥ → 0

is then also manifestly satisfied.
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Figure 6. A mirror bulk exchange Witten diagram W̄ bulk in the probe brane setup. Here ȳ is the

mirror point of y with respect to the interface, and therefore appears on the other side.

From the definitions of Witten diagrams and the relations (3.19) (3.11) for the prop-

agators, it is not hard to show that all the Witten diagrams with Neumann boundary

condition can be written in terms of the probe-brane Witten diagrams. We have

W contact
Neum (x, y) = 4W contact(x, y) , (3.21)

W bulk
Neum(x, y) = 2

(
W bulk(x, y) +W bulk(x, ȳ)

)
, (3.22)

W boundary
Neum (x, y) = 8W boundary(x, y) . (3.23)

We will also denote the diagram W bulk(x, ȳ), where the boundary point y is replaced by

its mirror point ȳ = (~y,−y⊥), by W̄ bulk(x, y) and refer to it as the mirror bulk exchange

Witten diagram (figure 6). In the following discussions, we will focus on these probe brane

Witten diagrams which are simpler to study.

3.2 Relating exchange diagrams and contact diagrams

The exchange Witten diagrams can be related to the contact Witten diagram by second

order differential operators (figure 7). These differential relations exist as a result of the

conformal invariance of the integrals that define the exchange diagrams, and the fact that

the bulk-to-bulk propagator satisfies the equation of motion in the bulk. As we will see in

later sections, these relations play an important role in the conformal block decomposition

of the exchange Witten diagrams. In this subsection we give the explicit expressions for

these relations.

We start by considering the bulk exchange Witten diagram W bulk(x, y) in (3.17), and

focus on the z-integral

Ibulk(x, y;w) =

∫

AdSd+1

dd+1z

zd+1
0

G∆
BB(w, z)G

∆1
B∂(z, x)G

∆2
B∂(z, y) (3.24)

By the conformal invariance of the z-integral, we have

(L1 + L2 + Lw)ABI
bulk(x, y;w) = 0 , (3.25)
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Figure 7. The equation of motion identities relating the exchange diagrams to the contact diagram.

where L1 and L2 are the generators of the SO(d, 2) conformal group for operator 1 and 2,

and Lw is the AdSd+1 isometry generator. From this identity it follows that

1

2
(L1+L2)

AB(L1+L2)ABI
bulk(x, y;w) =

1

2
LAB
w Lw,ABI

bulk(x, y;w) = −�d+1I
bulk(x, y;w) .

(3.26)

We now use the equation of motion (3.10) for the AdSd+1 bulk-to-bulk propagator and

perform the remaining w-integral. We get the following relation between a bulk exchange

Witten diagram and a contact Witten diagram

(
1

2
(L1 + L2)

2 +∆(∆− d)

)
W bulk(x, y) =W contact(x, y) . (3.27)

In terms of functions of the cross ratio, we can write the equation as

EOMB Wbulk(ξ) = Wcontact(ξ) (3.28)

which defines a differential operator EOMB. The action of this differential operator is

given by

EOMB G(ξ) = −4(ξ + 1)ξ2G′′(ξ) + ξ(2d− 4(ξ + 1)(∆1 +∆2 + 1))G′(ξ)

+ ((∆−∆1 −∆2)(−d+∆+∆1 +∆2)− 4∆1∆2ξ)G(ξ) .
(3.29)

Similarly, the mirror bulk exchange Witten diagram satisfies

(
1

2
(L1 + L̄2)

2 +∆(∆− d)

)
W̄ bulk(x, y) =W contact(x, y) . (3.30)
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The operator L̄2 is the conformal generator with respect to the mirror point ȳ. This identity

defines a differential operator EOMB of the cross ratio which turns a bulk exchange Witten

diagram into a contact Witten diagram

EOMB W̄bulk(ξ) = Wcontact(ξ) . (3.31)

The differential operator has the following explicit expression

EOMB G(ξ) = 4ξ(ξ + 1)2G′′(ξ) + 2(ξ + 1)(d+ 2ξ(∆1 +∆2 + 1))G′(ξ)

+ (d(−∆+∆1 +∆2) + ∆2 − (∆1 −∆2)
2 + 4∆1∆2ξ)G(ξ) .

(3.32)

Finally let us look at the boundary exchange Witten diagram (3.18). The w1-integral

Iboundary(x,w2) =

∫

AdSd

ddw1

wd
10

G∆̂
BB(w1, w2)G

∆1
B∂(w1, x) (3.33)

has SO(d − 2, 1) invariance, which is the residual conformal symmetry preserved by a

conformal boundary in a CFTd. Therefore we have

(L̂1 + L̂w2)ÂB̂I
boundary(x,w2) = 0 (3.34)

where L̂1 is the SO(d− 2, 1) conformal generator and L̂w2 is the AdSd isometry generator.

Acting again with these generators, we obtain

1

2
L̂ÂB̂
1 L̂1,ÂB̂I

boundary(x,w2) =
1

2
L̂ÂB̂
w2

L̂w2,ÂB̂I
boundary(x,w2) = −�d I

boundary(x,w2) .

(3.35)

After using the AdSd equation of motion and integrating over w2, we arrive at the following

relation (
1

2
L̂2
1 + ∆̂(∆̂− d+ 1)

)
W boundary(x, y) =W contact(x, y) . (3.36)

Alternatively, we can write it as

EOMbWboundary(ξ) = Wcontact(ξ) , (3.37)

with EOMb being a differential operator defined by

EOMb G(ξ) = −1

2
(2dξ + d)G′(ξ) + ∆̂(∆̂− d+ 1)G(ξ)− ξ(ξ + 1)G′′(ξ) . (3.38)

3.3 Regge behavior of Witten diagrams

We now look into the behavior of various Witten diagrams in the Regge limit. Our starting

point is the contact Witten diagrams for which we have closed form expressions in terms

of hypergeometric functions. The simplest contact diagram is the one with no derivatives

in the vertex, and we have [6, 12]

Wcontact =
πd/2Γ

(
1
2(−(d− 1) + ∆1 +∆2)

)

Γ
(
1
2(∆1 +∆2 + 1)

) 2F1

(
∆1,∆2;

1

2
(∆1 +∆2 + 1);−ξ

)
. (3.39)
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After making the change of the variable into ρ, we find the following behavior in the Regge

limit

Wcontact(ρ) ∼ (1 + ρ)1−(∆1+∆2) , ρ→ −1+ . (3.40)

According to our terminology, the zero-derivative contact Witten diagram is only Regge

bounded

Wcontact ∈ V . (3.41)

There are also contact diagrams that arise from the contact vertices with derivatives.

However, these higher-derivative contact diagrams have more divergent behavior in the

Regge limit compared to the zero-derivative one. For example, the Regge behavior of a

contact Witten diagram with two derivatives reads

Wcontact
2−der (ρ) ∼ (1 + ρ)−1−(∆1+∆2) , ρ→ −1+ . (3.42)

To investigate the Regge behavior of the various exchange Witten diagrams, it is

advantageous to make use of the equation of motion operators. Since the equation of

motion operators turn exchange diagrams into contact diagrams, we only need to know

their actions on a power-like singularity at ρ = −1. For example, the operator EOMB

collapses a bulk exchange Witten diagram into a zero-derivative contact diagram

EOMB[Wbulk] = Wcontact , (3.43)

and turns a singularity (ρ+1)a into a stronger one (ρ+1)a−2 . Since we know that the zero-

derivative contact diagram diverges as (ρ + 1)1−(∆1+∆2), we find that the bulk exchange

Witten diagram has the Regge behavior

Wbulk ∼ (ρ+ 1)3−(∆1+∆2) , ρ→ −1+ , (3.44)

and therefore is Regge super-bounded

Wbulk ∈ U . (3.45)

The analysis for the other two exchange Witten diagrams is analogous and yields the

following Regge behavior

W̄bulk ∼ (ρ+ 1)1−(∆1+∆2) , ρ→ −1+ , (3.46)

Wboundary ∼ (ρ+ 1)3−(∆1+∆2) , ρ→ −1+ . (3.47)

We have

W̄bulk ∈ V , Wboundary ∈ U . (3.48)

3.4 Conformal block decomposition of the contact Witten diagram

In this subsection, we study the conformal block decomposition of the contact Witten

diagram (3.16). The integral is simple to evaluate and the result can be compactly expressed

in terms of a single 2F1 function, as we have already mentioned in (3.39). Using well-

known properties of 2F1 it is a straightforward exercise to work out the conformal block
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decomposition of the contact Witten diagram. In the bulk channel, we find double-trace

operators with dimensions ∆1 +∆2 + 2N

Wcontact(ξ) =

∞∑

N=0

aN gB∆1+∆2+2N (ξ) (3.49)

where

gB∆(ξ) = ξ−
∆1+∆2

2 ξ
∆
2 2F1

(
∆+∆1 −∆2

2
,
∆+∆2 −∆1

2
;∆− d

2
+ 1;−ξ

)
, (3.50)

is the bulk channel conformal block [48]. The decomposition coefficients are given by12

aN =
πd/2(−1)NΓ(N+∆1)Γ(N+∆2)Γ

(
−d

2+N+∆1+∆2

)
Γ
(
1
2(−d+2N+∆1+∆2+1)

)

Γ(∆1)Γ(∆2)Γ(N+1)Γ
(
1
2(2N+∆1+∆2+1)

)
Γ
(
−d

2+2N+∆1+∆2

) .

(3.51)

In the boundary channel, we have two towers of single-trace operators, with dimensions

∆1 + 2m and ∆2 + 2m respectively

Wcontact(ξ) =
∑

m

â(1)m gb∆1+2m(ξ) +
∑

m

â(2)m gb∆2+2m(ξ) . (3.52)

Here

gb
∆̂
(ξ) = ξ−∆̂

2F1(∆̂, ∆̂− d

2
+ 1; 2∆̂ + 2− d;−ξ−1) , (3.53)

is the boundary channel conformal block [48], and the decomposition coefficients are

â(1)m =
π

d−1
2 2−∆1+∆2−4m−1(∆1)2m

(
d−2m−2∆1+1

2

)
−m

Γ
(
−2m−∆1+∆2

2

)
Γ
(
−d+2m+∆1+∆2+1

2

)

Γ(∆2)Γ(m+1)
,

â(2)m =replacing ∆1 with ∆2 in â(1)m . (3.54)

So far we have considered the contact diagrams with generic external dimensions ∆1 and

∆2. The special case with equal weights ∆1 = ∆2 = ∆φ can be obtained from the above

expressions by taking the limit. The bulk decomposition coefficients am are regular when

∆1 = ∆2 = ∆φ. We can therefore straightforwardly take this limit. However the boundary

channel coefficients â
(1)
m , â

(2)
m contain simple poles in ∆1−∆2 → 0. This generates additional

derivative conformal blocks ∂
∆̂
gb
∆̂

in the boundary channel decomposition

Wcontact(ξ) =
∑

n

âng
b
∆φ+2n(ξ) +

∑

n

b̂n(∂∆φ
gb∆φ+2n)(ξ) . (3.55)

The coefficients ân, b̂n are given by

ân=
π

d−1
2

(
− 1

16

)n
Γ(2n+∆φ)Γ

(
1
2(d−4n−2∆φ+1)

)
Γ
(
−d

2+n+∆φ+
1
2

)

(n!)2Γ(∆φ)2Γ
(
1
2(d−2n−2∆φ+1)

)

×
(
−H 1

2
(d−2n−2∆φ−1)+H 1

2
(d−4n−2∆φ−1)−H2n+∆φ−1+Hn+log(4)

)
,

b̂n=
π

d−1
2 (−1)n+116−nΓ(2n+∆φ)Γ

(
1
2(d−4n−2∆φ+1)

)
Γ
(
−d

2+n+∆φ+
1
2

)

(n!)2Γ(∆φ)2Γ
(
1
2(d−2n−2∆φ+1)

) ,

(3.56)

and Hn denotes the Harmonic number.

12We can also arrive at this result using the BCFT version of the geodesic Witten diagrams [12, 13, 52].
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3.5 Direct channel decomposition of exchange Witten diagrams

In the direct channel, the decomposition of an exchange Witten diagram contains a single-

trace conformal block and infinitely many double-trace/single-trace conformal blocks whose

dimensions depends on the external dimensions. This is clear from the Mellin representa-

tion [12]. More precisely, a bulk exchange Witten diagram can be written in bulk channel as

Wbulk(ξ) = ABgB∆(ξ) +
∑

N

AB
n g

B
∆1+∆2+2N (ξ) . (3.57)

Similarly, decomposing a boundary exchange Witten diagram into the boundary channel

gives

Wboundary(ξ) = Âbgb
∆̂
(ξ) +

∑

n

Âb,(1)
n gb∆1+2n(ξ) +

∑

n

Âb,(2)
n gb∆2+2n(ξ) . (3.58)

The direct channel decompositions can be obtained by starting from the Mellin spectral

representations given in [12]. To proceed one massages the cross ratio dependence in the

inverse Mellin transformation into that of a direct channel conformal block. Then one

obtains the spectral representations with respect to the direct channel conformal blocks,

and the OPE coefficients can be read off from the residues. We give the detailed derivation

in appendix B, and only present the final results here.

From the spectral representation, we find that the single-trace coefficients associated

with gB∆ and gb
∆̂

are

AB =
πd/2 cos

(
π∆
2

)
Γ
(
1−∆
2

)
Γ
(
−d+∆+1

2

)
Γ
(
∆+∆1−∆2

2

)
Γ
(
−∆+∆1+∆2

2

)
Γ
(
−d+∆+∆1+∆2

2

)

4Γ(∆1)Γ(∆2)sin
(
π(∆−∆1+∆2)

2

)
Γ
(
−d

2+∆+1
)
Γ
(
−∆+∆1−∆2+2

2

) ,

(3.59)

Âb=
π

d−1
2 Γ(∆̂)2−2∆̂+∆1+∆2−3Γ

(
∆1−∆̂

2

)
Γ
(
∆2−∆̂

2

)
Γ
(
−d+∆̂+∆1+1

2

)
Γ
(
−d+∆̂+∆2+1

2

)

Γ(∆1)Γ(∆2)Γ
(
−d

2+∆̂+ 3
2

) .

(3.60)

The remaining double-trace and single-trace coefficients can be extracted from the

spectral function in the same way. But an alternative and faster method is to use the

relations discussed in section 3.2. Let us first look at the bulk exchange Witten diagram.

Inserting the bulk channel decompositions (3.57), (3.49) into the equation of motion rela-

tion (3.28), we have

EOMB

[
ABgB∆(ξ) +

∑

N

AB
Ng

B
∆1+∆2+2N (ξ)

]
=
∑

n

aNg
B
∆1+∆2+2N (ξ) . (3.61)

Notice that the bulk channel conformal blocks are diagonal under the differential operator

EOMB

EOMB[g
B
∆(ξ)] = 0 ,

EOMB[g
B
∆1+∆2+2N (ξ)] = (∆(∆+d)−(∆1+∆2+2N)(∆1+∆2+2N−d))gB∆1+∆2+2N (ξ) .

(3.62)
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Therefore we have the following simple relation

AB
N =

aN
∆(∆− d)− (∆1 +∆2 + 2N)(∆1 +∆2 + 2N − d)

. (3.63)

Similarly, using the boundary equation of motion (3.37) and the fact that boundary channel

conformal blocks are diagonal with respect to EOMb, we have

Âb,(i)
n =

â
(i)
n

∆̂(∆̂− d+ 1)− (∆i + 2n)(∆i + 2n− d+ 1)
. (3.64)

3.6 Crossed channel decomposition of the exchange Witten diagram

To extract all the analytic functionals we also need to obtain the crossed channel de-

compositions of the exchange Witten diagrams. There are several cases we have to con-

sider. We need to decompose the boundary/bulk channel exchange Witten diagram into

bulk/boundary channel. We also need to decompose the mirror bulk exchange Witten

diagram into both the bulk channel and the boundary channel. Such crossed channel

decompositions are in general much more difficult compared to the direct channel decom-

positions, and no systematic methods exist in the literature. In this subsection we will

present a recursive method to obtain the crossed channel decomposition coefficients.

The main idea of our method is to use the contact Witten diagram as a stepping stone.

As we have seen in 3.4, the conformal block decomposition of the contact diagram is very

simple in both channels, and the decomposition coefficients were obtained in closed forms.

In section 3.2, we showed that all the exchange Witten diagrams can be related to the

same contact Witten diagram by using the equation of motion identity. The action of

the equation of motion operators on the crossed channel decompositions of the exchange

diagrams should therefore match the decompositions of the contact diagram. Remarkably,

the various equation of motion operators admit very simple actions on the crossed chan-

nel conformal blocks. The resulting expression can be generally expressed as the linear

combination of three conformal blocks with shifted conformal dimensions. This gives rise

to infinitely many linear relations among the crossed channel decomposition coefficients.

These relations can be recursively solved, and give the crossed channel decomposition.

Similar techniques for extracting the cross channel decomposition coefficients have also

been developed for four-point functions in CFTs without boundaries, see [53].

3.6.1 Bulk exchange diagram in the boundary channel

Let us make the above comments precise by looking at the boundary channel decomposition

of a bulk channel exchange Witten diagram. We start with the action of EOMB in (3.29)

on a boundary conformal block gb∆1+n(ξ). Using the properties of 2F1, it is not hard to

verify the following relation13

EOMB gb∆1+n(ξ) = α̂(1)
n gb∆1+n−1(ξ) + β̂(1)n gb∆1+n(ξ) + γ̂(1)n gb∆1+n+1(ξ) (3.65)

13The relations given here and in the next a few sections are in fact more general. The hypergeometric

identities are valid when n is not an integer. Therefore such three-term recursion relations exist for blocks

with any conformal dimension.
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where

α̂(1)
n = −4n(∆1 −∆2 + n) ,

β̂(1)n = −d(∆ +∆1 −∆2) + n(−2d+ 4∆1 + 2) + ∆2 +∆1(∆1 + 2)−∆2
2 + 2n2 ,

γ̂(1)n = −(∆1 + n)(d− 2∆1 − n− 1)(d−∆1 − n− 2)(−d+∆1 +∆2 + n+ 1)

(d− 2∆1 − 2n− 3)(d− 2∆1 − 2n− 1)
.

(3.66)

A similar relation exists for gb∆2+n(ξ), and can be obtained from the above expressions by

swapping ∆1 with ∆2.

We apply this relation to the boundary channel decomposition of the bulk exchange

Witten diagram

Wbulk(ξ) =
∑

n

ÂB,(1)
n gb∆1+n(ξ) +

∑

n

ÂB,(2)
n gb∆2+n(ξ) . (3.67)

Using the equation of motion identity (3.28)

EOMB Wbulk(ξ) = Wcontact(ξ) , (3.68)

and the boundary channel decomposition of the contact diagram (3.52), we get the following

recursion relations for Â
B,(1)
n and Â

B,(2)
n

γ̂
(i)
n−1Â

B,(i)
n−1 + β̂(i)n ÂB,(i)

n + α̂
(i)
n+1Â

B,(i)
n+1 =




âin

2
, n even ,

0 , n odd .
(3.69)

We should also impose the boundary condition Â
B,(i)
−1 = 0. These relations gives us a

recursive algorithm for doing the crossed channel decomposition. Our starting point is

n = 0 where we have the identity

β̂
(i)
0 Â

B,(i)
0 + α̂

(i)
1 Â

B,(i)
1 = âi0 . (3.70)

From this equation we can solve Â
B,(i)
1 in terms of Â

B,(i)
0 . For n ≥ 1, we can solve Â

B,(i)
n+1

in terms of Â
B,(i)
n and Â

B,(i)
n−1 . The entire decomposition therefore boils down to computing

the seed coefficient Â
B,(i)
0 which we will discuss in appendix C.

We can also consider the decomposition of bulk exchange Witten diagrams with equal

weights. Just as in the case of contact Witten diagrams, the equal weight exchange Witten

diagrams contain derivative conformal blocks in the boundary channel. The equal weight

case can be obtained from the unequal weight results by taking a limit. We will give the

expressions for the decomposition coefficients in appendix D.

3.6.2 Boundary exchange diagram in the bulk channel

The same strategy applies to all the other cases. To obtain the bulk channel decomposition

of the boundary exchange Witten diagram, we first look at the action of EOMb on a bulk

channel conformal block gB∆1+∆2+2N . We find

EOMb g
B
∆1+∆2+2N = αNg

B
∆1+∆2+2N−2 + βNg

B
∆1+∆2+2N + γNg

B
∆1+∆2+2N+2 (3.71)
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where

αN =−1

2
N(d+2N−2) ,

βN =
1

2

(
−2d∆̂+d∆1+2∆̂2+2∆̂+4N2+4∆1N

)

+
N(d+2N−2)(∆1+N−1)(d−2(∆1+N))

2(d−2(∆12
N −1))

− (n+1)(d+2N)(∆1+N)(d−2(∆1+N+1))

2(d−2(∆12
N +1))

,

γN =−2(∆1+N)(∆2+N)(2(∆1+N+1)−d)(2(∆2+N+1)−d)(−d+∆12
N −N+1)(2(∆12

N −N)−d)

(d−2∆12
N )(d−2(∆12

N +1))2(d−2(∆12
N +2))

,

(3.72)

and we have defined the short-hand notation ∆12
N ≡ ∆1 +∆2 + 2N . Apply EOMb to the

bulk channel decomposition

Wboundary(ξ) =
∑

N

Ab
ng

B
∆1+∆2+2N (ξ) , (3.73)

and use the equation of motion identity (3.37), we get the following recursion relations for

the OPE coefficients Ab
N

γN−1A
b
N−1 + βNA

b
n + αN+1A

b
N+1 = aN . (3.74)

As before, we have defined Ab
−1 = 0. The seed coefficient Ab

0 is given by (C.48).

3.6.3 Bulk mirror exchange diagram in the boundary channel

We now consider the boundary channel decomposition of the mirror exchange Witten

diagram W̄exchange(x, y). The action of the mirror equation of motion operator EOMB on

a boundary conformal block gb∆1+n reads

EOMB gb∆1+n(ξ) = ˆ̄α(1)
n gb∆1+n−1(ξ) +

ˆ̄β(1)n gb∆1+n(ξ) + ˆ̄γ(1)n gb∆1+n+1(ξ) (3.75)

where

ˆ̄α(1)
n = 4n(∆1 −∆2 + n) ,

ˆ̄β(1)n = −d(∆ +∆1 −∆2) + n(−2d+ 4∆1 + 2) + ∆2 +∆1(∆1 + 2)−∆2
2 + 2n2 ,

ˆ̄γ(1)n =
(∆1 + n)(d− 2∆1 − n− 1)(d−∆1 − n− 2)(−d+∆1 +∆2 + n+ 1)

(d− 2∆1 − 2n− 3)(d− 2∆1 − 2n− 1)
.

(3.76)

Following the same reasoning, the above action leads to recursion relations for the boundary

channel decomposition of the mirror exchange Witten diagram

W̄bulk(ξ) =
∑

n

ˆ̄AB,(1)
n gb∆1+n(ξ) +

∑

n

ˆ̄AB,(2)
n gb∆2+n(ξ) . (3.77)

The recursion relations takes the following form

ˆ̄γ
(i)
n−1

ˆ̄A
B,(i)
n−1 + ˆ̄β(i)n

ˆ̄AB,(i)
n + ˆ̄α

(i)
n+1

ˆ̄A
B,(i)
n+1 =




âin

2
, n even ,

0 , n odd ,
(3.78)

– 22 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
4

and ˆ̄A
B,(i)
−1 = 0. It is important to note that in the above recursion relations

ˆ̄α(i)
n = −α̂(i)

n , ˆ̄β(i)n = β̂(i)n , ˆ̄γ(i)n = −γ̂(i)n (3.79)

where α̂
(i)
n , β̂

(i)
n , γ̂

(i)
n are the recursion coefficients in (3.69) for the bulk exchange Witten

diagram. Moreover, as we will show in appendix C, the seed coefficients for the mirror

exchange Witten diagram are the same as for the exchange Witten diagram

ˆ̄A
B,(i)
0 = Â

B,(i)
0 . (3.80)

This implies that
ˆ̄AB,(i)
n = (−1)nÂB,(i)

n . (3.81)

Recall that the Neumann boundary condition bulk exchange Witten diagram is a sum of

Wbulk and W̄bulk, we therefore find that all the single-trace boundary conformal blocks with

conformal dimensions ∆i + 2n + 1 are projected out. This is precisely what we expected

for the Neumann boundary condition.

3.6.4 Bulk mirror exchange diagram in the bulk channel

Finally we discuss the decomposition of the mirror exchange diagram into the bulk channel

W̄bulk(ξ) =
∑

N

ĀB
Ng

B
∆1+∆2+2N (ξ) . (3.82)

The action of the operator EOMB on a bulk channel conformal block gB∆1+∆2+2N takes

the following form

EOMB gB∆1+∆2+2N (ξ) = ᾱN gB∆1+∆2+2N−2 + β̄N gB∆1+∆2+2N + γ̄N gB∆1+∆2+2N+2 (3.83)

where

ᾱN =2N(d+2N−2) ,

β̄N =−(∆+∆1−∆2+2N)(d−∆+∆1−∆2+2N)

− 2N(d+2N−2)(∆1+N−1)(d−2(∆1+N))

d−2(∆12
N −1)

+
2(N+1)(d+2N)(∆1+N)(d−2(∆1+N+1))

d−2(∆12
N +1)

,

γ̄N =
8(∆1+N)(∆2+N)(2(∆1+N+1)−d)(2(∆2+N+1)−d)(−d+∆12

N −N+1)(2(∆12
N −N)−d)

(d−2∆12
N )(d−2(∆12

N +1))2(d−2(∆12
N +2))

,

(3.84)

and ∆12
N = ∆1 + ∆2 + 2N . Using the equation of motion (3.31), we get the following

recursion relations for the coefficients ĀB
N

γ̄N−1Ā
B
N−1 + β̄N Ā

B
N + ᾱN+1Ā

B
N+1 = aN , (3.85)

with ĀB
−1 = 0 . The seed coefficient ĀB

0 is given by (C.45) in appendix C.
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3.7 Relating decomposition coefficients to functional actions

As we discussed in section 3.3, the boundary exchange Witten diagram Wboundary and

the bulk exchange Witten diagram Wbulk are super-bounded in the Regge limit while the

mirror bulk exchange Witten diagram W̄bulk fails to be. This implies that the hAdSNd+1

exchange diagrams are super-bounded in the boundary channel, but only bounded in the

bulk channel. We also notice that the zero-derivative contact diagram Wcontact ∈ V has

the same Regge divergence as W̄bulk ∈ V . It implies that a certain linear combination

of Wbulk
Neum with Wcontact can have improved Regge behavior such that it belongs to space

U . By construction, these improved hAdSNd+1 exchange diagrams then coincide with the

Polyakov blocks up to an overall normalization

PB
∆ =

1

Nbulk
Wbulk

Neum + θ∆Wcontact , (3.86)

Pb
∆̂
=

1

Nboundary
Wboundary

Neum . (3.87)

Here the normalization factors Nbulk and Nboundary are such that the single-trace confor-

mal blocks have coefficient 1. The coefficient λ is fixed by requiring the improved Regge

behavior, and is

θ∆ = −(∆− 1)(∆− d+ 1)

AB
. (3.88)

Acting on PB
∆ and Pb

∆̂
with the functional basis of U∗, we can then read off from the

Witten diagrams the functional action on the generic channel conformal blocks in both

channels. Explicitly, the action of these functionals reads

ωN (gB∆)=− 1

AB
(AB

N+ĀB
N )+θ∆aN , (N as in ∆1+∆2+2N) ,

ωN (gb
∆̂
)=

1

Âb
Ab

N , (N as in ∆1+∆2+2N) ,

ω̂(i)
n (gB∆)=

1

AB
(Â

B,(i)
2n + ˆ̄A

B,(i)
2n )+θ∆ â

(i)
n =

2

AB
Â

B,(i)
2n +θ∆ â

(i)
n , (n labels ∆i+2n) ,

ω̂(i)
n (gb

∆̂
)=− 1

Âb
Âb,(i)

n , (n labels ∆i+2n) ,

ω̃(gB∆)n=
1

AB
(B̂B

2n+
ˆ̄BB
2n)+θ∆ b̂n=

2

AB
B̂B

2n+θ∆ b̂n , (n labels ∆i+2n) ,

ω̃(gb
∆̂
)n=− 1

Ab
B̂b

n , (n labels ∆i+2n) .

(3.89)

4 A Lorentzian inversion formula for BCFT

In this section, we will offer another perspective on our logic by deriving a Lorentzian OPE

inversion formula. We will write down a Lorentzian inversion formula for each channel. The

formula for a given channel will express the OPE data in that channel in terms of the two

discontinuities across the OPE singularity in both channels. Inserting the OPE expansions

into the formulae immediately leads to the Polyakov expansion of the correlator. Our logic
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and notation will closely follow [28], where the analogous construction was made for 1D

conformal four-point function.

4.1 The Euclidean inversion formulae

The starting point of our analysis are the so-called Euclidean inversion formulae. These

formulae express the OPE data in each channel as a weighted integral of the Euclidean

correlator. They were derived in [11], where we refer the reader for more details. Below we

will review the aspects relevant to our discussion. It will be useful to switch to a different

cross-ratio

z ≡ 1

1 + ξ
⇒ ξ =

1− z

z
. (4.1)

The Euclidean configurations correspond to z ∈ [0, 1]. We have z → 0 in the boundary

OPE limit, and z → 1 in the bulk OPE limit. By a small change of notation compared to

the previous sections, G will now stand for the four-point function as a function of z rather

than ξ

〈O1(x)O2(y)〉 =
1

|2x⊥|∆1 |2y⊥|∆2
G(z) . (4.2)

Similarly, we use a definition of the conformal blocks adapted to the z variable. We will

focus on the boundary channel first. The boundary OPE reads

G(z) =
∑

Ô

µ
Ô
gb∆Ô

(z) , (4.3)

where the boundary conformal block in the z-variable takes the form

gb
∆̂
(z) = z∆̂2F1

(
∆̂, ∆̂− d

2
+ 1; 2∆̂− d+ 2; z

)
. (4.4)

gb
∆̂
(z) is related to the conformal blocks gb

∆̂
(ξ) defined earlier by

gb
∆̂
(z) = gb

∆̂

(
1−z
z

)
. (4.5)

These conformal blocks are solutions of the boundary-channel Casimir equation, which we

can write in the Sturm-Liouville form

∂z

[
z2−d(1− z)

d
2 ∂zf(z)

]
= ∆̂(∆̂− d+ 1)z−d(1− z)

d
2
−1f(z) . (4.6)

The idea behind the Euclidean inversion formulae is that G(z) can be expanded instead in

a complete set of delta-function normalizable eigenfunctions of the Casimir operator. A

boundary condition is needed at z = 1 in order to make the Casimir operator self-adjoint.

Analogously to [54], we will choose the boundary condition f(z) = regular at z = 1. We

will call the resulting eigenfunctions conformal partial waves. They take the form

Ψb
∆̂
(z) =

gb
∆̂
(z)

κ̂(d− 1− ∆̂)
+

gb
d−1−∆̂

(z)

κ̂(∆̂)
, (4.7)
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where

κ̂(∆̂) ≡
Γ(∆̂)Γ

(
∆̂− d

2 + 1
)

2Γ(2∆̂− d+ 1)
. (4.8)

One can check a simpler alternative formula holds

Ψb
∆̂
(z) =

2

Γ
(
d
2

) 2F1

(
∆̂, d− ∆̂− 1;

d

2
;
z − 1

z

)
. (4.9)

The Casimir is self-adjoint with respect to the pairing

〈f1, f2〉b ≡
1∫

0

dz z−d(1− z)
d
2
−1f1(z)f2(z) . (4.10)

The complete set of orthogonal, delta-function normalizable conformal partial waves cor-

responds to the principal series of SO(1, d), i.e., ∆̂ = d−1
2 + iα̂ with α̂ ≥ 0. Indeed, we find

〈Ψb
d−1
2

+iα̂
,Ψb

d−1
2

+iβ̂
〉b =

2π

κ̂
(
d−1
2 + iα̂

)
κ̂
(
d−1
2 − iα̂

)δ(α̂− β̂) for α̂, β̂ > 0 . (4.11)

Let us now define the boundary coefficient function Î
∆̂

of a correlator G(z) as the overlap

Î
∆̂
≡ 〈Ψb

∆̂
,G〉b =

1∫

0

dz z−d(1− z)
d
2
−1Ψb

∆̂
(z)G(z) . (4.12)

This is the Euclidean inversion formula in the boundary channel. It follows using a standard

argument that the correlator can be expressed using Î
∆̂

as

G(z) =

d−1
2

+i∞∫

d−1
2

−i∞

d∆̂

2πi
κ̂(∆) Î

∆̂
gb
∆̂
(z) . (4.13)

The boundary OPE is recovered by deforming the contour to the right. A primary operator

Ô in the boundary OPE translates to a pole of Î
∆̂

at ∆̂ = ∆
Ô

with residue fixed in terms

of µ
Ô
:

Î
∆̂
∼ −κ̂(∆

Ô
)−1 µ

Ô

∆̂−∆
Ô

as ∆̂ → ∆
Ô
. (4.14)

The same logic can be applied to the bulk channel. We will write the bulk-channel

OPE in the following way

G(z) = z∆2

(1− z)
∆1+∆2

2

∑

O

λO gB∆O(1− z) , (4.15)

where the bulk conformal blocks read

gB∆(y) = y
∆
2 2F1

(
∆−∆12 − d+ 2

2
,
∆−∆12

2
;∆− d

2
+ 1; y

)
, (4.16)
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where ∆12 ≡ ∆1 − ∆2 and we write y = 1 − z to distinguish the bulk and boundary

channels. gB∆(y) is related to gB∆(ξ) used in the previous sections by

gB∆(y) =
y

∆1+∆2
2

(1− y)∆2
gB∆

(
y

1−y

)
. (4.17)

The bulk Casimir equation has the following Sturm-Liouville form

∂y

[
4y1−

d
2 (1− y)1−∆12∂yf(y)

]
− y−

d
2 (1− y)−∆12∆12(∆12 + d− 2)f(y) =

= ∆(∆− d)y−
d
2
−1(1− y)−∆12f(y) .

(4.18)

Again, we will choose a self-adjoint domain for the Casimir by the boundary condition

f(y) = regular at y = 1. This leads to the following bulk conformal partial waves

ΨB
∆(y) =

gB∆(y)

κ(d−∆)
+

gBd−∆(y)

κ(∆)
, (4.19)

where

κ(∆) ≡
Γ
(
∆−∆12

2

)
Γ
(
∆−∆12−d+2

2

)

2Γ
(
∆− d

2

) . (4.20)

Again, there is a simpler useful formula

ΨB
∆(y) =

2

Γ(1−∆12)
y

∆1−∆2
2 2F1

(
∆−∆12

2
,
d−∆−∆12

2
; 1−∆12;

y − 1

y

)
. (4.21)

The complete orthogonal set corresponds to the principal series of SO(1, d + 1), i.e.,

∆ = d
2 + iα with α > 0. The bulk Casimir is self-adjoint with respect to the pairing

〈f1, f2〉B ≡
1∫

0

dy y−
d
2
−1(1− y)−∆12f1(y)f2(y) . (4.22)

Let us define the bulk coefficient function I∆ as the following overlap

I∆ ≡ 〈ΨB
∆,Gcross〉B =

1∫

0

dy y
∆1+∆2−d−2

2 (1− y)−∆1ΨB
∆(y)G(1− y) . (4.23)

This is the Euclidean inversion formula for the bulk channel. The correlator can be ex-

panded using I∆ as follows

G(z) = z∆2

(1− z)
∆1+∆2

2

d
2
+i∞∫

d
2
−i∞

d∆

2πi
κ(∆) I∆ gB∆(1− z) . (4.24)

The bulk OPE is recovered by deforming the contour to the right. A primary operator O
in the bulk OPE translates to a pole of I∆ at ∆ = ∆O with residue fixed in terms of λO:

I∆ ∼ −κ(∆O)
−1 λO

∆−∆O
as ∆ → ∆O . (4.25)
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4.2 The Lorentzian formulae

A Lorentzian inversion formula is a formula computing the OPE data from the correlator

evaluated in Lorentzian configurations. The first example of such formula was found by

Caron-Huot in [35] in the context of the four-point function in D > 1. We will now derive

a similar formula for the coefficient functions Î
∆̂

and I∆ encoding the boundary and bulk

OPE data of a two-point function in a BCFT. Since the two-point function depends on a

single cross-ratio, our formula will be more closely analogous to the formula of [28] for the

four-point function in 1D.

If we consider a boundary condition for a CFT in Euclidean space, all configurations of

the two points will have z ∈ (0, 1). When we continue to the Lorentzian signature, we will

assume the time direction flows along the boundary. In that case, we still have z ∈ (0, 1)

if the two operators in the two-point function are spacelike separated. However, we can

now reach also other regions of z. The region z ∈ (1,∞) corresponds to O1 and O2 being

timelike separated such that O2 stays spacelike separated from the mirror image of O1 on

the other side of the boundary. The region z ∈ (−∞, 0) is reached by making O2 timelike

separated from both O1 and its mirror image.

The Euclidean two-point function G(z) can be analytically continued from z ∈ (0, 1)

to complex values of z. It has a pair of branch cuts at (−∞, 0] and [1,∞). The branch

cuts are present because every time we hit a light-cone, we have to choose an ordering of

operators. The Lorentzian formula will depend on appropriate discontinuities across these

branch cuts. The discontinuities will be chosen so that they annihilate the contributions

of mean-field conformal blocks from our basis.

It will be convenient to switch from G(z) to

G̃(z) = z−∆2G(z) . (4.26)

In general, adding a tilde over a symbol defined in the previous sections will denote the

same object as a function of z and with an extra prefactor z−∆2 included. In accordance

with this notation, the contribution to G̃(z) coming from conformal blocks of dimension ∆̂,

∆ in the boundary, bulk channel respectively will be denoted

g̃b
∆̂
(z) ≡ z−∆2gb

∆̂
(ξ(z)) = z−∆2gb

∆̂
(z)

g̃B∆(z) ≡ z−∆2gB∆(ξ(z)) = (1− z)−
∆1+∆2

2 gB∆(1− z) ,
(4.27)

so that the boundary and bulk expansions take the following form

G̃(z) =
∑

Ô

µ
Ô
g̃b∆Ô

(z) =
∑

O

λO g̃
B
∆O(z) . (4.28)

For z ∈ (1,∞), we consider the discontinuity of G̃(z) across its branch cut

Disc[G̃(z)] ≡ G̃y(z)− G̃y

(z) (4.29)

Here G̃y(z) stands for the analytic continuation of G̃(z) from z ∈ (0, 1) to z ∈ (1,∞)

passing above the branch point z = 1, and similarly for G̃y

(z). Disc[G̃(z)] is proportional
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to the commutator [O1,O2] in the Lorentzian configurations where z > 1. Note that

Disc[G̃(z)] can be computed from the bulk OPE

Disc[G̃(z)] =
∑

O

λODisc[g̃B∆O(z)] for z > 1 . (4.30)

The discontinuity of a bulk block comes purely from its power-law branch cut, so that

Disc[g̃B∆(z)] =−2isin
[π
2
(∆−∆1−∆2)

]
×

×(z−1)
∆−∆1−∆2

2 2F1

(
∆−∆12−d+2

2
,
∆−∆12

2
;∆− d

2
+1;1−z

)
.

(4.31)

In particular, the discontinuity vanishes for the double-trace blocks of mean-field theory

∆N ≡ ∆1 +∆2 + 2N N = 0, 1, . . . . (4.32)

Note that one can not compute Disc[G̃(z)] for z > 1 using the boundary OPE since the

latter does not converge for z > 1.

We would like to define a similar quantity which annihilates the contributions of bound-

ary blocks at the mean field dimensions with the Neumann boundary condition

∆̂(1)
n ≡ ∆1 + 2n

∆̂(2)
n ≡ ∆2 + 2n .

(4.33)

This quantity is precisely the double discontinuity around z = 0, defined by

dDisc[G̃(z)] ≡ cos
(
π∆12
2

)
G̃(z)− e−

iπ∆12
2

2

G̃x

(
z

z−1

)

(1− z)∆2
− e

iπ∆12
2

2

G̃x
(

z
z−1

)

(1− z)∆2
(4.34)

where z ∈ (0, 1). The first term involves just the Euclidean correlator. The second and

third term involve the analytic continuation of the correlator from the Euclidean region

to the Lorentzian configuration at z
z−1 ∈ (−∞, 0). The curved arrows on G̃ indicate how

the branch point at z = 0 should be avoided along the path of analytic continuation. The

transformation z 7→ z
z−1 is natural since it is a symmetry of the boundary Casimir, and

the boundary blocks therefore transform nicely under it. The double discontinuity can be

calculated using the boundary OPE since the latter converges in each of the three terms

defining dDisc

dDisc[G̃(z)] =
∑

Ô

µ
Ô
dDisc[g̃b∆Ô

(z)] . (4.35)

To find the dDisc of an individual boundary block, first note that for z ∈ (0, 1)

g̃bx
∆̂

(
z

z−1

)

(1− z)∆2
= eiπ(∆̂−∆2)g̃b

∆̂
(z) ,

g̃b
x

∆̂

(
z

z−1

)

(1− z)∆2
= e−iπ(∆̂−∆2)g̃b

∆̂
(z) . (4.36)

It follows that

dDisc[g̃b
∆̂
(z)] = 2 sin

[π
2
(∆̂−∆1)

]
sin
[π
2
(∆̂−∆2)

]
g̃b
∆̂
(z) . (4.37)
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As promised, dDisc[g̃b
∆̂
(z)] has a simple zero whenever ∆̂ hits one of the mean-field dimen-

sions (4.33). Pairs of simple zeros coalesce into double zeros whenever ∆1 −∆2 ∈ 2Z. If

we were dealing with the Dirichlet boundary condition instead of Neumann, all we would

need to do is replace the minus signs in front of the second and third term in (4.34) with

plus signs. Again, dDisc[G̃(z)] can not be directly computed using the bulk OPE since the

latter does not converge for z < 0.

Note that the limit z → 1 of dDisc[G̃(z)] and the limit z → ∞ of Disc[G̃(z)] probes the
BCFT analog of the Regge limit. Recall that in unitary theories, the two-point function

must satisfy a boundedness condition G(z) = O(z
∆1+∆2

2 ) as |z| → ∞. Without loss of

generality, we can choose ∆2 > ∆1. It follows that G̃(z) is bounded as |z| → ∞.

Our strategy for writing down Lorentzian inversion formulae in the boundary and

bulk channel for BCFT will be the reverse of the derivation of [35], which started from

the Euclidean formula and derived the Lorentzian one by a contour deformation. First,

we will write down a general ansatz for a Lorentzian formula, i.e., one depending only on

dDisc[G̃(z)] evaluated in z ∈ (0, 1) and Disc[G̃(z)] evaluated in z ∈ (1,∞), each multiplied

by yet undetermined inversion kernels. Then we will perform a contour manipulation

bringing all integrations into the Euclidean region. We will see that in order for the

contour deformation to be allowed, the two kernels multiplying dDisc and Disc need to

descend from the same holomorphic function of z. Finally, we will constrain this function

by imposing that the Euclidean and Lorentzian formula give the same answer.

Let us start with the first step, i.e., writing a general ansatz for our Lorentzian inversion

formulae. We will have one formula for each channel:

Î
∆̂
= 2

1∫

0

dz K̂
∆̂
(z) dDisc[G̃(z)] +

∞∫

1

dz L̂
∆̂
(z)

Disc[G̃(z)]
i

I∆ = 2

1∫

0

dz K∆(z) dDisc[G̃(z)] +
∞∫

1

dz L∆(z)
Disc[G̃(z)]

i
.

(4.38)

The factors of 2 and 1/i are a useful convention simplifying several ensuing expressions. It

remains to fix the inversion kernels K̂
∆̂
(z), L̂

∆̂
(z) and K∆(z), L∆(z). In the next subsec-

tion, we will derive a full set of constraints the kernels need to satisfy in order for (4.38) to

give the same answers as the Euclidean inversion formulae. We expect the constraints fix

the Lorentzian inversion kernels essentially uniquely and it is a very interesting mathemat-

ical problem to find the solution. We did not determine the kernels in full generality. We

will later discuss the case ∆2−∆1 ∈ 2Z−1, where all kernels can be found in a closed form.

4.3 Constraining the inversion kernels

We will now perform a contour deformation of the Lorentzian formulae (4.38) which takes

all integrations into the Euclidean region z ∈ (0, 1). Since the general form of the boundary

and bulk formulae is exactly the same, we will work with the bulk formula until the dis-

tinction becomes important. We start from (4.38), write out the definitions of dDisc[G̃(z)]
and Disc[G̃(z)] inside the integrals, and change integration variables in the branch cut
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0 1

z

0 1

z

Figure 8. The contour deformation from the Lorentzian to the Euclidean region. The branch cuts

of the correlator G̃(z) are shown in red, while the branch cut of the inversion kernels is shown in

green. Figure taken from [28].

contributions to dDisc to arrive at

I∆ = 2

1∫

0

dz K∆(z) dDisc[G̃(z)]− i

∞∫

1

dz L∆(z)Disc[G̃(z)]

=

1∫

0

dz 2 cos
(
π∆12
2

)
K∆(z) G̃(z)−

−
0∫

−∞

dz e−
iπ∆12

2 (1− z)∆2−2K∆

(
z

z−1

)
G̃x(z)− i

∞∫

1

dz L∆(z) G̃y(z)

−
0∫

−∞

dz e
iπ∆12

2 (1− z)∆2−2K∆

(
z

z−1

)
G̃x

(z) + i

∞∫

1

dz L∆(z) G̃
y

(z) .

(4.39)

The first line on the r.h.s. is already an integral over the Euclidean region. We will now

combine the two integrals on the second line and deform the contour to z ∈ (0, 1), as shown

in figure 8. We will do the same with the two integrals on the third line except then the

contour deformation takes places in the lower-half plane.

For the contour deformation to be admissible, a few conditions must be satisfied.

Firstly, the integrands of the two integrals on the second line must define the same analytic

function on the upper-half plane. Similarly, the integrands of the two integrals on the third

line must define the same analytic function on the lower half-plane. These two constraints

together imply that K∆(z) and L∆(z) arise from the same analytic function. Indeed, it is

not difficult to show that the constraints together imply we can always write K∆(z) and

L∆(z) as follows

K∆(z) = (1− z)
∆1+∆2−3

2 H∆(z) for z ∈ (0, 1)

L∆(z) = (z − 1)−
∆12+1

2 H∆

(
z

z−1

)
for z ∈ (1,∞) ,

(4.40)

where H∆(z) is analytic for z ∈C\(−∞, 0]. H∆(z) should decay sufficiently fast as z→1

so that we can drop the contribution from the semicircle at infinity. Combining the con-
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tributions, we arrive at the following integral over the Euclidean region

I∆ = 2

1∫

0

dz(1− z)
∆1+∆2−3

2 S∆(z)G̃(z) , (4.41)

where S∆(z) is essentially the dDisc of the inversion kernel

S∆(z) ≡ cos
(
π∆12
2

)
H∆(z) +

e
iπ∆12

2

2

Hx
∆

(
z

z−1

)

(1− z)∆1−1
+
e−

iπ∆12
2

2

H
x

∆

(
z

z−1

)

(1− z)∆1−1
. (4.42)

Finally, we should impose that (4.41) is equivalent to the Euclidean formula in a given

channel. This means that besides being holomorphic away from (−∞, 0], the boundary

kernel must satisfy

cos
(
π∆12
2

)
Ĥ

∆̂
(z) +

e
iπ∆12

2

2

Ĥx

∆̂

(
z

z−1

)

(1− z)∆1−1
+
e−

iπ∆12
2

2

Ĥ
x

∆̂

(
z

z−1

)

(1− z)∆1−1
=

=
z∆2−d(1− z)

d−∆1−∆2+1
2

2
Ψb

∆̂
(z) .

(4.43)

Similarly, the bulk kernel is also holomorphic away from (−∞, 0] and must satisfy

cos
(
π∆12
2

)
H∆(z) +

e
iπ∆12

2

2

Hx
∆

(
z

z−1

)

(1− z)∆1−1
+
e−

iπ∆12
2

2

H
x

∆

(
z

z−1

)

(1− z)∆1−1
=

=
z−∆12(1− z)

1−d
2

2
ΨB

∆(1− z) ,

(4.44)

where Ψb
∆(z),Ψ

B
∆(z) are the boundary and bulk conformal partial waves defined in

subsection 4.1.

Provided we can find kernels satisfying these constraints, the Lorentzian inversion

formulae in the two channels take the following form

Î
∆̂
= 2

1∫

0

dz (1− z)
∆1+∆2−3

2 Ĥ
∆̂
(z) dDisc[G̃(z)]−

− i

∞∫

1

dz (z − 1)−
∆12+1

2 Ĥ
∆̂

(
z

z−1

)
Disc[G̃(z)]

(4.45)

and

I∆ = 2

1∫

0

dz (1− z)
∆1+∆2−3

2 H∆(z) dDisc[G̃(z)]−

− i

∞∫

1

dz (z − 1)−
∆12+1

2 H∆

(
z

z−1

)
Disc[G̃(z)]

(4.46)

We see from (4.43) and (4.44) that compatibility of the Lorentzian and Euclidean

formulae fixes the dDisc of H∆(z), Ĥ∆̂
(z) in terms of the conformal partial waves. One

lesson of the Lorentzian inversion formula is that knowing the dDisc of a function with

appropriate analyticity and boundedness properties allows us to reconstruct this function

essentially uniquely. Applying the same logic to the inversion kernel itself makes us believe
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that the equations (4.43) and (4.44) go a long way towards fixing H∆(z) and Ĥ
∆̂
(z). In

the following subsection, we will fix the kernels explicitly in the case ∆1 −∆2 ∈ 2Z+ 1.

The formulae (4.45), (4.46) tell us that the coefficient functions Î
∆̂
, I∆, and hence

the full correlator G̃(z) can be reconstructed from its dDisc and Disc. This is only true

provided the correlator satisfies an appropriate boundedness condition in the Regge limit

z → ∞. Otherwise, there can be additional contributions when going from the Euclidean

to the Lorentzian formula coming from the semicircle at infinity, which we neglected in the

above. By analogy with what happens in the case of the bosonic four-point function in

1D, we expect there always exist distinguished inversion kernels Ĥ
∆̂
(z), H∆(z) such that

the formulae (4.45), (4.46) apply to all Euclidean-normalizable and Regge super-bounded

functions. Once the formula for superbounded functions is derived, one can “improve”

the kernel by subtractions to derive a formula for functions with less strict boundedness

properties in the Regge limit, along the lines of section 6.5 of reference [28].

4.4 A solvable example

Our life simplifies when ∆1 = ∆2+1. In this case, the boundary spectrum {∆̂(1)
n }∪{∆̂(2)

n }
has integer spacing, and the double discontinuity (4.34) reduces to a simple discontinuity.

We find

dDisc[G̃(z)] = i

2(1− z)∆2

[
G̃x

(
z

z−1

)
− G̃x

(
z

z−1

)]
. (4.47)

Similarly, the constraints on the inversion kernels (4.43), (4.44) become formulae for their

single discontinuity across the branch cut z ∈ (−∞, 0]. The actual kernel then can be

recovered from

H∆(z) =

0∫

−∞

dw

2πi

Hx
∆ (w)−H

x

∆ (w)

w − z
, (4.48)

which follows from Cauchy’s integral formula and analyticity of H∆(z) by a contour defor-

mation. Equivalently, we can derive the Lorentzian formulae directly by first writing the

standard dispersion relation for G̃(z), inserting it into the Euclidean inversion formulae,

and interchange the two integrations.

The above procedure gives the following formula for the Lorentzian inversion kernel

for the boundary OPE data

Ĥ
∆̂
(z) =

Γ
(
∆2 − ∆̂

)
Γ
(
∆2 + ∆̂− d+ 1

)

πΓ (∆2) Γ
(
∆2 − d

2 + 1
) z−1×

× 3F2

(
1,∆2 − ∆̂,∆2 + ∆̂− d+ 1

∆2,∆2 − d
2 + 1

;
z − 1

z

)
.

(4.49)

Note that it is indeed holomorphic for z ∈ C\(−∞, 0]. The same procedure leads to a

formula for the bulk Lorentzian inversion kernel in the form of an infinite series around z = 1

H∆(z) = z−1
∞∑

j=0

cj
(
z−1
z

)j
, (4.50)
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where

cj =
(d− 1)(d−∆+ 1)Γ(j + 1)Γ

(
∆2 − d−1

2

)

4πΓ
(
∆2 + j − d−3

2

) ×

× 3F2

(
3− d

2
,
∆− d+ 1

2
, j + 1;∆2 + j − d− 3

2
, 2; 1

) (4.51)

4.5 Polyakov blocks from the inversion formula

The Lorentzian inversion formulae (4.45), (4.46) very directly encode the boundary and

bulk OPEs of the Polyakov blocks. Since we are including an extra factor of z−∆2 in the

correlators, we will work with Polyakov blocks including the same factor, i.e., we define

P̃b
∆̂
(z) = z−∆2Pb

∆̂
(ξ(z))

P̃B
∆(z) = z−∆2PB

∆(ξ(z)) ,
(4.52)

where Pb
∆̂
(ξ), PB

∆(ξ) are the Polyakov blocks used in the previous sections and ξ(z) = 1−z
z .

Recall that the Polyakov blocks admit the following bulk and boundary OPEs

P̃B
∆(z) = g̃B∆(z) +

∑

N

aN g̃
B
∆N

(z) =
∑

n,i

b(i)n g̃b
∆̂

(i)
n
(z)

P̃b
∆̂
(z) = g̃b

∆̂
(z) +

∑

n,i

c(i)n g̃b
∆̂

(i)
n
(z) =

∑

N

dN g̃
B
∆N

(z) ,
(4.53)

where ∆̂
(1)
n = ∆1 + 2n, ∆̂

(2)
n = ∆2 + 2n and ∆N = ∆1 + ∆2 + 2N . It follows from these

OPEs that the dDisc of the boundary Polyakov block of dimension ∆̂ equals the dDisc

of a single boundary conformal block of dimension ∆̂, and its Disc vanishes. In fact, the

boundary Polyakov block is the unique function satisfying these properties which is also

super-bounded in the Regge limit. Similarly, the bulk Polyakov block of dimension ∆ is

the unique Regge super-bounded function whose dDisc vanishes and whose Disc equals the

Disc of a single bulk conformal block of dimension ∆.

Since the Polyakov blocks are super-bounded, the Lorentzian inversion formulae apply

to them. Furthermore, when inserting the OPEs of the Polyakov blocks into the inversion

formula, only a single term survives. We conclude that the boundary and bulk coefficient

functions of the boundary Polyakov block of dimension ∆
Ô

are given by respectively

Îb(∆̂,∆Ô
|∆1,∆2) ≡ Î

∆̂
[Pb

∆Ô
] = 2

1∫

0

dz (1− z)
∆1+∆2−3

2 Ĥ
∆̂
(z) dDisc[g̃b∆Ô

(z)]

Ib(∆,∆Ô
|∆1,∆2) ≡ I∆[P

b
∆Ô

] = 2

1∫

0

dz (1− z)
∆1+∆2−3

2 H∆(z) dDisc[g̃b∆Ô
(z)] .

(4.54)

Similarly, the boundary and bulk coefficient functions of the bulk Polyakov block of dimen-

sion ∆O are given by

ÎB(∆̂,∆O|∆1,∆2) ≡ Î
∆̂
[PB

∆O ] = −i
∞∫

1

dz (z − 1)−
∆12+1

2 Ĥ
∆̂

(
z

z−1

)
Disc[g̃B∆O(z)]

IB(∆,∆O|∆1,∆2) ≡ I∆[P
B
∆O ] = −i

∞∫

1

dz (z − 1)−
∆12+1

2 H∆

(
z

z−1

)
Disc[g̃B∆O(z)] .

(4.55)
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Let us explain how these expressions give rise to the OPE of Polyakov blocks (4.53). In

order to reproduce the first term, we should find that Îb(∆̂,∆Ô
|∆1,∆2) contains a pole at

∆̂ = ∆
Ô

with residue −κ̂(∆
Ô
)−1. This pole can only come from a z → 0 singularity of

the first integral in (4.54). In the specific case discussed in the previous subsection, i.e.,

∆1 = ∆2 + 1, we indeed find

Ĥ
∆̂
(z) ∼ z∆2−∆̂−1

4 sin
[
π
2 (∆̂−∆1)

]
sin
[
π
2 (∆̂−∆2)

]
κ̂(∆̂)

as z → 0 , (4.56)

which produces precisely the right pole and residue in Îb(∆̂,∆Ô
|∆1,∆2). Similarly, the co-

efficient function IB(∆,∆O|∆1,∆2) should have a pole at ∆ = ∆O with residue −κ(∆O)
−1,

which requires H∆(z) to have a specific singularity as z → ∞.

It remains to understand the origin of the poles corresponding to the mean-field opera-

tor contributions to the Polyakov blocks. We claim these arise entirely from corresponding

poles of Ĥ
∆̂
(z) and H∆(z) themselves, rather than from the integration over z. For this to

be the case, Ĥ
∆̂
(z) should have simple poles at ∆̂ = ∆̂

(1,2)
n and H∆(z) should have simple

poles at ∆ = ∆N . Let us denote the residues of the inversion kernels at these locations

as follows

Ĥ
∆̂
(z) ∼ ĥ

(i)
n (z)

∆̂− ∆̂
(i)
n

as ∆̂ → ∆̂(i)
n

H∆(z) ∼
hN (z)

∆− ∆̂N

as ∆ → ∆N .

(4.57)

We can see these poles are indeed present for the example of the previous section. Ĥ
∆̂
(z)

of equation (4.49) has simple poles at ∆̂ = ∆2+Z≥0 coming from the prefactor Γ(∆2− ∆̂).

These corresponding to alternating ∆̂
(2)
n and ∆̂

(1)
n . Similarly, the expected poles of H∆(z)

are manifest in the prefactor Γ
(
∆1+∆2−∆

2

)
visible in (4.51).

Starting from the residues ĥ
(i)
n (z), hN (z), we can compute the OPE coefficients aN ,

b
(i)
n , c

(i)
n , dN from equations (4.54) and (4.55)

aN = iκ(∆N )

∞∫

1

dz (z − 1)−
∆12+1

2 hN

(
z

z−1

)
Disc[g̃B∆(z)]

b(i)n = iκ̂(∆̂(i)
n )

∞∫

1

dz (z − 1)−
∆12+1

2 ĥ(i)n

(
z

z−1

)
Disc[g̃B∆(z)]

c(i)n = −2κ̂(∆̂(i)
n )

1∫

0

dz (1− z)
∆1+∆2−3

2 ĥ(i)n (z) dDisc[g̃b
∆̂
(z)]

dN = −2κ(∆N )

1∫

0

dz (1− z)
∆1+∆2−3

2 hN (z) dDisc[g̃b
∆̂
(z)] .

(4.58)

In the cases where the inversion kernels are known, these formulae provide a useful alter-

native for computing the OPE coefficients of the mean-field operators in Witten exchange

diagrams for BCFT.
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4.6 Polyakov expansion of the correlator

We are now ready to explain how the Lorentzian inversion formulae (4.45) and (4.46) lead

to the expansion of the correlator into Polyakov blocks. The expansion is obtained by

inserting the boundary and bulk OPEs into the Lorentzian inversion formulae. We will

write the boundary and bulk OPEs as follows

G̃(z) =
∑

Ô

µ
Ô
g̃b∆Ô

(z) =
∑

O

λO g̃
B
∆O(z) , (4.59)

where g̃b
∆̂
(z) and g̃B∆(z) were given in (4.27). The Lorentzian inversion formulae involve

dDisc[G̃(z)] with z ∈ (0, 1) and Disc[G̃(z)] with z ∈ (1,∞). As discussed earlier, dDisc[G̃(z)]
can be expanded using the boundary OPE, but not using the bulk OPE, and vice versa

for Disc[G̃(z)].

dDisc[G̃(z)] =
∑

Ô

µ
Ô
dDisc[g̃b∆Ô

(z)] for z ∈ (0, 1)

Disc[G̃(z)] =
∑

O

λO Disc[g̃B∆O(z)] for z ∈ (1,∞) .
(4.60)

Inserting these expansions into the inversion formulae (4.45) and (4.46) gives

Î
∆̂
=
∑

Ô

µ
Ô
Îb(∆̂,∆Ô

|∆1,∆2) +
∑

O

λO ÎB(∆̂,∆O|∆1,∆2) (4.61)

and

I∆ =
∑

Ô

µ
Ô
Ib(∆,∆Ô

|∆1,∆2) +
∑

O

λO IB(∆,∆O|∆1,∆2) , (4.62)

where Ib,B, Îb,B are the coefficient functions of Polyakov blocks discussed in the previous

subsection. In going from (4.45), (4.46) to (4.61), (4.62), we assumed that we can commute

the OPE sums and the z-integration. This is definitely allowed for the boundary channel

sum in the case of identical external operators, for ∆̂ on the principal series. This is be-

cause in that case the OPE gives dDisc[G̃(z)] as a sum of positive terms and the swapping

of integration and summation follows from the dominated convergence theorem. By anal-

ogy with the situation for the 1D four-point function, we expect the sums over operators

in (4.61) (and (4.62)) to converge uniformly in ∆̂ (and ∆), in any compact region of the

complex plane away from the poles of the individual terms. If that is the case, it follows

that Î
∆̂

and I∆ are meromorphic, with poles only at poles of the individual terms in the

sums over operators. In the following, we will assume this is indeed what happens.

Provided the last assertion holds, equations (4.61) and (4.62) say precisely that the

correlator can be expanded in Polyakov blocks, at least at the level of the coefficient

functions.

4.7 Sum rules and functionals

For equations (4.61) and (4.62) to be consistent with the boundary and bulk OPEs, the

spurious poles of Ib,B, Îb,B at mean-field operators must cancel out in I∆, Î∆̂ after per-

forming the sum over Ô and O. These are the Polyakov sum rules. As explained before,
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they can be alternatively derived by acting with suitable linear functionals on the standard

crossing equation ∑

Ô

µ
Ô
g̃b∆Ô

(z) =
∑

O

λO g̃
B
∆O(z) . (4.63)

We have one functional associated to every mean-field operator, namely functionals ω̂
(i)
n

for the boundary mean-field operators and ωN for the bulk ones. Recall that the OPE

coefficients of mean-field operators in Polyakov blocks are given by the action of functionals

on conformal blocks according to14

aN = −ωN (gB∆)

b(i)n = ω̂(i)
n (gB∆)

c(i)n = −ω̂(i)
n (gb

∆̂
)

dN = ωN (gb
∆̂
) .

(4.64)

We can compare these expressions with (4.58), where the same coefficients are computed

from the inversion formulae. We see that those equations indeed compute aN and b
(i)
n from

a linear action on the bulk conformal block g̃B∆. Similarly, c
(i)
n and dN are computed by a

linear action on the boundary block g̃b
∆̂
. The only issue seems to be that the definitions of

the functionals provided by aN and b
(i)
n do not appear equivalent to those provided by c

(i)
n

and dN . To see that in fact they are equivalent, let us focus on the bulk functional ωN .

The formulae for aN and dN provided by (4.58) lead to the following two ways to define

the action of functional ωN on a general test-function F(z) (F(z) should have the same

complex-analytic properties as a generic physical two-point function G(z)):

aN : ωN (F) ≡ −iκ(∆N )

∞∫

1

dz (z − 1)−
∆12+1

2 hN

(
z

z−1

)
Disc[z−∆2F(z)]

dN : ωN (F) ≡ −2κ(∆N )

1∫

0

dz (1− z)
∆1+∆2−3

2 hN (z) dDisc[z−∆2F(z)] .

(4.65)

We claim that these two formulae are in fact completely equivalent, that is for every Regge

super-bounded function F(z), there is an exact identity

2

1∫

0

dz (1− z)
∆1+∆2−3

2 hN (z) dDisc[z−∆2F(z)]−

− i

∞∫

1

dz (z − 1)−
∆12+1

2 hN

(
z

z−1

)
Disc[z−∆2F(z)] = 0 .

(4.66)

We can prove this identity by the same contour deformation as used in subsection 4.3 to

take us from the Lorentzian to the Euclidean inversion formula. After all contributions are

14Recall that the functionals were defined to act on G, rather than on G̃ = z−∆2G. This will lead to a

few extra z−∆2 factors in the following formulae.
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placed in z ∈ (0, 1), we use the identity

cos
(
π∆12
2

)
hN (z) +

e
iπ∆12

2

2

hxN

(
z

z−1

)

(1− z)∆1−1
+
e−

iπ∆12
2

2

h
x

N

(
z

z−1

)

(1− z)∆1−1
= 0 (4.67)

to show the r.h.s. of (4.66) indeed vanishes. This identity follows by taking the residue

of (4.44) at ∆ = ∆N since the r.h.s. of (4.44) has no pole at that location.

We can use identical logic to show that the following two definitions of the boundary

functionals ω̂
(i)
n are completely equivalent:

b(i)n : ω̂(i)
n (F) ≡ iκ̂(∆̂(i)

n )

∞∫

1

dz (z − 1)−
∆12+1

2 ĥ(i)n

(
z

z−1

)
Disc[z−∆2F(z)]

c(i)n : ω̂(i)
n (F) ≡ 2κ̂(∆̂(i)

n )

1∫

0

dz (1− z)
∆1+∆2−3

2 ĥ(i)n (z) dDisc[z−∆2F(z)] .

(4.68)

This concludes the explanation of how functionals ωN and ω
(i)
n arise from the Lorentzian

inversion formula.

4.8 Open questions

In this section, we have given a sketch of the Lorentzian inversion formula BCFT and its

connection to the Polyakov bootstrap and the associated functionals. The discussion was

incomplete in several important aspects, which should be addressed:

• Find an explicit formula for the inversion kernels H∆(z), Ĥ∆̂
(z) for general ∆1,2 and d

starting from their analyticity properties and constraints (4.43), (4.44), or otherwise.

• Construct improved inversion formulae which apply also to correlators which are

Regge bounded but not necessarily super-bounded. This point should be trivialized

in the Dirichlet case, where there is no Regge-bounded contact diagram.

• Show that one can swap the OPE sums for dDisc and Disc with the integration over

z, which leads to (4.61) and (4.62), for ∆, ∆̂ on the principal series.

• Prove that the OPE sums in (4.61) and (4.62) converge to a meromorphic function

of ∆, ∆̂ whose only poles are those of the individual terms in the sums.

The last two points were proven in [28] by appealing to the positivity of the coefficients in

the conformal block expansion. While this condition is not generally present in the BCFT

context, we are optimistic that the claims of this section are correct and can eventually be

proven rigorously.
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5 A deformation of the mean field theory

5.1 The set-up

In this section, we will consider an interesting family of conformal boundary conditions

for the mean field theory. The family smoothly interpolates between the Neumann and

Dirichlet boundary condition and thus provides a useful test of our logic.

Throughout this section, we take our CFTd to be the mean field theory of a scalar

operator φ. This has an AdS bulk description as the theory of a free massive scalar field Φ

in AdSd+1, with the massM related to the scaling dimension of φ by (MR)2 = ∆φ(∆φ−d),
where R is the AdS radius. We can now define a family of conformal boundary conditions

in the following way. First, we restrict the theory in AdSd+1 to half of AdSd+1 defined

by z⊥ > 0, and denoted hAdSd+1. Second, we add to the action a “coupling” given by

integrating tΦ2 over the AdSd boundary of hAdSd+1 at z⊥ = 0. The total bulk action

then reads

S =
1

2

∫

hAdSd+1

dd+1z
√
gd+1

[
gµν∂µΦ∂νΦ+M2Φ2

]
+
t

2

∫

AdSd

ddz
√
gdΦ

2 , (5.1)

where t is a positive real parameter. The variation principle leads to the following boundary

term on AdSd ∫

AdSd

ddz
√
gd

(
tΦ− R

z0
∂⊥Φ

)
δΦ (5.2)

which has to vanish for any δΦ. This gives the boundary condition

tΦ− R

z0
∂⊥Φ

∣∣∣∣
z⊥=0

= 0 . (5.3)

This interpolates smoothly between the Neumann boundary condition, for which t = 0,

and the Dirichlet boundary condition, for which t = ∞.

The CFT data intrinsic to the CFTd stay fixed and equal to mean field theory for any t.

We are interested in the CFT data of the BCFTd−1 as a function of t. Most importantly,

these are the scaling dimensions of the primary operators Ôn appearing in the bulk-to-

boundary OPE of φ, as well as the corresponding bulk-to-boundary OPE coefficients. Since

the deformation of the action is quadratic in Φ, we can find a closed solution for general t.

5.2 Boundary scaling dimensions from holography

To work out the boundary spectrum, we need to solve for the wavefunction of the field in

hAdSd+1. We set R = 1. It is convenient to use the following coordinates that foliates

AdSd+1 into AdSd slices [6]

ds2AdSd+1
= cosh2 r(e2wd~z2 + dw2) + dr2 . (5.4)

This set of coordinates is related to the Poincaré coordinates by

z⊥ = e−w tanh r , z0 = e−w cosh−1 r . (5.5)
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We then write an AdSd+1 field as

Φ =
∑

n

ψn(r)Φn(~z, w) (5.6)

where Φn satisfies the AdSd equation of motion

�AdSdΦn + M̂2
nΦn = 0 , (5.7)

and is dual to a boundary operator Ôn living in the BCFT [6]. We would like to find the

scaling dimensions ∆̂n of Ôn.

From the equations of motion of Φ and Φn we find a second order differential equation

for ψn

∂2rψn + d tanh r∂rψn + (cosh r)−2M̂2
nψn −M2ψn = 0 . (5.8)

This differential equation is also supplemented by the following boundary conditions for

ψn. First of all, we note that we can approach AdSd by taking r → 0 and keeping w fixed.

Recall that in the new coordinates

∂⊥Φ = ew(− tanh rψn∂wΦn + ∂rψΦn) , (5.9)

and the first term becomes zero as r → 0. Therefore the boundary condition at r = 0

is simply

∂rψn − tψn = 0 . (5.10)

The other boundary condition comes from studying the behavior at r → ∞. Note that

this has the effect of keeping z⊥ and ~z finite, while sending z0 → 0. From the expectation

that the bulk field Φ =
∑

n ψnΦn is dual to an operator with conformal dimension ∆φ on

∂AdSd+1, we expect that at large r

ψn(r) ∼ (er)−∆φ (5.11)

where

∆φ(∆φ − d) =M2 . (5.12)

We now solve for ψn. It is useful to make a change of variables into x ≡ er , after which

the equation (5.8) becomes

d
(
x2 − 1

)
xψ′(x)

x2 + 1
+ x2ψ′′(x) + xψ′(x) +

(
∆φ(d−∆φ) +

4∆̂nx
2(−d+ ∆̂n + 1)

(x2 + 1)2

)
ψ(x) = 0 .

(5.13)

Here we have written the squared mass of ψn as

M̂2
n = ∆̂n(∆̂n − d+ 1) . (5.14)

The general solution to equation (5.13) takes following form

ψn(x) = C1
x∆φ

(1 + x2)∆̂n
2F1

(
1

2
(d− 2∆̂n),∆φ − ∆̂n;−

d

2
+ ∆φ + 1;−x2

)

+ C2
xd−∆φ

(1 + x2)∆̂n
2F1

(
d

2
− ∆̂n, d−∆φ − ∆̂n;

d

2
−∆φ + 1;−x2

)
.

(5.15)
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When x→ ∞, the boundary condition (5.11) fixes the ratio

C1

C2
= −

Γ
(
d
2 −∆φ + 1

)
sin
(
1
2π(d− 2∆̂n)

)
Γ(∆φ − ∆̂n)Γ(−d+∆φ + ∆̂n + 1)

πΓ
(
−d

2 +∆φ + 1
) . (5.16)

Further imposing the condition that at x = 1 (r = 0)

x∂xψn − tψn = 0 , (5.17)

we find the following equation relating t and ∆̂n:

t = −
2Γ

(
∆φ−∆̂n+1

2

)
Γ

(
−d+∆φ+∆̂n+2

2

)

Γ

(
∆φ−∆̂n

2

)
Γ

(
−d+∆φ+∆̂n+1

2

) . (5.18)

This equation gives the spectrum of the boundary operators Ôn as an implicit function of

t. When t = 0, the spectrum consists of the zeros of the r.h.s. , which lie at ∆̂n = ∆φ + 2n

with n = 0, 1, . . ., agreeing with the spectrum of the Neumann boundary condition. When

t = +∞, we need the poles of the r.h.s. , which lie at ∆̂n = ∆φ + 2n + 1, this time

agreeing with the Dirichlet spectrum. As t is varied from 0 to +∞, the spectrum smoothly

interpolates between the Neumann and Dirichlet case.

5.3 Coefficient function in the boundary channel at finite coupling

Having found the boundary spectrum, we will now determine the boundary conformal block

expansion of the two-point function of φ for general t. We write the two-point function

as follows

〈φ(x1)φ(x2)〉 =
1

|2x⊥|∆φ |2y⊥|∆φ
Gt(z) , (5.19)

where z = 1
1+ξ . We write the boundary OPE as

Gt(z) =
∞∑

n=0

µn(t)g
b
∆̂n(t)

(z) . (5.20)

In practice, we will determine the coefficient function Î
∆̂
(t) of Gt(z), as defined by the

Euclidean inversion formula (4.12). The boundary OPE then can be read off from the

poles and residues of Î
∆̂
(t) according to

Î
∆̂
(t) ∼ −κ̂(∆̂n(t))

−1 µn(t)

∆̂− ∆̂n(t)
as ∆̂ → ∆̂n(t) . (5.21)

First, let us consider the two-point functions for t = 0 and t = ∞, which correspond to the

Neumann and Dirichlet boundary conditions

Gt=0(z) =
(

z
1−z

)∆φ

+ z∆φ

Gt=∞(z) =
(

z
1−z

)∆φ − z∆φ .

(5.22)
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The scalar product with the partial waves can be evaluated with the result

Î
∆̂
(t = 0) =

4πΓ
(
d
2 −∆φ

)

Γ (∆φ)

Γ
(
∆φ − ∆̂

)
Γ
(
∆φ − d+ 1 + ∆̂

)

Γ

(
∆̂+1−∆φ

2

)
Γ

(
d−∆̂−∆φ

2

)
Γ

(
∆φ+1−∆̂

2

)
Γ

(
∆φ−d+2+∆̂

2

)

Î
∆̂
(t = ∞) =

4πΓ
(
d
2 −∆φ

)

Γ (∆φ)

Γ
(
∆φ − ∆̂

)
Γ
(
∆φ − d+ 1 + ∆̂

)

Γ

(
∆̂+2−∆φ

2

)
Γ

(
d+1−∆̂−∆φ

2

)
Γ

(
∆φ−∆̂

2

)
Γ

(
∆φ−d+1+∆̂

2

)

(5.23)

Î
∆̂
(0) and Î

∆̂
(∞) are shadow-symmetric as they should be. Now, let us consider Î

∆̂
(t) in

perturbation theory for small t

Î
∆̂
(t) =

∞∑

j=0

Î
(j)

∆̂
tj . (5.24)

There is only one Witten diagram contributing to Î
(j)

∆̂
for each j, involving j integrated

insertions of Φ2 on AdSd connected in a linear chain. Since the deformation is gaussian,

the diagrams for j ≥ 1 form a geometric sequence

Î
(j)

∆̂
=
[
tK(∆̂)

]j−1
Î
(1)

∆̂
, (5.25)

where

K(∆̂) = −
Γ

(
∆φ−∆̂

2

)
Γ

(
∆φ−d+1+∆̂

2

)

2Γ

(
∆φ+1−∆̂

2

)
Γ

(
∆φ+2−d+∆̂

2

) . (5.26)

We can now sum the geometric series

Î
∆̂
(t) = Î

(0)

∆̂
+

Î
(1)

∆̂

1− tK(∆̂)
. (5.27)

Î
(0)

∆̂
and Î

(1)

∆̂
can be fixed by using the known values at t = 0,∞ in (5.23), the final result

being

Î
∆̂
(t) =

Î
∆̂
(0)− tK(∆̂)Î

∆̂
(∞)

1− tK(∆̂)
. (5.28)

The primary operators exchanged in the boundary OPE correspond to poles of Î
∆̂
(t).

These come from the zeros of the denominator

tK(∆̂) = 1 , (5.29)

in agreement with the earlier result (5.18).

– 42 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
4

5.4 Comparison with the Polyakov bootstrap

We can use the presented family of boundary conditions to test the consistency of the

Polyakov sum rules. We will do so by expanding the boundary OPE data at small t and

check that the resulting sum rules are satisfied up to O(t2). Recall the form of the boundary

and bulk OPEs along the deformation

Gt =
∞∑

n=0

µn(t)g
b
∆̂n(t)

= gB0 +
∞∑

N=0

λN (t)gB∆N
. (5.30)

Crucially, in the bulk channel the spectrum ∆N = 2∆φ + 2N is independent of t, and the

only t-dependence comes from the one-point functions in the presence of the boundary. On

the other hand, in the boundary channel both scaling dimensions and OPE coefficients are

nontrivial functions of t. We will write the perturbative expansion of the boundary OPE

data as follows

∆̂n(t) = 2∆φ + 2n+
∞∑

j=1

γ̂(j)n tj

µn(t) =
∞∑

j=0

µ(j)n tj .

(5.31)

It is not hard to use (5.29) to find the anomalous dimensions up to O(t2):

γ̂(1)n =
Γ
(
n+ 1

2

)
Γ
(
n+∆φ− d

2+
1
2

)

πΓ(n+1)Γ
(
n+∆φ− d

2+1
) (5.32)

γ̂(2)n =
Γ
(
n+ 1

2

)2
Γ
(
n+∆φ− d

2+
1
2

)2

2π2Γ(n+1)2Γ
(
n+∆φ− d

2+1
)2
[
Hn− 1

2
−Hn+Hn+∆φ−

d
2
− 1

2
−Hn+∆φ−

d
2

]
, (5.33)

where Hz is the harmonic number. We will also need the OPE coefficients up to O(t):

µ(0)n =
(∆φ)2n

(
∆φ − d

2 + 1
)
n

22n−1(2n)!
(
∆φ + n− d

2 + 1
2

)
n

µ(1)n =
1

2
∂n(µ

(0)
n γ̂(1)n ) .

(5.34)

where (a)b =
Γ(a+b)
Γ(a) is the Pochhammer symbol. Correspondingly, the two-point function

can be expanded in perturbation theory

Gt(z) =

∞∑

j=0

G(j)(z)tj . (5.35)

Since Gt(z) is a two-point function in a unitary theory, it must be bounded in the Regge

limit, i.e. Gt(z) = O(z∆φ) as z → ∞. Furthermore, the perturbation Φ2 generating the

deformation is a relevant operator on AdSd. Therefore, we expect that also the individual

terms G(j)(z) are bounded in the Regge limit. This means that the sum rules resulting
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from functionals living in V∗ apply to each G(j)(z). We will focus on G(j)(z) for j = 0, 1, 2.

Their boundary OPEs take the form

G(0)(z) =

∞∑

n=0

µ(0)n gb2∆φ+2n(z)

G(1)(z) =
∞∑

n=0

[
µ(1)n gb2∆φ+2n(z) + µ(0)n γ̂(1)n ∂

∆̂
gb2∆φ+2n(z)

]

G(2)(z) =

∞∑

n=0

[
µ(2)n gb2∆φ+2n(z) +

(
µ(0)n γ̂(2)n + µ(1)n γ̂(1)n

)
∂
∆̂
gb2∆φ+2n(z)+

+
1

2
µ(0)n (γ̂(1)n )2∂2

∆̂
gb2∆φ+2n(z)

]
.

(5.36)

We can now test the BCFT Polyakov sum rules. We will focus on the sum rules coming

from the functionals ω̃n. Recall that these functionals have the following properties when

acting on the bulk and boundary conformal blocks, and ∆̂-derivatives of the boundary

blocks

ω̃n(g
B
∆M

) = 0

ω̃n(g
b
∆̂m

) = 0

ω̃n(∂∆̂g
b
∆̂m

) = δnm .

(5.37)

We can not derive sum rules by directly applying ω̃n to the expressions in (5.36), since ω̃n

live in U∗, but not in V∗. We can construct functionals ω̃s
n belonging to V∗ by subtracting

a suitable multiple of ω̃0 from the remaining ω̃n

ω̃s
n = ω̃n − qnω̃0 . (5.38)

The coefficients qn can be fixed as follows. Firstly, note that each ω̃s
n annihilates each G(j).

This is because we can expand the latter in the bulk channel, where we find only double-

trace conformal blocks gB∆N
for j ≥ 1, and with the addition of an identity conformal block

for j = 0. All these conformal blocks are annihilated by ω̃s
n. Applying ω̃s

n to the OPE

of G(0)(z) shown on the first line of (5.36) leads to the trivially correct equation 0 = 0

since each ω̃s
n also annihilates each gb2∆φ+2n(z). Applying ω̃

s
n to G(1)(z) on the second line

of (5.36), we see that the resulting sum rules are satisfied if and only if

qn =
µ
(0)
n γ̂

(1)
n

µ
(0)
0 γ̂

(1)
0

, (5.39)

which therefore fixes all an. This is of course just the constraint alluded to in the in-

troduction that ω̃s
n must annihilate the boundary expansion of the contact diagram. A

nontrivially check of the logic comes from applying ω̃s
n to the boundary OPE of G(2)(z),

which gives

(
µ(0)n γ̂(2)n + µ(1)n γ̂(1)n

)
− qn

(
µ
(0)
0 γ̂

(2)
0 + µ

(1)
0 γ̂

(1)
0

)
+ sn − qns0 = 0 , (5.40)
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where we defined the following infinite sums

sn ≡ 1

2

∞∑

m=0

µ(0)m (γ̂(1)m )2ω̃n

(
∂2
∆̂
gb2∆φ+2m

)
. (5.41)

ω̃n(∂
2
∆̂
gb2∆φ+2m) can be computed since thanks to results of section 3, we know ω̃n(g

b
∆̂
)

for arbitrary ∆̂. The infinite sum over m can then be performed analytically in special

cases and numerically in the generic case. We checked that the sum rules (5.40) are indeed

satisfied, providing a check of the consistency of our proposal. We stress that the Polyakov

sum rules can be used to fix OPE data even in cases where, unlike here, no other analytic

solution is available.
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A Regge behavior

The discussion of the two-point function Regge limit is facilitated by introducing the ρ

coordinate which is related to ξ via [55]

ξ =
(1− ρ)2

4ρ
. (A.1)

This change of the variable maps the ξ-plane into the unit disc |ρ| < 1. The physical

regime of the cross ratio ξ ∈ (0,∞) corresponds to the interval ρ ∈ (0, 1) along the real

axis where ξ = 0 and ξ = ∞ are mapped ρ = 1 and ρ = 0 respectively. The point ρ = −1

(ξ = −1) is another special point of interest which lies outside of the physical regime. The

analytic continuation of the two-point function from within the unit ρ-disc to ρ = −1 is

what we will refer to as the Regge limit for BCFT. In the following we will prove two

general statements about BCFT two-point functions regarding their boundedness.

Statement 1. The two-point function of different operators 〈O1O2〉 is bounded by the

square root of the two-point functions 〈O1O1〉 or 〈O2O2〉 of identical operators.
The proof of this statement follows simply from the application of the Cauthy-Schwarz

inequality, and the unitarity of a physical two-point function

|G〈O1O2〉| = |
∑

k

â1kâ2kg
b
∆̂k

(ξ)| ≤
∑

k

|â1kâ2k||gb∆̂k
(ξ)|

≤
√∑

k

(â21k|gb∆̂k
(ξ)|)

∑

k

(â22k|gb∆̂k
(ξ)|)

≤
√

|G〈O1O1〉||G〈O2O2〉| .

(A.2)
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Statement 2. The growth of a physical two-point function G(ρ) near the unit circle

|ρ| = 1 is bounded by its behavior at ρ = 1, i.e., the bulk channel limit.

To present the proof, let us first point out a useful fact of the boundary channel confor-

mal block. In the ρ coordinate, we can write the boundary channel conformal block (3.53) as

gb
∆̂
(ρ) =

(
4ρ

(1− ρ)2

)∆̂

2F1

(
∆̂, ∆̂− d

2
+ 1; 2∆̂ + 2− d;

−4ρ

(1− ρ)2

)

= (4ρ)∆̂2F1

(
∆̂,

d− 1

2
; ∆̂− d

2
+

3

2
; ρ2
) (A.3)

where in the second line we have used a quadratic transformation.15 From the second

expression we see that the boundary channel conformal block admits a power expansion in

ρ around the origin, and the expansion coefficients are positive for ∆̂ > d−3
2 . Let us first

look at a two-point function 〈O1O1〉 of identical operators, for which the boundary channel

decomposition reads

G〈O1O1〉 =
∑

k

â21kg
b
∆̂k

(ρ) . (A.5)

We expand the r.h.s. in powers of ρ and assume that no operators with dimension ∆̂ < d−3
2

appear in the boundary channel OPE. From the positivity of â21k and the expansion coef-

ficients of the boundary channel conformal blocks, we conclude that G〈O1O1〉 has a power

expansion in ρ at ρ = 0 with all positive coefficients, to wit

G〈O1O1〉 =
∑

k

∑

n

ĉknρ
∆̂k+2n , ĉkn > 0 . (A.6)

This immediately implies the following inequality: on the circle |ρ| = r, r < 1, the physical

two-point function is bounded by its value at ρ = r (i.e., the intersection of the circle with

the positive real axis)

|G〈O1O1〉||ρ|=r ≤ G〈O1O1〉

∣∣
ρ=r

. (A.7)

The expansion in ρ converges inside the unit disc |ρ| < 1 but diverges at the boundary

of the disc due to the exchange of the identity operator in the bulk channel (ρ = 1). As

ρ→ 1− along the real axis, the two-point function diverges as δr−2∆1 where δr = 1− r is

the difference of radii between the unit circle and |ρ| = r circle. The inequality (A.7) then

implies the following bound on the Regge behavior

G〈O1O1〉(ρ) . (1 + ρ)−2∆1 , ρ→ −1+ . (A.8)

Furthermore, when combined with our first statement, we have proved the following bound

on the Regge behavior for a general physical two-point function

G〈O1O2〉(ρ) . (1 + ρ)−(∆1+∆2) , ρ→ −1+ . (A.9)

15The identity we used is

2F1(a, b; a− b+ 1; z) =
2F1

(
a, a− b+ 1

2
; 2a− 2b+ 1;− 4

√
z

(1−
√

z)2

)

(1−√
z)

2a , |z| < 1 . (A.4)
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As we can straightforwardly verify, each individual conformal block has the following

Regge behavior

gB∆(ρ) ∼ (ρ+ 1)2−d , gb
∆̂
(ρ) ∼ (ρ+ 1)2−d , ρ→ −1+ . (A.10)

Therefore, as long as ∆1,2 ≥ (d − 2)/2, both the bulk channel conformal block and the

boundary channel conformal block are bounded in the Regge limit

gB∆(ρ) . (1 + ρ)−(∆1+∆2) , gb
∆̂
(ρ) . (1 + ρ)−(∆1+∆2) , ρ→ −1+ . (A.11)

B Direct channel decomposition from the spectral representation

In this appendix, we give the details of deriving the direct channel decomposition from

the spectral representation of exchange Witten diagrams. This makes use of the Mellin

representation formalism for BCFT correlators [12].16

We start with the bulk exchange Witten diagram (3.17). In [12], the bulk exchange

Witten diagram was shown to have the following spectral representation

Wbulk= ξ
−
∆1+∆2

2

∫ i∞

−i∞

dc

2πi

∫

C

dτ

2πi
ξτ
{
4τ

Γ(τ)Γ(τ+∆1−∆2

2
)Γ(τ+∆2−∆1

2
)Γ(h+c

2
−τ)Γ(h−c

2
−τ)

Γ( 1
2
−τ)Γ(2τ)

}

× 1

(∆−h)2−c2
Γ(∆1+∆2−h+c

2
)Γ( 1+c−h

2
)Γ(∆1+∆2−h−c

2
)Γ( 1−c−h

2
)

8π
1

2
−hΓ(∆1)Γ(∆2)Γ(c)Γ(−c)

(B.1)

where h = d
2 and the contour C for τ is parallel to the imaginary axis. One can show that

the term in the brackets can be rewritten as

fbulk(c)M [gBh+c](τ) + fbulk(−c)M [gBh−c](τ) (B.2)

with

fbulk(c) =
2
√
πΓ(−c) cos

(
1
2π(c+ h)

)
csc
(
1
2π(c−∆1 +∆2 + h)

)
Γ
(
1
2(c+ h+∆1 −∆2)

)

Γ
(
1
2(−c− h+∆1 −∆2 + 2)

) .

(B.3)

Here M [gB∆](τ) is the reduced Mellin amplitude17 for a bulk channel conformal block

gB∆(ξ) = ξ−
∆1+∆2

2

∫

C

dτ

2πi
ξτM [gB∆](τ) (B.4)

M [gB∆](τ) =
Γ(τ + ∆1−∆2

2 )Γ(τ + ∆2−∆1
2 )Γ(−τ + ∆

2 )

Γ(τ + ∆
2 − h+ 1)

Γ(∆− h+ 1)

Γ(∆+∆1−∆2
2 )Γ(∆+∆2−∆1

2 )
. (B.5)

Therefore we can write

Wbulk(ξ) = ξ−
∆1+∆2

2

∫ i∞

−i∞

dc

2πi

∫

C

dτ

2πi
ξτ
(
Fbulk(c)M [gBh+c](τ) + Fbulk(−c)M [gBh−c](τ)

)

(B.6)

16See also [56] for the Mellin formalism for defect CFTs.
17See [12] for definitions and details of the Mellin representation formalism of BCFT.
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where

Fbulk(c) = fbulk(c)× 1

(∆− h)2 − c2
Γ(∆1+∆2−h+c

2 )Γ(1+c−h
2 )Γ(∆1+∆2−h−c

2 )Γ(1−c−h
2 )

8π
1
2
−hΓ(∆1)Γ(∆2)Γ(c)Γ(−c)

.

(B.7)

We can perform the τ integral using (B.4), and the result is written as a spectral represen-

tation with respect to the bulk channel conformal blocks

Wbulk(ξ) =

∫ i∞

−i∞

dc

2πi
Fbulk(c)gBh+c(ξ) + Fbulk(−c)gBh−c(ξ) =

∫ i∞

−i∞

dc

2πi
2Fbulk(c)gBh+c(ξ)

(B.8)

where in the second equality we have used the c → −c shadow symmetry. Closing the

contour to the right and pick up the poles we get the OPE coefficients. The residue

at c = −h + ∆ gives the OPE coefficient of the single-trace operator. The residues at

c = −h + ∆1 + ∆2 + 2N , with non negative integers N give the OPE coefficients for the

double-trace operators.

The analysis for the boundary exchange Witten diagram is completely analogous. The

spectral representation in Mellin space was given in [12]

Wboundary =

∫ i∞

−i∞

dc

2πi

∫

C

dτ

2πi
ξ−τ

{
4−τΓ(τ)Γ

(
h−τ− 1

2

)
Γ
(
h+c−τ− 1

2

)
Γ
(
h−c−τ− 1

2

)

Γ(2h−2τ−1)

}

×
π

1

2
(2h−1)2∆1+∆2−3Γ

(
c−h+∆1+

1

2

2

)
Γ
(

−c−h+∆1+
1

2

2

)
Γ
(

c−h+∆2+
1

2

2

)
Γ
(

−c−h+∆2+
1

2

2

)

Γ(−c)Γ(c)Γ(∆1)Γ(∆2)

((
∆̂−h+ 1

2

)2

−c2
) .

(B.9)

The term in the brackets can be rewritten in the following form

fboundary(c)M [gb
h− 1

2
+c
](τ) + fboundary(−c)M [gb

h− 1
2
−c
](τ) (B.10)

where

fboundary(c) = −π2
−2c−2h+1 csc(πc)Γ

(
c+ h− 1

2

)

Γ(c+ 1)
, (B.11)

and M [gb
∆̂
](τ) is the reduced Mellin amplitude for a boundary channel conformal block

gb
∆̂
=

∫

C

dτ

2πi
ξ−τM [gb

∆̂
](τ) , (B.12)

M [gb
∆̂
](τ) =

Γ(τ)Γ(∆̂− τ)Γ(−2h+ 2∆̂ + 2)Γ(−h+ τ + 1)

Γ(∆̂)Γ(−h+ ∆̂ + 1)Γ(−2h+ ∆̂ + τ + 2)
. (B.13)

The boundary exchange Witten diagram can therefore be written as

Wboundary(ξ) =

∫ i∞

−i∞

dc

2πi
2Fboundary(c)gb

h− 1
2
+c
(ξ) (B.14)
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where

Fboundary(c) = fboundary(c)× π
1
2
(2h−1)2∆1+∆2−3

Γ(∆1)Γ(∆2)

((
∆̂− h+ 1

2

)2
− c2

)

×
Γ
(
c−h+∆1+

1
2

2

)
Γ
(
−c−h+∆1+

1
2

2

)
Γ
(
c−h+∆2+

1
2

2

)
Γ
(
−c−h+∆2+

1
2

2

)

Γ(−c)Γ(c) .

(B.15)

Closing the contour to the right, the residue at c = −h+ 1
2 + ∆̂ gives the OPE coefficient

for the single-trace operator with dimension ∆̂, and the residues at c = −h+ 1
2 +∆i + 2m

give the rest boundary channel OPE coefficients for single-trace operators with dimensions

∆i + 2m.

C Computing the seed coefficients

In this section we compute the seed coefficients needed for the crossed channel decomposi-

tions of exchange Witten diagrams. The main strategy is to use and generalize the method

of [57] to write an exchange Witten diagram as an infinite sum of contact Witten diagrams.

The seed OPE coefficients are extracted from this representation by taking certain limit

and then performing resummation.

C.1 Bulk exchange Witten diagrams

We start by reviewing the method in [57] of computing the three-point integral that appear

in the bulk channel exchange Witten diagrams

Ibulk(x1, x2;w) =

∫

AdSd+1

dd+1z

zd+1
0

G∆
BB(w, z)G

∆1
B∂(z, x1)G

∆2
B∂(z, x2) (C.1)

It is convenient to perform a translation such that

x1 → 0 , x2 → x21 ≡ x2 − x1 . (C.2)

This is followed by a conformal inversion,

x′12 =
x12

(x12)2
, z′ =

z

z2
, w′ =

w

w2
. (C.3)

After these transformations the integral becomes,

Ibulk(x1, x2;w) = (x12)
−2∆2J(w′ − x′12) (C.4)

where

J(w) =

∫
dd+1z

zd+1
0

G∆
BB(u) z

∆1
0

(z0
z2

)∆2

. (C.5)

The scaling behavior of J(w) under w → λw together with the Poincaré symmetry dictates

that J(w) takes the form

J(w) = w∆1−∆2
0 f(t) (C.6)
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where

t =
w2
0

w2
, (C.7)

and the physical region of t is [0, 1]. The function f(t) is constrained by the following

differential equation,

4t2(t−1)f ′′+4t[(∆1−∆2+1)t−∆1+∆2+
d

2
−1]f ′+[(∆1−∆2)(d−∆1+∆2)+M

2]f = t∆2

(C.8)

where M2 = ∆(∆ − d). This equation comes from acting with the equation of motion of

the field in the bulk-to-bulk propagator. The function f is further subject to two boundary

conditions:

1) From the OPE limit, we know that f(t) should behave like

f(t) ∼ t
∆−∆1+∆2

2 , t→ 0 . (C.9)

2) From its integral definition, f(t) has to be smooth at t = 1 [58].

Let us now look at the solutions to this equation. When ∆ = ∆1 + ∆2 − 2m with

m ∈ Z and m > 0 it is easy to find a polynomial special solutions for f(z). This solution

was first given in [57] and takes the following form

f(t) =

kmax∑

k=kmin

akt
k (C.10)

with

kmin = (∆−∆1 +∆2)/2 , kmax = ∆2 − 1 ,

ak−1 = ak
(k − ∆

2 + ∆1−∆2
2 )(k − d

2 + ∆
2 + ∆1−∆2

2 )

(k − 1)(k − 1−∆1 +∆2)
,

a∆2−1 =
1

4(∆1 − 1)(∆2 − 1)
.

(C.11)

The equation (C.8) also admits the follwoing homogeneous solutions

f1(t) = t
1
2
(∆−∆1+∆2)

2F1

(
1

2
(∆−∆1 +∆2),

1

2
(∆ +∆1 −∆2);−

d

2
+ ∆+ 1; t

)
, (C.12)

and

f2(t) = 2F1

(
1

2
(∆−∆1 +∆2),

1

2
(d−∆−∆1 +∆2);

d

2
; 1− 1

t

)
. (C.13)

However, neither solutions can be added to the special solution as they would spoil the

boundary conditions. More precisely, this is because f1(t) has a branch point at t = 1 while

f2(t) is smooth; while f2(t) has the wrong asymptotic behavior for t→ 0 which grows like

t
d−∆−∆1+∆2

2 .

When the truncation condition ∆ = ∆1 +∆2− 2m is not satisfied, one can still get a

special solution from (C.10). The series (C.11) now does not truncate, and can be written
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in terms of a 3F2 function. However it has the wrong boundary behavior. It implies that

the solution should be accompanied with homogenous solutions. By studying its behavior

near t = 0 and t = 1, we find the correct combination of solutions is

f(t)=Cbulk
s t∆2

3F2

(
1,∆1,∆2;−

∆

2
+
∆1

2
+
∆2

2
+1,−d

2
+
∆

2
+
∆1

2
+
∆2

2
+1; t

)
+Cbulk

h,1 f1(t)

(C.14)

where

Cbulk
s =− 1

(−∆+∆1+∆2)(−d+∆+∆1+∆2)
,

Cbulk
h1 =

Γ
(
1
2
(∆+∆1−∆2)

)
Γ
(
1
2
(∆−∆1+∆2)

)
Γ
(
1
2
(−∆+∆1+∆2)

)
Γ
(
1
2
(−d+∆+∆1+∆2)

)

4Γ(∆1)Γ(∆2)Γ
(
− d

2
+∆+1

) .
(C.15)

It will also appear to be useful to write the above solution as power series

f(t) = t∆2

∞∑

i=0

Pi t
i + t

∆−∆1+∆2
2

∞∑

i=0

Qi t
i (C.16)

where

Pi =
(∆1)i(∆2)i

(∆−∆1 −∆2)(−d+∆+∆1 +∆2)
(
−∆+∆1+∆2+2

2

)
i

(
−d+∆+∆1+∆2+2

2

)
i

(C.17)

and

Qi =
(−1)iΓ

(
d−2i−2∆

2

)
sin
(
π(d−2∆)

2

)
Γ
(
−d+∆+∆1+∆2

2

)

4πΓ(i+ 1)Γ(∆1)Γ(∆2)

× Γ
(
∆−∆1+∆2

2

)
Γ
(
∆+∆1−∆2

2

)
Γ
(
−∆+∆1+∆2

2

)
Γ
(
−∆+∆1−∆2+2

2

)
Γ
(
−∆−∆1+∆2+2

2

)

Γ
(
−∆+∆1−∆2−2i+2

2

)
Γ
(
−∆−∆1+∆2−2i+2

2

) .

(C.18)

After obtaining this solution, we can undo the inversion and translation and the upshot is

that each power ta becomes a contact vertex at w,

(x1 − x2)
2(a−∆2)Ga+∆1−∆2

B∂ (x1, w) G
a
B∂(x2, w) . (C.19)

Therefore the bulk exchange Witten diagram can be written as an infinite sum of contact

Witten diagrams

W bulk =

∞∑

i=0

(x1−x2)
2iPiW

contact
∆1+i,∆2+i+

∞∑

i=0

(x1−x2)
∆−∆1−∆2+2iQiW

contact
∆+∆1−∆2

2
+i,

∆−∆1+∆2
2

+i

(C.20)

where we have labelled the contact Witten diagram by two external dimensions. Written

in terms of the cross ratio,

Wbulk(ξ)=

∞∑

i=0

Pi ξ
iWcontact

∆1+i,∆2+i(ξ)+

∞∑

i=0

Qi ξ
∆−∆1−∆2

2
+iWcontact

∆+∆1−∆2
2

+i,
∆−∆1+∆2

2
+i
(ξ) (C.21)
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Similarly, in replacing x2 by x̄2, and use the fact that

W contact(x1, x2) =W contact(x1, x̄2) , (C.22)

we can also write the mirror exchange Witten diagram as an infinite sum of contact Witten

diagrams

W̄ bulk =
∞∑

i=0

(x1− x̄2)2iPiW
contact
∆1+i,∆2+i+

∞∑

i=0

(x1− x̄2)∆−∆1−∆2+2iQiW
contact
∆+∆1−∆2

2
+i,

∆−∆1+∆2
2

+i
.

(C.23)

In terms of the cross ratio, it reads

W̄bulk(ξ) =

∞∑

i=0

Pi (ξ + 1)iWcontact
∆1+i,∆2+i(ξ) +

∞∑

i=0

Qi (ξ + 1)
∆−∆1−∆2+i

2 Wcontact
∆+∆1−∆2

2
+i,

∆−∆1+∆2
2

+i
(ξ) .

(C.24)

C.2 Boundary exchange Witten diagrams

Let us now use the same strategy for the boundary exchange Witten diagrams. We focus

on the two-point integral

Iboundary(x1, w2) =

∫

AdSd

ddw1

wd
10

G∆̂
BB(w1, w2)G

∆1
B∂(w1, x1) (C.25)

This integral has AdSd isometry and should depend on a single variable t invariant under

the scaling w2 → λw2, x1 → λx1

t ≡
w2
2,0 + x21,⊥ + (~w2 − ~x1)

2

w2,0x1,⊥
, (C.26)

and its physical region of is [2,∞). The function Iboundary(x1, w2) then takes the form

Iboundary(x1, w2) = x−∆1
1,⊥ p(t) . (C.27)

To work out f(t), we use the equation of motion for the bulk-to-bulk propagator inside

AdSd. It leads to the following equation

− (t2 − 4)p′′(t)− dtp′(t) + M̂2p(t) = t−∆1 (C.28)

where M̂2 = ∆̂(∆̂− (d− 1)). This second order differential equation is also supplemented

by the following two boundary conditions:

1) as t→ ∞, p(t) ∼ t−∆;

2) at t = 2, the function p(t) is smooth.

We now consider the solutions to this equation. When ∆1 = ∆̂ − 2m with m ∈ Z,

m > 0, one finds a polynomial solution [12]

p(t) =

kmax∑

kmin

bkt
k , (C.29)
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where

bk+2 =
(k + ∆̂)(k − (∆̂− (d− 1)))

4(k + 1)(k + 2)
bk ,

kmin = −∆1 + 2 ,

kmax = −∆̂ ,

bkmin
=

1

4(−∆1 + 2)(−∆1 + 1)
.

(C.30)

It is easy to check that further adding the homogeneous solutions

p1(t) = t−∆̂
2F1

(
∆̂

2
,
∆̂ + 1

2
;−d

2
+ ∆̂ +

3

2
;
4

t2

)
, (C.31)

and

p2(t) = t−d+∆̂+1
2F1

(
1

2
(d− ∆̂− 1),

d− ∆̂

2
;
1

2
(d− 2∆̂ + 1);

4

t2

)
, (C.32)

will spoil the boundary behavior. When ∆̂ and ∆1 takes generic values, the series (C.29)

no longer terminates. But the special solution we get from the resumed series does not

satisfy the boundary conditions. Instead, we should use the following solution for p(t)

p(t) = −
t−∆1

3F2

(
1, ∆1

2 + 1
2 ,

∆1
2 ;− ∆̂

2 + ∆1
2 + 1,−d

2 + ∆̂
2 + ∆1

2 + 3
2 ;

4
t2

)

(∆1 − ∆̂)(−d+ ∆̂ +∆1 + 1)

+

(
π csc(π∆̂) sin(π∆1)Γ(1−∆1)Γ

(
∆1
2 − ∆̂

2

)
csc
(
1
2π(−d+ ∆̂ +∆1 + 1)

))

4Γ(1− ∆̂)Γ
(
−d

2 + ∆̂ + 3
2

)
Γ
(
d
2 − ∆̂

2 − ∆1
2 + 1

2

) p1(t) .

(C.33)

It is also convenient to write this solution as power series in 1/t

p(t) = t−∆1

∞∑

i=0

Ri t
−2i + t−∆̂

∞∑

i=0

Sit
−2i (C.34)

where

Ri =
(∆1)2i

2(∆−∆1)
(
1
2(−∆̂ + ∆1 + 2)

)
i

(
1
2(−d+ ∆̂ +∆1 + 1)

)
i+1

, (C.35)

Si =
(−1)i+1 sin(π∆1)Γ(1−∆1) cos

(
π(d−2∆̂)

2

)
Γ
(
∆1−∆̂

2

)
Γ
(
d−2i−2∆̂−1

2

)

4i! sin(π∆̂) sin
(
π(−d+∆̂+∆1+1)

2

)
Γ(−2i− ∆̂ + 1)Γ

(
d−∆̂−∆1+1

2

) . (C.36)

It is not difficult to find from the definition that each t−a corresponds to a contact vertex

x−∆1+a
1,⊥ Ga

B∂(x1, w2) G
∆2
B∂(x2, w2) . (C.37)
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Therefore we can write the boundary exchange Witten diagram as an infinite sum of contact

Witten diagrams

W boundary =
∞∑

i=0

(x1,⊥)
2iRiW

contact
∆1+2i,∆2

+
∞∑

i=0

(x1,⊥)
∆̂−∆1+2iSiW

contact
∆̂+2i,∆2

. (C.38)

Written in terms of the cross ratio, we have

Wboundary(ξ) =

∞∑

i=0

2−2iRiWcontact
∆1+2i,∆2

(ξ) +

∞∑

i=0

2−∆̂+∆1−2iSiWcontact
∆̂+2i,∆2

(ξ) . (C.39)

C.3 Extracting seed coefficients

Building on our previous results (C.21), (C.24) and (C.39), we now extract the various

OPE coefficients.

We start with the bulk exchange Witten diagram (C.21). To compute the seed OPE co-

efficient Â
B,(1)
0 for boundary channel decomposition we note that Wcontact has the following

expansion around ξ = ∞

Wcontact
∆1+i,∆2+i(ξ)= c1 ξ

−∆1−i
(
1+O(ξ−1)

)
+c2 ξ

−∆2−i
(
1+O(ξ−1)

)
,

Wcontact
∆+∆1−∆2

2
+i,

∆−∆1+∆2
2

+i
(ξ)= c′1 ξ

−
∆+∆1−∆2

2
−i
(
1+O(ξ−1)

)
+c′2 ξ

−
∆−∆1+∆2

2
−i
(
1+O(ξ−1)

)
.

(C.40)

It is easy to see that ξ−∆1−i
(
1 +O(ξ−1)

)
and ξ−

∆+∆1−∆2
2

−i
(
1 +O(ξ−1)

)
contribute to

ξ−∆1(1+O(ξ−1)) in Wbulk, while ξ−∆2−i
(
1 +O(ξ−1)

)
and ξ−

∆+∆2−∆1
2

−i
(
1 +O(ξ−1)

)
con-

tribute to ξ−∆2(1 +O(ξ−1)). On the other hand, in the boundary channel decomposition

Â
B,(1)
0 appears in Wbulk as the coefficient of ξ−∆1 . Therefore Â

B,(1)
0 can be obtained

from (C.21) and (C.40) by resumming all the ξ−∆1 coefficients. The result is

Â
B,(1)
0 =

∞∑

i=0

Pi
πd/2Γ(∆2−∆1)Γ

(−d+2i+∆1+∆2+1
2

)

Γ
(−∆1+∆2+1

2

)
Γ(i+∆2)

+
∞∑

i=0

Qi
πd/2Γ(∆2−∆1)Γ

(−d+2i+∆+1
2

)

Γ
(−∆1+∆2+1

2

)
Γ
(
∆−∆1+∆2+2i

2

)

=
π

d

2 Γ(∆2−∆1)Γ
(
1
2
(−d+∆1+∆2+1)

)

Γ(∆2)(∆−∆1−∆2)Γ
(
1
2
(−∆1+∆2+1)

)
(−d+∆+∆1+∆2)

×3F2

(
1,∆1,−d

2
+

∆1

2
+

∆2

2
+

1

2
;−∆

2
+

∆1

2
+

∆2

2
+1,−d

2
+

∆

2
+

∆1

2
+

∆2

2
+1;1

)

−
π

d−3

2 2∆2−∆1−3 sin(π∆1)sin(π∆2)sin
(

π(d−2∆)
2

)
csc

(
π(∆+∆1−∆2)

2

)
csc

(
π(−d+∆+∆1+∆2+2)

2

)

Γ
(−∆−∆1+∆2+2

2

)
Γ
(
d−∆−∆1−∆2+2

2

)

×2F1

(−d+∆+1

2
,
∆+∆1−∆2

2
;−d

2
+∆+1;1

)
Γ
(
d−2∆

2

)
Γ
(−d+∆+1

2

)

×Γ
(
∆2−∆1

2

)
Γ
(−∆+∆1+∆2

2

)
Γ(1−∆1)Γ(1−∆2) . (C.41)

The seed coefficient Â
B,(2)
0 can be obtained from the above expression by exchanging ∆1

and ∆2. Moreover, as a consistency check, we can also reproduce other leading OPE

coefficients in the bulk channel from (C.21). By expanding the contact diagrams in the
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bulk channel, it is clear that the leading bulk channel double-trace OPE coefficient AB
0 is

given by

AB
0 = P0Wcontact

∆1,∆2
(0) , (C.42)

while the single-trace OPE coefficient is given by

AB = Q0Wcontact
∆+∆1−∆2

2
,
∆−∆1+∆2

2

(0) . (C.43)

We now consider the bulk mirror exchange Witten diagram (C.24). In the bulk channel,

the bulk mirror exchange diagram contains only double-trace blocks. In the bulk channel

limit ξ → 0

W̄bulk(ξ) = ĀB
0 +O(ξ) . (C.44)

Therefore, we can obtain the seed coefficient ĀB
0 from (C.24) by simply setting ξ = 0

ĀB
0 =

∞∑

i=0

PiWcontact
∆1+i,∆2+i(0)+

∞∑

i=0

QiWcontact
∆+∆1−∆2

2
+i,

∆−∆1+∆2

2
+i
(0)

=

∞∑

i=0

Pi
πd/2Γ

(
1
2
(−d+2i+∆1+∆2+1)

)

Γ
(
1
2
(2i+∆1+∆2+1)

) +

∞∑

i=0

Qi
πd/2Γ

(
1
2
(−d+2i+∆+1)

)

Γ
(
1
2
(2i+∆+1)

)

=
1

4
πd/2Γ

(
1

2
(−∆+∆1+∆2)

)
×
[
−Γ
(
1

2
(−d+∆1+∆2+1)

)
Γ
(
1

2
(−d+∆+∆1+∆2)

)

×4F̃3

(
1,∆1,

−d+∆1+∆2+1

2
,∆2;

∆1+∆2+1

2
,
−∆+∆1+∆2+2

2
,
−d+∆+∆1+∆2+2

2
;1
)

−
πΓ(1−∆1)Γ(1−∆2)Γ

(−d+∆+1
2

)
csc

(
π(∆+∆1−∆2)

2

)
csc

(
π(∆−∆1+∆2)

2

)
sec

(
π(−d+∆+∆1+∆2+1)

2

)

Γ
(−∆+∆1−∆2+2

2

)
Γ
(−∆−∆1+∆2+2

2

)
Γ
(
d−∆−∆1−∆2+2

2

)

×sin(π∆1)sin(π∆2)3F̃2

(−d+∆+1

2
,
∆+∆1−∆2

2
,
∆−∆1+∆2

2
;
∆+1

2
,−d

2
+∆+1;1

)]

(C.45)

where 3F̃2 and 4F̃3 are the regularized hypergeometric functions. Let us also look at the

decomposition of this diagram into the boundary channel. From (C.21) and (C.24), it is

clear that to the leading order W̄bulk has the same large ξ expansion as Wbulk. Therefore

the seed OPE coefficients of the two diagrams are the same

Ā
B,(i)
0 = A

B,(i)
0 . (C.46)

Finally we consider the boundary exchange Witten diagram (C.39). When decomposed

in the bulk channel, the boundary exchange Witten diagram consists only double-trace

operators. By taking ξ → 0, we can isolate the seed OPE coefficient Ab
0

Wboundary(ξ) = Ab
0 +O(ξ) . (C.47)
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Setting ξ = 0 in (C.39), we get

Ab
0=

∞∑

i=0

2−2iRi
πd/2Γ

(
1
2
(−d+2i+∆1+∆2+1)

)

Γ
(
1
2
(2i+∆1+∆2+1)

) +

∞∑

i=0

2−∆̂+∆1−2iSi
πd/2Γ

(
1
2
(−d+2i+∆̂+∆2+1)

)

Γ
(

1
2
(2i+∆̂+∆2+1)

)

=
πd/2

4
×
[

4Γ
(−d+∆1+∆2+1

2

)

(∆̂−∆1)(−d+∆̂+∆1+1)Γ
(
1
2
(∆1+∆2+1)

)

×4F3

(
1,

∆1

2
+

1

2
,
∆1

2
,−d

2
+

∆1

2
+

∆2

2
+

1

2
;− ∆̂

2
+

∆1

2
+1,−d

2
+

∆̂

2
+

∆1

2
+

3

2
,
∆1

2
+

∆2

2
+

1

2
;1

)

+
2∆1−∆̂ csc(π∆̂)sin(π∆1)Γ(1−∆1)cos

(
π(d−2∆̂)

2

)
Γ
(

d−2∆̂−1
2

)
Γ
(

∆1−∆̂
2

)
sec

(
π(−d+∆̂+∆1+2)

2

)

Γ(1−∆̂)Γ
(

∆̂+∆2+1
2

)
Γ
(

d−∆̂−∆1+1
2

)

×Γ

(
−d+∆̂+∆2+1

2

)
3F2

(
∆̂

2
+

1

2
,
∆̂

2
,−d

2
+

∆̂

2
+

∆2

2
+

1

2
;−d

2
+∆̂+

3

2
,
∆̂

2
+

∆2

2
+

1

2
;1

)]
.

(C.48)

A non-trivial consistency check of this formula is that (C.48) can be shown to be symmetric

with respect to exchanging ∆1, ∆2 — a property that is obvious from the definition of the

Witten diagram. But this symmetry is totally obscured in the above expression by the

asymmetric treatment of the two external legs in the method leading to (C.39). We can

also get Â
b,(1)
0 and Â

b,(2)
0 from (C.39). It is easy to see there is only one term R0Wcontact

∆1,∆2
(ξ)

in (C.39) contains ξ−∆1 in 1/ξ expansion, and we can get Â
b,(1)
0 by extracting the ξ−∆1

coefficient. On the other hand, every term in (C.39) contributes to ξ−∆2 . Â
b,(2)
0 can be

obtained by resumming all the contributions, and reproduces our previous result.

D Formulae for equal weights

In this appendix, we consider the special case when the external conformal dimensions are

degenerate, i.e., ∆1 = ∆2 = ∆φ. The boundary decomposition coefficients contain simple

poles when ∆1 → ∆2.
18 By expanding in ∆1 −∆2, the singularities cancel at the cost of

generating conformal blocks with derivatives in the boundary channel decomposition.

Let us start with the boundary channel conformal block decomposition (3.52) of the

contact Witten diagram Wcontact. The coefficient â
(1)
m has a simple pole in ∆1−∆2 because

of the Gamma function Γ(−2m−∆1+∆2
2 ). The same simple pole appears in â

(2)
m , but with

an opposite sign. After expanding in ∆1 −∆2, it is easy to see that in the limit ∆1,∆2 →
∆φ, (3.52) becomes

Wcontact(ξ) =
∑

n

âng
b
∆φ+2n(ξ) +

∑

n

b̂n(∂∆φ
gb∆φ+2n)(ξ) , (D.1)

where the coefficients ân, b̂n were given in (3.56).

Similarly, the equal-weight boundary exchange Witten diagram also contains simple

poles in its boundary decomposition coefficients. In the boundary channel we find both

18More generally, this happens when ∆1 − ∆2 ∈ 2Z. But we will focus on the equal weight case for

simplicity.
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the boundary channel conformal blocks and their derivatives

Wboundary(ξ) = Âbgb∆(ξ) +
∑

n

Âb
ng

b
∆φ+2n(ξ) +

∑

n

B̂b
n∂∆φ

gb∆φ+2n(ξ) (D.2)

It is straightforward to get this expression from (3.58) by taking the equal weight limit,

and we find that the coefficients Âb, Âb
n and B̂b

n are given by

Âb=
π

d−1
2 2−2∆̂+2∆φ−3Γ(∆̂)Γ

(
∆φ−∆̂

2

)2
Γ
(
1
2(−d+∆̂+∆φ+1)

)2

Γ(∆φ)2Γ
(
−d

2+∆̂+ 3
2

) ,

Âb
n=− π

d−1
2 16−nΓ(2n+∆φ)Γ

(
−d

2+n+∆φ+
1
2

)2

(n!)2Γ(∆φ)2(−∆̂+∆φ+2n)2(−d+∆̂+∆φ+2n+1)2Γ
(
−d

2+2n+∆φ+
1
2

)

×
[
(−d+2∆φ+4n+1)+(−∆̂+∆φ+2n)(−d+∆̂+∆φ+2n+1)

(
−H− d

2
+n+∆φ−

1
2

+ψ

[
−d
2
+2n+∆φ+

1

2

]
+Hn−ψ[2n+∆φ]+log(4)

)]
,

B̂b
n=

π
d−1
2 16−nΓ(2n+∆φ)Γ

(
−d

2+n+∆φ+
1
2

)2

(n!)2Γ(∆φ)2(−∆̂+∆φ+2n)(−d+∆̂+∆φ+2n+1)Γ
(
−d

2+2n+∆φ+
1
2

) . (D.3)

Here ψ[z] = Γ′[z]/Γ[z] is the digamma function.

Finally, let us consider the bulk exchange diagram Wbulk and the mirror bulk exchange

diagram W̄bulk. In working out the boundary channel decomposition for generic external

dimensions, we used a recursive method. To obtain the decomposition coefficients in the

equal weight case

Wbulk(ξ) =
∑

n

ÂB
n g

b
∆1+n(ξ) +

∑

n

B̂B
n ∂∆φ

gb∆φ+n(ξ) . (D.4)

W̄bulk(ξ) =
∑

n

ˆ̄AB
n g

b
∆φ+n(ξ) +

∑

n

ˆ̄BB
n ∂∆φ

gb∆φ+n(ξ) , (D.5)

we could also take the limit of (3.67) and (3.77) after we have recursively computed the

unequal weight coefficients. In practice, however, it is more efficient to first find the recur-

sion relations for the equal weight coefficients. This has the computational advantage that

we only need to take the limit for the seed coefficients. Let us now derive the recursion

relations, focusing only on Wbulk. The result for W̄bulk is not needed since we know from

section 3.6.3 that the effect of adding W̄bulk to Wbulk is just to project out all the odd

n coefficients. We need the action EOMB on ∂∆φ
gb∆φ+n(ξ), and it can be obtained by

computing the commutator of EOMB with ∂∆φ
. The result is the following

EOMB(∂∆φ
gb∆φ+n)(ξ) = α̂n(∂∆φ

gb∆φ+n−1)(ξ) + β̂n(∂∆φ
gb∆φ+n)(ξ) + γ̂n(∂∆φ

gb∆φ+n+1)(ξ)

+ Θ̂ng
b
∆φ+n−1(ξ) + Ψ̂ng

b
∆φ+n(ξ) + Ω̂ng

b
∆φ+n+1(ξ) (D.6)
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where α̂n, β̂n, γ̂n are α̂
(1)
n , β̂

(1)
n , γ̂

(1)
n evaluated at ∆1 = ∆2 = ∆φ and

Θ̂n = −8n ,

Ψ̂n = 2(−d+ 2∆φ + 2n+ 1) ,

Ω̂n =
2(∆φ + n)(d−∆φ − n− 2)(d− 2∆φ − n− 1)

(d− 2∆φ − 2n− 3)(d− 2∆φ − 2n− 1)
+ d− 2∆φ − n− 1

+
(d− 3)(d− 1)(n+ 2)2

4(−d+ 2∆φ + 2n+ 3)2
− (d− 3)(d− 1)n2

4(−d+ 2∆φ + 2n+ 1)2
.

(D.7)

Using (D.6) and (D.1), we arrive at the following recursion equations for the decomposition

coefficients

γ̂n−1B̂
B
n−1+β̂nB̂

B
n +α̂n+1B̂

B
n+1=

{
b̂n

2
, n even ,

0 , n odd ,
(D.8)

γ̂n−1Â
B
n−1+β̂nÂ

B
n +α̂n+1Â

B
n+1+Ω̂n−1B̂

B
n−1+Ψ̂nB̂

B
n +Θ̂n+1B̂

B
n+1=

{
ân

2
, n even ,

0 , n odd .
(D.9)

We should also impose the initial condition ÂB
−1 = B̂B

−1 = 0. The seed coefficients ÂB
0 , B̂

B
0

can be obtained from taking the equal weight limit of

Â
B,(1)
0 gb∆1

(ξ) + Â
B,(2)
0 gb∆2

(ξ) . (D.10)
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