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1. Introduction

Harmonic analysis on a free group F has attracted considerable attention in the
last ten years or so. There seem to be two reason for that: one is the discovery of
deep analogy of certain aspects of harmonic analysis on a free group and harmonic
analysis on SL(2,R), cf. e.g. fundamental works of P. Cartier [4], A. Figà-Talamanca
and M. A. Picardello [8], the other being the interest in the C∗-algebra generated
by the regular representation of F , cf. A. Connes [5], J. Cuntz [6], U. Haagerup [10],
M. Pimsner and D. Voiculescu [14].

In most of this work Hilbert space representations of F play an essential role.
Clearly F has a lot of unitary representations since any collection of unitary opera-
tors corresponding to the free generators of F gives rise to a unitary representation
of F . on the other hand, it is by no means as trivial to construct a representation π
of F on a Hilbert space H such that supx∈F

∥∥π(x)
∥∥ < +∞ and π cannot be made

unitary by introducing another equivalent inner product in H. Various series of such
representations have been already constructed and used in harmonic analysis of F ,
cf. e.g. [12], [9].

This paper is devoted to the study of a new series of such bounded Hilbert space
representations of F together with some applications of them.

For every complex number z, |z| < 1, we are going to construct a representation
πz of F on `2(F ) in such a way that:

(i) sup
x∈F

∥∥πz(x)
∥∥ ¬ 2

∣∣1− z2
∣∣

1− |z| .

(ii) π∗z(x) = πz(x−1).
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(iii) If L is the left regular representation of F , then πz(x) − Lx is a finite
dimensional operator for every x in F .

(iv) The map z → πz(x) is holomorphic.

Moreover, π0 = L and π1 = limz→1 πz = 1 ⊕ L̃, where 1 is the trivial represen-
tation of F and L̃ is a representation weakly equivalent to L.

One of the features of these representations is that the properties above do
not depend on the number of the free generators of F and, in fact, πz have even
nicer properties if the number of the free generators is infinite. For instance, for
every z 6= 0, πz no leaves no non-trivial closed subspace invariant and for z 6= z′
representations πz and πz′ are topologically inequivalent.

The formula π∗z(x) = πz(x−1) implies that for real z πz is unitary and so [0, 1] 3
t→ πt is a continuous, even analytic, path of unitary representations each of which
differs from the regular representation by operators of finite rank. Construction
of such a path is an essential step in the proof of the theorem that the regular
C∗-algebra of a free group on two generators has non-trivial projections, cf. [5], [6],
[14].

Other applications of the representations πz we consider are towards the identi-
fication of the functions on F which are matrix coefficients of bounded Hilbert space
representations. It is easy to check that if |x| is the length of the word x in F , then

〈
πz(x) δe, δe

〉
= z|x|.

This is a generalization of a result of Haagerup [10] stating that x→ r|x|, r ∈ (0, 1)
is positive definite.

However, many more functions turn out to be the matrix coefficients of bounded
Hilbert space representations of F , if instead of πz we look at the representations

πγ = ⊕
∫

γ
πz|dz|,

where γ is a closed path in {z : |z| < 1}. Cf. chapter 3 for details.

Finally let us mention that for the free group with infinitely many free generators
the representations defined in Theorem 4 seem to be of special importance at least
as far as the matrix coefficients are concerned.

The authors would like to thank the referee for a simplification of the proof of
Theorem 4 and remarks concerning the presentation.
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2. The analytic family of representations

2.1 Notation. Let F be a free group with fixed set E of generators (not
necessary finite). Each element x of F may be uniquely expressed as a finite sequence
of elements of E ∪ E−1 with no adjacent factors like aa−1 or a−1a. It is called a
reduced word, The number of letters in the word is called the length of x and is
denoted |x|. Put |e| = 0 for the identity element e of F . When x 6= e, denote by x̃
the word obtained from x by deleting the last letter.

Define K(f) to be the space of all complex functions on F with finite support.
This space consists of all linear combinations of δx

(
characteristic function of the

one point set {x}), x ∈ F .

Introduce the linear operator P : K(F ) → K(F ) setting Pδx = δx when x 6= e
and Pδe = 0.

If a ∈ F write La for the translation operator defined by Laf(x) = f(a−1x)
where x ∈ F and f is any complex function on F .

When a ∈ F denote by Fa the finite set of elements (a, a, a, . . . , e) (a word x
in F belongs to Fa if and only if |x| = n with n ¬ |a| and x consists of the first n
letters of a). Let K(Fa) be the space of all complex functions on F supported by Fa.
The space K(Fa) may be identified with the finite dimensional space C |a|+1 via the
natural mapping:

C |a|+1 3 (a0, a1, . . . , a|a|) −→
|a|∑

k=0

ak P
kδx ∈ K(Fa).

One may introduce the standard unilateral shift S and its conjugate S∗ into K(Fa)
with respect to above identification. Recall that when the operator S ans S∗ act on
C |a|+1 they are given by

S(a0, a1, . . . , a|a|) = (0, a0, a1, . . . , a|a|−1)

S∗(a0, a1, . . . , a|a|) = (a1, a2, . . . , a|a|, 0).

2.2. A series of representations on `p. We start with a lemma.

Lemma 1. When a ∈ F the space K(Fa) is invariant under both operators P
and LaPLa−1. The restriction of these operators to K(Fa) coincide with S and S∗
respectively. For any function f ∈ K(F ) with zero on Fa its images Pf and LaPLa−1

are equal.

Proof. If x ∈ F − Fa then aa−1x = aa−1x = x. Thus LaPLa−1δx = Pδx,
which proves the second part of the lemma. Suppose now x ∈ Fa. It is obvious that
Pδx = Sδx. To see that LaPLa−1δx = S∗δx assume that the word a has the reduced
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form a = a1a2 . . . an. Then x = a1a2 . . . ak for some k ¬ n. If k = n then x = a
so LaPLa−1δx = S∗δx = 0. If k < n then LaPLa−1δx = δa1, a2,..., ak+1 = S∗δx. This
concludes the proof.

For any complex number z the operator I − zP is invertible on K(F ). For if
f ∈ K(F ), then Pnf = 0 for n sufficiently large. Thus the series

∑∞
n=0 z

nPnf has
only finitely many non-zero terms.

For z ∈ C define a representation π◦z of F on the space |K(F ) by

π◦z(a) = (I − zP )−1La(I − zP ), a ∈ F.

It means π◦z is the conjugation of the left regular representation by the operator
I − zP .

Lemma 2. Let |z| < 1 and 1 ¬ p <∞. Then π◦z extends uniquely to a uniformly
bounded representation of F on `p(F ) with

∥∥π◦z(a)
∥∥
p,p
¬ 1 + |z|

1− |z| , a ∈ F. (1)

The family of representations π◦z is analytic on {z ∈ C : |z| < 1}. Moreover the
operator π◦z(a)− La has finite rank for arbitrary a in F .

Proof. To prove (1) fix a ∈ F and express the operator π◦z(a)L−1
a in the form

π◦z(a)L−1
a = (I − zP )−1La(I − zP )L−1

a

= I +
∞∑

n=0

zn+1Pn(P − LaPL−1
a ).

By Lemma 1 the operator P − LaPL−1
a has finite rank and maps the space K(F )

into K(Fa). Pointing out the relation between this operator and S − S∗ one has
∥∥(P − LaPL−1

a )f
∥∥
p
¬ 2‖f‖p

for any p ¬ 1 and any f ∈ K(F ). Since the function (P − LaPL−1
a )f lies in K(Fa)

and the operator P is a contraction on K(F ) in each `p-norm so

∥∥π◦z(a)L−1
a f

∥∥
p
¬ ‖f‖p + 2

∞∑

n=0

|z|n+1‖f‖p.

If |z| < 1 then each π◦z(a), a ∈ F , extends uniquely to a bounded operator on `p(F )
and

∥∥π◦z(a)
∥∥
p,p

=
∥∥π◦z(a)L−1

a

∥∥
p,p
¬ 1 + 2

∞∑

n=0

|z|n+1 =
1 + |z|
1− |z| .
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The last inequality guarantees also that the series

I +
∞∑

n=0

zn+1Pn(P − LaPL−1
a )

is absolutely convergent in the operator norm and so it represents an analytic func-
tion.

Finally the operator π◦z(a) − La maps the entire space `p(F ) into the finite
dimensional space K(Fa) for each p ­ 1.

2.3 The main result. From now on we restrict our attention to the case p = 2
only. We improve the representation π◦z to get a new class of representations with
better properties.

Let T denote the orthogonal projection onto the one-dimensional subspace Cδe
in `2(F ). For |z| < 1 let Tz stand for the bounded invertible operator on `2(F )
defined by

Tz = I − T +
√

1− z2T,

where
√

1− z2 denotes the principal branch of the square root.

For a complex number z with |z| < 1 let us define the representation πz by

πz(a) = T−1
Z π◦z(a)Tz, a ∈ F. (2)

Theorem 1. Let F be a free group on arbitrary many generators. The repre-
sentation πz, z ∈ D = {z ∈ C : |z| < 1}, form an analytic family of uniformly
bounded representations of F on the Hilbert space `2(F ). Moreover

(i)
∥∥πz(a)

∥∥ ¬ 2

∣∣1− z2
∣∣

1− |z| .

(ii) π∗z(a) = πz(a−1).

(iii) πZ(a)− La is a finite rank operator.

(iv) If the group F has infinitely many generators then any representation πz,
z 6= 0, has no nontrivial closed invariant subspace. Any two different πz’s are topo-
logically inequivalent.

Proof. The first part of the theorem as well as point (iii) are obvious consequ-
ences of Lemma 2.

To get (i) and (ii) observe first that each Fa = `2(Fa), a ∈ F , is a reducing
subspace for each operator Tz, |z| < 1. Also π◦z(a) maps Fa−1 onto Fa and coincides
with La on Fa−1 . Therefore Fa is a reducing subspace for both operators πz(a)L−1

a

and Laπz(a−1). Let us examine these two operators more closely. We need to see
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only how they act on the space Fa because on the orthogonal complement F⊥a of
Fa they coincide with the identity operator.

The operator πz(a)L−1
a and Laπz(a−1) are constructed by using operators P ,

LaPL
−1
a , Tz and LaTzL

−1
a defined earlier. The subspace Fa is invariant for all of

them and their restrictions to Fa can be expressed in terms of S and S∗. Namely

P
∣∣
Fa = S

LaPL
−1
a

∣∣
Fa = S∗

Tz
∣∣
Fa = S∗S +

√
1− z2(I − S∗S)

LaTzL
−1
a

∣∣
Fa = SS∗ +

√
1− z2(I − SS∗).

Therefore

πz(a)L−1
a

∣∣
Fa =

[
S∗S +

1√
1− z2

(I − S∗S)
]
(I − zS)−1(I − zS∗)

[
SS∗ +

√
1− z2(I − SS∗)

]
.

Using the identities S∗SS∗ = S∗ and (I− zS∗) = (I− z2SS∗)− z(I− zS)S∗ we can
write

πz(a)L−1
a

∣∣
Fa=

[√
1− z2S∗S + (I − S∗S)

]
(I − zS)−1

[√
1− z2S∗S + (I − SS∗)

]
− zS∗. (3)

Also

Laπz(a−1)
∣∣
Fa=

[√
1− z2SS∗ + (I − SS∗)

]
(I − zS∗)−1

[√
1− z2S∗S + (I − S∗S)

]
− zS. (4)

It is easy to check now that

Laπ
∗
z(a)

∣∣
Fa =

(
πz(a)L−1

a

∣∣
Fa
)∗ = Laπz(a

−1)
∣∣
Fa

which proves (ii).

The desired estimates for norm of πz(a) follows from formula (3). In fact:
∥∥πz(a)

∥∥ =
∥∥πz(a)L−1

a

∥∥ = max
{

1,
∥∥πz(a)L−1

a

∣∣
Fa
∥∥},

but
πz(a)L−1

a

∣∣
Fa = A+B + C

with

A = (1− z2)S∗S(I − zS)−1SS∗,

B =
√

1− z2(I − S∗S)(I − zS)−1SS∗ +
√

1− z2S∗S(I − zS)−1(I − SS∗),
C = (I − S∗S)(I − zS)−1(I − SS∗)− zS∗.

Since S∗S and SS∗ both are orthogonal projections thus

‖A‖ ¬
∣∣1− z2∣∣ ∥∥(I − zS)−1∥∥ ¬

∣∣1− z2
∣∣

1− |z| .
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Note that for ξ ∈ C |a|+1

B(ξ) =
√

1− z2
[〈ξ, u1〉 v1 + 〈ξ, v2〉u2

]

and
C(ξ) = z|a|〈ξ, v2〉 v1 − zS∗(ξ),

where

u1 = (0, z|a|−1, . . . , z, 1), u2 = (1, z, . . . , z|a|−1, 0),
v1 = (0, 0, . . . , 0, 1), v2 = (1, 0, . . . , 0, 0).

This yields

‖B‖ =
∣∣√1− z2

∣∣max
{‖u1‖‖v1‖, ‖u2‖‖v2‖

} ¬
√∣∣1− z2

∣∣
1− |z| ,

‖C‖ = max
{|z||a|‖v1‖‖v2‖, |z|

}
= |z|

and consequently

∥∥πz(a)L−1
a

∣∣
Fa
∥∥ ¬

∣∣1− z2
∣∣

1− |z| +

√∣∣1− z2
∣∣

1− |z| + |z| ¬ 2

∣∣1− z2
∣∣

1− |z| .

To prove the first part of (iv) we show first that any πz is a cyclic representation of
F with a cyclic vector δe. Next, under the assumption that the group F has infinitely
many generators we show that the projection T belongs to the von Neumann algebra
generated by πz(F ). This will imply that every closed invariant and nonzero subspace
for πz contains δe, so it must the whole of `2(F ).

Let x ∈ F and x 6= e. Then

πz(x) δe = z|x|δe +
|x|−1∑

k=0

zk
√

1− z2 P kδx (5)

and

zπz(x) δe = z|x|δe +
|x|−1∑

k=1

zk
√

1− z2 P kδx,

thus
πz(x) δe − z πz(x) δe =

√
1− z2δx.

This implies that δe is a cyclic vector for πz.

Assume now that the set E of free generators of the group F is infinite. Fix a
sequence x1, x2, . . . in E and for a natural number n define the operator Sz,n on
`2(F ) by

Sz,n =
1
n

n∑

k=1

πz(xk). (6)
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Then the sequence Sz,1, Sz,2, . . . is strongly convergent to z T . Indeed, the sequence
Sz,n is bounded in the operator norm, thus we have to show only that Sz,n δe → z δe
and Sz,n δe → 0 for x 6= e. We have

Sz,n δe = z δe +

√
1− z2

n

n∑

k=1

δxk

which tends to z δe when n → +∞. Now for x 6= e, according to the case whether
the first letter of x is one of x−1

k , say x−1
k0

, or not, Sz,n δx has one of the form

Sz,n δx =
1
n

n∑
k=1
k 6=k0

δxkx +
1
n
πz(xk0) δx

or

Sz,n δx =
1
n

n∑

k=1

δxkx.

However in both cases it tends to zero.

Let H0 be a nonzero closed subspace in `2(F ), invariant under πz. If f(e) 6= 0 for
a function f in H0 then Sz,nf belongs to H0 for all n. But Sz,nf tends to zf(e) δe
and so δe ∈ H0. Observe that we can always find a function f ∈ H0 for which
f(e) 6= 0. In fact. Take any nonzero function f in H0 ad let a denote a shortest word
in the support of f . Write f in the form f = f(a) δa + g. Then g ∈ `2(F − Fa) and
so

πz(a−1)f = f(a)πz(a−1) δa + L−1
a g.

in particular (
πz(a−1)f

)
(e) =

√
1− z2f(a) 6= 0.

Consider two representations πz and πz′ with z, z′ 6= 0. If a bounded operator A
intertwines them then A−1Sz,nA = Sz′,n for each n, hence also A−1TA = (z′/z)T .
But since both T and A−1TA are projections z = z′. Thus πz and πz′ are not similar
for z 6= z′.

This finishes the proof of the theorem.

2.4 Remarks. (1) All the representations are cyclic with a cyclic vector δe.
The representation π0 is just the left regular representation of F . If the group F has
only finitely many generators (say k) then P is a bounded operator on `2(F ) and

∥∥Pn∥∥ =
√

2k(2k − 1)n−1, n = 1, 2, . . . .

Thus (I−zP )−1 is also bounded for |z| < (2k−1)−1/2. It means that representations
πz for all such z are similar to the left regular representation.
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(2) By (ii) for real t the representations πt are unitary. Thus the function

f 3 x −→ 〈
πt(x)δe, δe

〉
= t|x| (7)

is positive definite. It gives an alternative proof of a result of Haagerup [10].

In connection with Remark 1, if the number of generators in F is k then, com-
paring formula (7) with [10], Theorem 2.1, no representation πt, |t| > (2k − 1)−1/2

is weakly, and so strongly, contained in the regular representation.

(3) Observe that it is possible to pass with z to the limit +1 or −1 in formula
(3) and define two unitary representations π1 and π−1. It turns out that π1 =
tr+⊕λ−0 and π−1 = tr−⊕λ+

0 , where tr+ and tr− are one-dimensional representations
F 3 x→ (±1)|x| and λ+

0 , λ
−
0 two representations acting on `2

(
F − {e}) by

λ±0 (a)δx =
{
δax for x 6= a−1

±δa for x = a−1

when x ∈ F − {e} and a is one of the free generators.

The representation λ+
0 was considered by Cuntz [6] and earlier in less explicit

form by Pimsner and Voiculescu [14].

A construction of a continuous path of unitary representations connecting the
regular representation to π1, such that each representation in the path is congruent
to the regular representation modulo compact operators was an essential step in the
proof ot the theorem (cf. [14], [5] and [6]) that the regular C∗-algebra of a free group
has non nontrivial projections.

(4) Let us state also that

sup
x∈F

∥∥πz(x) δe
∥∥ =

∣∣1− z2∣∣1/2(1− |z|2)−1/2 (8)

which follows directly from (5). This formula will be used later.

3. Direct integrals of representations and multipliers

3.1. Preliminaries. Starting with the family of representations {πz : |z| < 1}
by integration on closed paths we obtain many other uniformly bounded represen-
tations. This yields a wide class of coefficients. Identification of functions which are
the coefficients of hilbertian representations is especially useful when we study mul-
tiplier algebras. In this context, for locally compact groups, mainly three algebras
were investigated: the Fourier-Stieltjes algebra B(G) of all coefficients of unitary re-
presentations, the algebra M(A(G)) of multipliers of the Fourier algebra A(G) and
the algebra B2(G) of Herz multipliers.
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A function ϕ in L∞(G) is called a Herz multiplier if for any bounded operator
A on L2(G) with kernel A(x, y), x, y ∈ G, the function ϕ(y−1x)A(x, y) is again
a kernel of a bounded operator on L2(G). The set B2(G) of all Herz multipliers,
equipped with the multiplier norm is a Banach algebra under pointwise addition
and multiplication.

Proposition 1 (Schur). Let π be a uniformly bounded representation of G on
a Hilbert space Hπ. Then for any ξ, η ∈ Hπ the coefficient

ϕ(x) =
〈
π(x) ξ, η

〉
, x ∈ G,

of the representation π belongs to B2(G). Moreover

‖ϕ‖B2 ¬ sup
x∈G

∥∥π(x) ξ
∥∥ sup
x∈G

∥∥π∗(x) η
∥∥.

We always have B(G) ⊂ B2(G) ⊂ M(A(G)) with continuous inclusions. For
amenable groups these algebras coincide. On the other hand both inclusion are
proper for the free groups (cf. [10], [11], [1], [7], [13]).

Remark. It has been shown in [2] that for any locally compact group G the
algebra B2(G) coincides with the algebra M0(A(G)) of all completely bounded mul-
tipliers of the algebra A(G). This algebra was introduced and studied in [3].

Two uniformly bounded representations π1 and π2 of a locally compact group G
on Hilbert spaces H1 and H2 are called similar or topologically equivalent if there
exists a bounded invertible operator A : H1 → H2 such that Aπ1(x) = π2(x)A for
any x ∈ G. Representations π1 and π2 are called weakly similar if they have the
same closure in B2(G) of sets of their coefficients.

Note that for an amenable group G every uniformly bounded representation
of G on a Hilbert space is similar to a unitary representation and if two unitary
representations are weakly similar they are weakly equivalent.

3.2. Integration on paths. Let γ be a piecewise smooth curve contained in
the unit disc |z| < 1. Consider a representation of F

πγ = ⊕
∫

γ
πz |dz|

acting on the Hilbert space Hγ = ⊕ ∫γ `2(F ) |dz|. Clearly πγ is a uniformly bounded
representation with

sup
x∈F

∥∥πγ(x)
∥∥ ¬ 2 max

z∈γ

∣∣1− z2
∣∣

1− |z| .
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Proposition 2. Let f be a holomorphic function in the neighborhood of γ.
Then the complex function ϕ defined on F by

ϕ(x) =
∫

γ
z|x|f(z) dz

is a coefficient of the representation πγ and

‖ϕ‖B2 ¬
∫

γ

∣∣f(z)
∣∣
∣∣1− z2

∣∣
1− |z| |dz|.

Proof. Take two functions g and h on γ so that |g(z)| = |h(z)| and g(z)h(z) =
f(z)χ(z), where χ(z) denotes the Radon-Nikodym derivative dz/|dz|, Define two
vectors G and H in Hγ by

G = ⊕
∫

γ
g(z) δe |dz|, H = ⊕

∫

γ
h(z) δe |dz|. (9)

Then for x ∈ F ,

〈
πγ(x)G, K

〉
=
∫

γ

〈
πz(x) δe, δe

〉
g(z)h(z) |dz|

=
∫

γ
z|x|f(z)χ(z) |dz| =

∫

γ
z|x|f(z) dz = ϕ(x).

By proposition 1, using the formula (8) and the fact that
∣∣χ(z)

∣∣ = 1, z ∈ γ, we
get an estimate for the norm ‖ϕ‖B2 :

‖ϕ‖B2 ¬ sup
x∈F

∥∥πγ(x)G
∥∥ sup
x∈F

∥∥π∗γ(x)H
∥∥

¬
(∫

γ

∣∣g(z)
∣∣
∣∣1− z2

∣∣
1− |z| |dz|

)1/2(∫

γ

∣∣h(z)
∣∣
∣∣1− z2

∣∣
1− |z| |dz|

)1/2

=
∫

γ

∣∣f(z)
∣∣
∣∣1− z2

∣∣
1− |z| |dz|.

Corollary 1. For m = 0, 1, 2 . . . let χm denote the characteristic function of
the set {x ∈ F : |x| = m}. Let α0, α1, α2, . . . be a sequence of complex numbers such
that ∞∑

m=0

|αm − αm+2| (m+ 2) < +∞.

Then the function

ϕ =
∞∑

m=0

αm χm (10)

belongs to B2(F ).
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Proof. For m = 0, 1, 2 . . . define a function ϕm on F as χ0 +χ2 + . . .+χm if m
is even and χ1 + χ3 + . . .+ χm if m is odd.

If γ is a circle {z ∈ C : |z| = r}, 0 < r < 1, then each ϕm is a coefficient of the
representation πγ because

ϕm(x) =
1

2πi

∫

γ
z|x|fm(z) dz, x ∈ F,

where
fm(z) =

1
zm+1(1− z2)

.

By Proposition 2

‖ϕm‖B2 ¬
1

2π

∫

γ

|dz|
zm+1(1− z2)

=
1

rm(1− r2)
.

Taking r =
(
m/(m+ 2)

)1/2 we get ‖ϕm‖B2 ¬ 1
2 e(m+ 2).

Express the function ϕ =
∑∞

m=0 αmχm in the form ϕ =
∑∞

m=0(αm−αm+2)ϕm.
Then

‖ϕ‖B2 ¬
∞∑

m=0

|αm − αm+2| ‖ϕm‖B2 ¬
e

2

∞∑

m=0

(m+ 2) |αm − αm+2|.

As a special case of Corollary 1 we get

Corollary 2. Let α0, α1, α2, . . . be a decreasing sequence of positive num-
bers. If the series

∑∞
m=0 αm is convergent then the function

∑∞
m=0 αmχm belongs to

B2(F ).

3.3. Remarks. (1) If the group F has infinitely many generators then none
of the functions ϕ =

∑N
m=0 αmχm belongs to the Fourier-Stieltjes algebra B(F ),

except ϕ = α0 δe. Indeed, if the function ϕ belongs to B(F ) then ϕ
∣∣
Fk

belongs to
B(Fk) for k = 1, 2, . . ., where Fk is a subgroup in F generated by k among the free
generators. Moreover

‖ϕ‖B(F ) ­ ‖ϕ|Fk‖B(Fk) ­ ‖ϕ|Fk‖A(Fk).

(The last equality holds since ϕ|Fk has finite support.) On the other hand, it follows
by [9], VIII.1.1 that for n = 1, 2, . . . , N

‖ϕ|Fk‖A(Fk) ­
|αn|
n+ 1

‖χn|Fk‖2 =
|αn|
n+ 1

√
2k(2k − 1)n−1.

Comparing these two inequalities and letting k tend to infinity we get αn = 0 for
n = 1, 2, . . . , N .
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Even if the group F has only finite number of generators, the same argument
shows that there exists a function in B2(F )−B(F ).

(2) If the group F has no more than countably many generators then there
exists a sequence of functions with finite supports on F which is an approximate
unit for A(F ) and is uniformly bounded in the B2(F ) norm. This is a result of de
Canniere and Haagerup ([3], 3.9). It can be seen easily, applying Corollary 1, that
the approximate unit in A(F ) constructed by Haagerup in the earlier paper [10] has
the desired property.

3.4. Some estimates from below. A complex function ϕ on F is called radial
if the value ϕ(x), x ∈ F , depends only on |x|, the length of x. Any radial function
has unique expression of the form (10).

Proposition 2 and the method presented in the proof of Corollary 1 gives tool
to estimate from above the B2(F ) norm of radial functions. The next theorem gives
estimates from below.

Theorem 2. Let F be a free group on infinitely many generators. For a radial
function ϕ =

∑∞
m=0 αmχm with only a finite number of αm’s different from zero we

have

‖ϕ‖B2(F ) ­ ‖ϕ‖M(A(F )) ­ sup
t∈(0, π)

2
π

∫ π

0

∣∣∣∣∣
∞∑
m=0

αm
sin(m+ 1) s sin s sin(m+ 1) t

sin t

∣∣∣∣ ds. (11)

Proof. Fix a sequence x1, x2, . . . of free generators in F and let Fk denote the
subgroup in F generated by x1, x2, . . . , xk. Let V N(Fk) denote the von Neumann
algebra of operators on `2(Fk) generated by the left regular representation. Denote
also V Nr(Fk) the subalgebra in V N(Fk) of these operators T for which Tδe is a
radial function on Fk.

For k, n = 1, 2, . . . define χn, k to be the characteristic function of the set{
x ∈ Fk : |x| = n

}
and χ̂n, k the function on (0, π) defined as

χ̂n, k(s) = (2k − 1)n/2
(

sin(n+ 1) s
sin s

− 1
2k − 1

sin(n− 1) s
sin s

)

χ̂0, k(s) = 1.

It follows from [15], Theorem 5.1 that the correspondence χn, k → χ̂n, k,
n = 0, 1, 2, . . ., may be uniquely extended to an isometric isomorphism of V Nr(Fk)
onto L∞(0, π). For a function f =

∑∞
m=0 βmχm, k in V Nr(Fk), the function f̂ has

the form

f̂(s) =
∞∑

m=0

(2k − 1)m/2(βm − βm+2)
sin(m+ 1) s

sin s
, 0 < s < π. (12)

13



Let ϕ =
∑∞

m=0 αmχm be a radial function on F with only a finite number of
αm’s different from zero. For any natural number k multiplication by ϕ defines a
bounded operator on V Nr(Fk) with norm not exceeding ‖ϕ‖M(A(F )). Thus

‖ϕ‖M(A(F )) ­ sup
{∥∥ϕ(f)̂

∥∥
∞ : f ∈ V Nr(Fk)),

∥∥f̂
∥∥
∞ ¬ 1

}
.

Since by (12) we have

2
π

∫ π

0
f̂(s) sin s sin(m+ 1) s ds = (2k − 1)m/2(βm − βm+2), m = 0, 1, 2, . . . ,

thus

βm = (2k − 1)−m/2
2
π

∫ π

0
f̂(s) sin s

∞∑

r=0

sin(m+ 2r + 1) s
(2k − 1)r

ds

and so

(ϕf)̂(t) =
∞∑

m=0

(αmβm − αm+2βm+2) (2k − 1)m/2
sin(m+ 1) t

sin t

=
2
π

∫ π

0
f̂(s) sin s

∞∑

m=0

[(
αm sin(m+ 1) s

+
∞∑

r=1

αm − αm+2

(2k − 1)r
sin(m+ 2r + 1) s

)
sin(m+ 1) t

sin t

]
ds.

If we put an arbitrary function g in L∞(0, π) with ‖g‖∞ ¬ 1 instead of f̂ and
pass to the limit with k tending to infinity we get

‖ϕ‖M(A(F )) ­ sup
t∈(0, π)

2
π

∣∣∣∣
∫ π

0
g(s)

∞∑

m=0

αm
sin(m+ 1) s sin s sin(m+ 1) t

sin t
ds

∣∣∣∣.

This implies (11).

Consider the system Um, m = 1, 2, . . . of the second type Tschebyshev polyno-
mials

Um(x) =

√
2
π

sin
(
(m+ 1) arc cos x

)
√

1− x2
, x ∈ (−1, 1).

This system is an orthogonal basis in L2
(
(−1, 1), µ

)
, where dµ(x) =

√
1− x2 dx.

Corollary 3. Let F be a free group on infinitely many generators. For a radial
function ϕ =

∑∞
m=0 αmχm in B2(F ) define an operator on L1

(
(−1, 1), µ

)
by

(Tϕf)(x) =
∫ 1

−1
Kϕ(x, y) f(y) dµ(y),

14



where

Kϕ(x, y) =
∞∑

m=0

αm Um(x)Um(y).

Then Tϕ is a bounded operator and

‖Tϕ‖ ¬ ‖ϕ‖M(A(F )) ¬ ‖ϕ‖B2(F ). (13)

The correspondence ϕ→ Tϕ is an algebra homomorphism.

Proof. Changing variable x = cos s, y = cos t we get that the right hand side of
(11) is equal to

sup
x∈(−1, 1)

∫ 1

−1

∣∣Kϕ(x, y)
∣∣ dµ(y).

It means that Tϕ is a bounded operator on L1
(
(−1, 1), µ

)
and (13) holds. To see

that Tϕψ = TϕTψ observe that TχmUm = Um and TχmUn = 0 for m 6= n.

Corollary 4. Assume that the free group F has infinitely many generators.
For a complex number z, |z| < 1, define ϕz(x) = z|x| for x ∈ F . Then

‖ϕz‖B2(F ) ¬ ‖ϕz‖M(A(F )) = ‖Tϕz‖ =

∣∣1− z2
∣∣

1− |z|2 .

Proof. The estimate ‖ϕz‖B2(F ) ¬
∣∣1− z2

∣∣/(1− |z|2) follows from (8) and Pro-
position 1. On the other side

∥∥Tϕz
∥∥ ­ 2

π

∫ π

0

∣∣∣∣
∞∑

m=0

(m+ 1) zm sin(m+ 1) s sin s
∣∣∣∣ ds

by Theorem 2. But
∞∑
m=0

(m+ 1) zm sin(m+ 1) s =
1
2i

(
eis

∞∑
m=0

(m+ 1) zm eims −
∞∑
m=0

(m+ 1) zm e−ims
)

=
1
2i

(
eis

(1− z eis)2 −
e−is

(1− z e−is)2

)
=

(1− z2) sin s
(1− z eis)2(1− z e−is)2 .

Thus
∣∣∣∣
∞∑

m=0

(m+ 1) zm sin(m+ 1) s sin s
∣∣∣∣ =

∣∣1− z2∣∣ sin2 s∣∣(1− z eis)(1− z e−is)
∣∣2 .

Denote

fz(s) =
sin s(

1− z eis)(1− z e−is) =
1

2iz

(
1

1− z eis −
1

1− ze−is
)

=
∞∑

m=0

zm sin(m+ 1) s.
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Then

∥∥Tϕz
∥∥ ­ 2

π

∣∣1− z2∣∣
∫ π

0
fz(s)fz(s) ds =

∣∣1− z2∣∣
∞∑

m=0

|z|2m =

∣∣1− z2
∣∣

1− |z|2 .

3.5. Remarks. (1) The functions ϕz, |z| < 1, play a fundamental part in present
theory. They are analogues of the spherical functions on SL2(R). The function ϕz
is the unique, up to constant multiple, radial coefficient of the representation πz (cf.
Theorem 3). The explicit formula for the kernel Kϕz of the operator Tϕz is

Kϕz(cos s, cos t) =
1− z2

(
1− 2z cos(s+ t) + z2

)(
1− 2z cos(s− t) + z2

) .

(2) Applying Proposition 2 and Theorem 2 to the function ϕ−χm, m = 1, 2, . . .,
we get the following estimate

8
π2 (m+ 1) ¬ ‖χm‖B2(F ) ¬

4e
π

(m+ 1).

3.6. Characterization of radial coefficients. As we have seen in Proposition
2, if we take two vectors G, H of the special form (9) in the representation space Hγ
for a path γ then the corresponding coefficient of πγ is a radial function. Conversely,
if ϕ is a radial coefficient of the representation πγ then we can always find two
vectors G, H in Hγ of the form (9) such that ϕ(x) =

〈
πγ(x)G, H

〉
. We prove it

only for circle, although the proof works generally. In this case we obtain especially
simple characterization of radial coefficients.

Theorem 3. Let C(r) denote the circle {z ∈ C : |z| = r}, 0 < r < 1. Let F
be a free group on infinitely many generators. A radial function ϕ is a coefficient of
the representation πC(r) if and only if there exists a function f in L1(T 1), where T 1

is the unit circle, such that

ϕ(x) = rn f̂(n), x ∈ F, n = |x|, (14)

Proof. Let G, H ∈ HC(r), i.e.

G = ⊕
∫

Cr

Gz |dz|, H = ⊕
∫

Cr

Hz |dz|,

where Gz, Hz ∈ `2(F ). Suppose that the function

ϕ(x) =
〈
πC(r)(x)G, H

〉
=
∫

C(r)

〈
πz(x)G, H

〉 |dz|
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is radial. Write ϕ =
∑∞

m=0 αmχm. Choose a sequence x1, x2, . . . of free generators
in F and let Sz, k be the operator defined in (6). Let T be the orthogonal projection
onto the one-dimensional subspace Cδe. Then

αn =
∫

C(r)

〈
Snz, nGz, Hz

〉 |dz|

for any k, n = 1, 2, . . .. Since the sequence of operators {Sz,k}∞k=1 strongly converges
on `2(F ) to the operator z T then by the Dominated Convergence Principle we get

αn =
∫

C(r)
zn
〈
T Gz, Hz

〉 |dz| n = 1, 2, . . . .

Define a function f on T 1 by

f(z) = r
〈
T Grz, Hrz

〉
= r

〈
T Grz, T Hrz

〉
, |z| = 1.

Then f ∈ L1(T 1) with ‖f‖1 ¬ ‖G‖HC(r)
‖H‖HC(r)

and f fulfills (14) for n = 1, 2, . . ..

To get (14) also for n = 0 take the function f − f̂(0) + α0 instead of f .

The converse implication is actually shown in the proof of Proposition 2.

3.7. Invariant subspaces for πC(r). Let H denote the Hilbert space

H = ⊕
∫

T 1
`2(F ) |dz|.

This space may be realized also as one of the spaces L2(T 1×F ) or L2(T 1)⊗ `2(F ),
where the symbol ⊗ means the completion of L2(T 1)⊗ `2(F ) in the unique Hilbert
space norm. For any r, 0 < r < 1, the space HC(r) is isometrically isomorphic to
H, the isomorphism being H 3 f → fr ∈ HC(r), where fr(z, x) = r−1/2f(r−1z, x),
|z| = r, x ∈ F . In this manner we may treat each πC(r) acting on H. We get the
following formula for this action

(
πC(r)(a)f ⊗ g)(z, x) = f(z)

(
πrz(a)g

)
(x) (15)

with f ∈ L2(T 1), g ∈ `2(F ) and a, x ∈ F .

Let H◦ be the subspace H2⊗ `2(F ) ⊂ H, where H2 is the Hardy space of
analytic functions in L2(T 1). Then since {πz : |z| < 1} is an analytic family of
representations, the spaceH◦ is invariant under each representation πC(r), 0 < r < 1.
Denote the restriction of πC(r) to H◦ by π◦C(r).

Lemma 3. Let F be a free group on infinitely many generators. Fix a number r,
0 < r < 1. Then the representation π◦C(r) is indecomposable, weakly similar to πC(r)

and 1⊗ δe is a cyclic vector for π◦C(r).
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Proof. It is clear by (15) that the multiplication by z commutes with πC(r). It
follows that each of the spaces zmH◦ = zmH2⊗ `2(F ), m = 0, ±1, ±2, . . . is inva-
riant under πC(r). The restriction of πC(r) to any of them is isometrically equivalent
to π◦C(r). To prove that π◦C(r) is weakly similar to πC(r) it suffices to show that any
coefficient of πC(r) is a limit in B2(F ) of sequence of coefficients of π◦C(r).

Let f and g be two functions in H. There exists two sequences f1, f2, . . . and
g1, g2, . . . in H such that fm, gm ∈ z−mH◦, m = 1, 2, . . ., and

lim
m→∞ ‖f − fm‖ = lim

m→∞ ‖g − gm‖ = 0.

It follows that the coefficient

ϕ(x) =
〈
πC(r)(x) f, g

〉
, x ∈ F,

is a limit in B2(F ) of coefficients

ϕm(x) =
〈
πC(r)(x) fm, gm

〉
, x ∈ F.

But ϕm is a coefficient of the representation πC(r)|z−mH◦ and so of π◦C(r) too.

To see that π◦C(r) is indecomposable let P be the projection in H◦ which com-
mutes with π◦C(r). As we have seen in the proof of Theorem 3 the operator rzI⊗T is
a strong limit of a sequence ⊕ ∫T 1 Srz, k |dz| when k →∞. Therefore zI ⊗T belongs
to the von Neumann algebra generated by π◦C(r) and so it commutes with P . This

means that H2⊗Cδe is an invariant subspace for P and P
(
H2⊗Cδe

)
reduces the

operator zI ⊗ T |H2⊗Cδe . But the multiplication by z is an irreducible operator on
H2 (cf. [16], Theorem 5.3), thus the restriction of P to H2⊗Cδe must be 0 or I. In
particular P (1⊗ δe) = 1⊗ δe or P (1⊗ δe) = 0. This implies that

P π◦C(r)(x)(1⊗ δe) = π◦C(r)(x)(1⊗ δe)
for any x ∈ F or

P π◦C(r)(x)(1⊗ δe) = 0

for any x ∈ F . If we prove that 1⊗ δe is a cyclic vector for π◦C(r) we get then P = 0
or P = I.

Let M denote the closed cyclic subspace in H◦ generated by 1 ⊗ δe. To prove
that 1 ⊗ δe is cyclic for π◦C(r) it suffices to show that f ⊗ δx ∈ M for any f ∈ H2

and any x ∈ F .

Applying the operator zI ⊗ T to 1 ⊗ δe several times we get zm ⊗ δe ∈ M for
m = 0, 1, 2, . . ., and thus also that f ⊗ δe ∈M for any f ∈ H2.

Let now x ∈ F . If |x| = 1 then for any f ∈ H2

π◦C(r)

(
f(z)√

1− r2z2
⊗ δe

)
= rzf(z)√

1− r2z2
⊗ δe + f(z)⊗ δx
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by (5) and (15). But since
f(z)√

1− r2z2
⊗ δe and rzf(z)√

1− r2z2
⊗ δe

both are in M , we have f ⊗ δe ∈ M . For all other x ∈ F the proof is similar and
goes by induction on the length of x.

Remark, The only non-trivial closed subspace in H◦, invariant under π◦C(r) are

zm−1H2⊗M + zmH2⊗ `2(F ),

where m = 1, 2, . . . and M is a closed subspace in `2(F ) invariant under left trans-
lations.

This can be shown in four steps as follows. If for a non-zero function f in H◦,
Hf denotes the closed subspace in H◦ generated by π◦C(r)(a)f , a ∈ F , then

(i) Hf ∩H2⊗Cδe 6= {0},
(ii) Hf ∩H2⊗Cδe = zmH2⊗Cδe for some m, m = 1, 2, . . .,

(iii) zmH2⊗ `2(F ) ⊂ Hf ⊂ zm−1H2⊗ `2(F ).

(iv) restrictions of operators π◦C(r)(a) and I ⊗ La, a ∈ F , to the space

zm−1H2⊗ `2(F ) are equal modulo zmH2⊗ `2(F ), i.e.
(
π◦C(r)(a)f − I ⊗ Laf

) ⊥
zmH2⊗ `2(F ) for any f ∈ zm−1H2⊗ `2(F ).

Point (i) holds because zI ⊗ T(π◦C(r)(a)f
) 6= 0 for a suitable a ∈ F . Point (ii)

because the only non-trivial closed subspace in H2 invariant under multiplication
by z are zmH2, m = 1, 2, . . . (cf. [16], Theorem 5.3). Point (iii) because zm ⊗ δe
is a cyclic vector for the restriction of π◦C(r) to zmH2⊗ `2(F ) and because Hf ⊂
(zI⊗T )−1(zmH2⊗Cδe). Finally point (iv) follows directly from (5)

(
use the Taylor

expansion of
√

1− r2z2
)
.

3.8. An unexpected realization of the representation π◦C(r).

Theorem 4. Let F be a free group on infinitely many generators and let K(F )
denote the set of all complex functions on F with finite supports. Fix a number r,
0 < r < 1, and for f, g in H(F ) define

〈f, g〉r =
∞∑

k=0

∑

|x|=|y|=k
f(x) g(y) r|y

−1x|. (16)

Then 〈 , 〉r is a non-degenerate hermitian form on K(F ).

Let Hr be the Hilbert space produced from
(K(F ), 〈 , 〉r

)
in the standard way.

Then the left regular representation L of the group F on K(F ) extends to a uniformly
bounded representation of F on Hr. This representation is indecomposable, similar
to π◦C(r) and weakly equivalent to πC(r).
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Proof. First we show that

〈f, f〉r ­
(
1− r2) ‖f‖22 (17)

for any f ∈ K(F ). This will prove the first part of the theorem.

Put fk = fχk for k = 0, 1, 2, . . .
(
recall that χk denotes the characteristic

function of the set {x ∈ F : |z| = k}). Then

〈f, f〉r =
∞∑

k=0

〈fk, fk〉r.

We have 〈f0, f0〉r =
∣∣f(e)

∣∣2 and for k = 1, 2, . . . by an elementary computation we
get

〈fk, fk〉r =
(
1− r2) k−1∑

n=0

r2n ∥∥Pnfk
∥∥2

2 + r2k ∥∥P kfk
∥∥2

2 ­
(
1− r2) ‖f‖22.

Therefore

〈f, f〉r ­
(
1− r2) ∞∑

n=0

‖fk‖22 =
(
1− r2) ‖f‖22,

which shows (17).

Define a linear map Tr from K(F ) into H◦ putting

Tr(δx) =

√
1− r2

1− r2z2 π
◦
C(r)(x) (1⊗ δe)

for x ∈ F . Since 1⊗ δe is a cyclic vector for the representation π◦C(r) (Lemma 3) and

multiplication by the function (1− r2)1/2(1− r2z2)−1/2 is an invertible operator on
H◦ hence Tr(K(F )) is dense in H◦. Also

π◦C(r)(x)Tr = Tr Lx (18)

for any x ∈ F .

The set E of free generators is infinite by the assumption. Fix a sequence
x1, x2, . . . of distinct elements in E and put x(j) = xj . . . xj (j factors). For j =
1, 2, . . . define also a hermitian form hj on K(F ) by

hj(f, g) =
〈
π◦C(r)

(
x(j)

)
Trf, π

◦
C(r)

(
x(j)

)
Trg
〉

=
〈
TrLx(j)f, TrLx(j)g

〉
.

Then
〈f, g〉r = lim

j→∞
Hj(f, g). (19)
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Of course it suffices to show (19) only for functions f = δa, g = δb with arbitrary a
and b in F .

By (5) we have

Tr(δx) =

√
1− r2

1− r2z2 r
|x|z|x|δe +

√
1− r2

|x|−1∑

k=0

rkzkP kδx

for any x ∈ F . Write hj(δa, δb) = h′j(δa, δb) + h′′j (δa, δb) where

h′j(δa, δb) = (1− r2) r|xa|+|xb|
∫

T 1

∣∣1− r2z2∣∣−1
z|xa|+|xb| |dz|

and

h′′j (δa, δb) = (1− r2)
n∑

k=0

r2k 〈P kδxa, P kδxb
〉

with x = x(j) and n = min
{|x(j) a|, |x(j) b|} − 1. Since |x(j) a| = j + |a| and

|x(j) b| = j + |b| for large j, we get limj→∞ h′j(δa, δb) = 0. To compute
limj→∞ h′′j (δa, δb) first consider the case |a| 6= |b|. Then |x(j) a| 6= |x(j) b| for large j
and so

〈
P kδx(j) a, P

kδx(j) b
〉

= 0 for any k = 0, 1, 2, . . .. Thus limj→∞ h′′j (δa, δb) = 0
in this case. Now let |a| = |b|. Observe that

〈
P kδx(j) a, P

kδx(j) b
〉

takes only value 0
or 1 and it takes the value 1 exactly when 2k ­

∣∣(x(j) b)−1(x(j) a)
∣∣ =

∣∣b−1a
∣∣. Thus

h′′j (δa, δb) = r|b
−1a| − r2j+2|a|, and so

lim
j→∞

h′′j (δa, δb) = r|b
−1a| = 〈δa, δb〉r.

Put

C = sup
x∈F

∥∥π◦C(r)(x)
∥∥ ¬ sup

x∈F
max
|z|=r

∥∥πz(x)
∥∥ ¬ 2

1 + r2

1− r2

and observe that hj(f, f) ¬ C2〈Trf, Trf〉 and 〈Trf, Trf〉 ¬ C2hj(f, f) for any
f in K(F ) and any j = 1, 2, . . .. Together with (19) it follows that Tr extends to
an isomorphism of Hr onto H◦. Formula (18) shows that L extends to a uniformly
bounded representation of F on Hr, similar the representation π◦C(r). The rest of
Theorem 4 follows now from Lemma 3.
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