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HIRZEBRUCH THEOREM FOR
KAEHLER MANIFOLDS
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1. Introduction

Let X be a compact complex manifold of (complex) dimension #, and & a
holomorphic vector bundle over X. We shall denote by £2(&) the sheaf of germs
of holomorphic sections of &, and by Hi(X, 2(£)) the i-th cohomology group
of the space X with coefficients in the sheaf £2(£). Then H'(X, 2(§)) are
finite dimensional vector spaces over the field C of complex numbers, and
HY{(X, 2(6)) = 0 for i > n. Let dim H¥(X, 2(&)) denote the dimension of the
vector space H{(X, £2(£)), and y(X, £2(£)) be the Euler-Poincaré characteristic
defined by the formula

21X, 28) = é(— 1)* dim H*(X, £2(£)) .

Let 7 (X) be the Todd class of the complex tangent boundle 7(X) of X,
and ch (§¢) the Chern character of the holomorphic vector bundle &. Then the
Riemann-Roch-Hirzebruch theorem can be stated as follows.

Theorem 1.1. The Euler-Poincaré characteristic y(X, £2(§)) can be ex-
pressed in terms of ch (§) and T (X):

(1.1 21X, 2(8) = [ch(§)T (X)],.[X] .

Formula (1.1) can be interpreted as follows: ch (¢) and 9 (X) are elements
of H*(X, Z) ® Q. If the multiplication is considered as the cup product, then
ch ()7 (X) defines an element of H*(X,Z) ® Q, and hence its 2n-th com-
ponent defines an element of H**(X, Z) ® Q. The value of this element on the
2n-dimensional cycle of X determined by the natural orientation is equal to
2(X, 2(9)).

In this paper we shall give an analytic proof of this theorem under the
assumption that X is a Kaehler manifold. We start with the following observa-
tions. Let 5 denote the complex vector bundle A(T*(X)) ® C, T*(X) being
the cotangent bundle of X. Then 7 has a canonical direct sum decomposition
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— .q
7= @9,
7 being the sub-bundle of differential forms of type (p, g) with values in the
vector bundle &.
Let {* =6 & #*? and { = @ {2 Then there is a canonical operator d,
q
(exterior differentiation with respect to Z) from C~({%) — C>({**), 0 < g < n.
The following theorem of Dolbeault is the complex analogue of de Rham’s

theorem.
Theorem 1.2. Consider the complex

0—s C=(e) % =) % ... P ey 0,

and let Z,, = kernel (d,: C~({%) — C~{{**")) and B, = image (d,: C~((*™") —
C=(), 0 < q < n. Then the cohomology groups Z,|/B, are canonically iso-
morphic to the sheaf theoretic cohomology groups HY(X, (£)).

We introduce hermitian metrices in the bundles &€ and 7(X). Then there are
canonical hermitian metrices in the bundles %, 0 < g < n. Let d*,: C=(g*"")
— C=({) be the adjoint of the differential operator d,: C*(£%) — C=(£?*!) with
respect to the hermitian metrices in the bundles {9, {?*!, and let &* = @ £

q
and £" = @ {*¢*'. Then the operator d, + d*, maps C=({°) into C=({*) and is
q
casily seen to be an elliptic operator. The following proposition is an immediate
consequence of Theorem 1.2 and the complex analogue of the Hodge de-

composition theorem.
Proposition 1.3. The analytic index of the operator

d, + d*,: C*(£°) — C=(0")

is equal to the Euler-Poincaré characteristic of X with coefficients in the sheaf
2(8), that is,

y(X, (&) = dim (kernel of d, + d*,: C=(£®) — C=(£%)
—codim (image of d, + d*,: C=({%) — C=({%) .

The adjoint of the operator d, + d*,: C=({*) — C=({" is the operator
d, + d*,: C=(» — C~(£°) and we have

(dz + d*z)(dz + d*é) == dzd*z + d*zdz == _Az ’

4, being the complex analogue of the Laplace-Beltrame operator. The operator
4, is a self-adjoint elliptic operator from C*({?) — C~({%), 0 < g < n.

Let 2 be a non-negative real number, and S,(2) be the eigenspace of the
operator 4,: C~({?) — C=({9) corresponding to 2. Then the following proposi-
tion is an immediate consequence of an argument due to Atiyah Bott; see

(4, § 31
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Proposition 1.4.

0,if2>0,
e Ne A __ |the analytic index of the operator
L, (DM S D =9 T G o) - e, if
A=0.

In fact, for 2> 0, d, + d*, induces an isomorphism of ®S,,() — D S,,., (D),
and for 2 =0, }, dim S,,(2) = dimension of the kernel of d, + d*,: C~({9)
— C=(¢" and Y] dim S,,,,(1) = dimension of the cokernel of d, + d¥*,.

The operator 4,: C=({?) — C=(£% has an infinite sequence

0221,q222,q2"'21m,q2---l—oo

of eigenvalues, each eigenvalue being repeated as many times as its multi-
plicity indicates and corresponding sequence {p,} of eigenforms forming a
complete orthonormal set in the space C~(¢9) with the hermitian inner product.
Furthermore, the series

e(t,7,2) = 3 XP (A, oDpn(2) ® ¢r(2)

converges uniformly on compact figures of (0, o) X X* to the fundamental
solution of the heat operator /9t — 4,, and we have

(Tr e t,2,2) = 3 exp (An,()<0n(2), 0(2)) ,

where { , > denotes the hermitian inner product in {9, and Tr the trace of an
endomorphism. Let

(Tr )(t, 2,2) = 3 (— DUTr e)(,2,2) ,
Then

[rowzon = 2 (0" 2 eplng, >0

= the analytic index of the operator d, + d*,:
C=(¢%) — C=(° by Proposition 1.4
= y(X, (&) by Proposition 1.3,

*1 being the volume element with respect to the hermitian metric in 7#(X).

Thus we obtain the following theorem:

Theorem 1.5. Let e%(t,7/,z) be the fundamental solution of the heat
operator 3/ot — 4, acting on (0, q)-forms with values in the vector bundle &.
Then we have the following integral expression for the Euler-Poincaré charac-
teristic y(X, 2(8)):
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+(X, 0©) = f(é;(—l)q Tre‘l(t,z,z))*l, 1>0.

X

This theorem is of course well-known.
Moreover one can show that for any positive integer N we have the following

expansion
(DI Tret(t, z,2) = 17 3 £,(2) + 0¥+, 10
q=0 i=0

where f,, f,, - - -, fy are C=-functions defined on X.

In view of Theorem 1.5 and the above expansion, in order to express the
Euler-Poincaré characteristic y(X, £2(£)) in terms of some topological invariants
of X and &, it is enough to do so for the element of H**(X, R) represented by
f.(2)x1, and this is what we shall do in this paper. In fact, we shall prove the
following theorem (under the assumption that the hemitian metric which we
introduced in T(X) is a Kaehler metric).

Theorem 1.6. Let e%t,7’,z) be the fundamental solution of the heat
operator 8/0t — A, acting on (0, q)-forms with values in the vector bundle &.
Then

> (~ D0 Tred(t,2,2) = F) + 00)

where F(2) is a C>-function on X such that the element of H*(X, R) re-
presented by F(2)x1 equals [ch ()7 (X)],,.

Theorem 1.1 is of course an immediate consequence of Theorems 1.5 and
1.6.

§§2 and 3 are devoted to some preliminaries. In § 4 we outline the con-
struction of the fundamental solution of the operator 6/t — 4, acting on
(0, g)-forms with values in the vector bundel £. In § 5 we prove two crucial
lemmas and in § 6 we complete the proof of Theorem 1.6. The present paper
is a natural outcome of the method developed in [3].

The author wishes to express his thanks to Professors M.S. Narasimhan and
S. Ramanan for their interest in this work, and is also thankful to Professor
C.P. Ramanujam for his help with Lemma 2.7.

2. Algebraic preliminaries

Let VV be a complex vector space, n its complex dimension, V* the dual
space of V, and A a linear operator from V into itself. Then for 1 < g < n,
there are two naturally defined linear operators A 24 (g-th exterior power of A)
and D?A (derivation extension of 4) from A4V into itself such that
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NV, N - ANv) =(AV) AN - A (A,

q
(DqA)(vl JASEERVAN vq) = Z (! VANERIRVAN (P AN A(’U,) A V1
r=1
N s N g s Vyy -, V€V .
We define N\°A, DA respectively to be the identity endomorphism, zero endo-

morphism of the field of scalars, and denote the trace of a linear operator B
of V into itself by Tr B.

Lemma 2.1. Let A, - - -, A, be linear operators from V into itself k < n.
Then
n 0, lf k < n,
L (=1D)ITr (D4, 0 .-+ 0o DAy) = {(—1)" coefficient of x, -+ - x in
q=0

det(x A4, + -+ + x,A)ifk=n.

Proof (see Lemma 2.1 of [3]). Let x,, ---,x; be k-parameters. Then we
have

det (I — emi ... o) = 37 (—1)2 Tr (A9(e™4r - . . gmrd))
q=0

= i (_1)q Tr (ez‘Dqu e e-TquAk) .
a=0

Equating the coefficients of x, - - . x,, in det (I — e®+41 ... ¢?*4r) and f} (—1)°
q=0

JTr (e2 0% ... emkDT4K) | we get the result.

Let ¥V, W be complex vector spaces, and n the dimension of V. For
0<g<n,let g,: Hom (W, W) X Hom (V, V) —»>Hom (W® AV, W& AV)
be the map defined by

0,(B,C) = B® DC, Bec¢Hom (W,W),CeHom ((V,V) .

The map ¢, is bilinear and therefore defines a linear map ¢, from W & W*
®V* RV (= Hom (W, W) ® Hom (V, V)) to Hom (W & AWV, W R A).
We shall denote the image of an element A of W ® W* ® V* @ V' under ¢,
by D% A).

Lemma 2.2. Let A,, - - -, A, be arbitrary elements of W QW*QV*Q V,
k < n. Then

i‘.(—l)'ITr(DqA10 .. 0oDI4)=0.

=0

Proof. 1t is sufficient to prove the lemma when
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A; =B, QC;, B,eWQRW*, C,eV*QV, 1<i<k.
But then we have

DA, 0 -+ o DiA, = (B,o -+ o B) ® (DC, 0 -+ o DIC,) ,
and therefore

Tr(Dquo quAk):TI'(Blo OBk)TI‘(DqCIO ODqu),

so that
3 (—1D?Tr (D%, 0 - o DUA,) = Tr (B,o - - o By)
q=0
.31 (=1)2 Tr (DC, o - - - o DCy) = 0, by Lemma 2.1 .

£
1
<

One can similarly prove the following lemma.

Lemma 2.3. Let A, .-, A, be arbitrary elements of WQW*QV* RV,
k <n, and B,, - - -, B, be arbitrary elements of W @ W*. Let ¢ be a permu-
tation of {1, ---,k + I}, and for any integer q between O and n let the endo-

morphisms SI(1 < i< k 4+ ) of W& AWV be deflned by

g0 D4, , for 1 <i<k,
OB @I, fork+1<i<k+l,

where 1, is the identity endomorphism of N\*V. Then

(=1 Tr(Sfo---088,)=0.

0

M=

)
[

Now let V be a real vector space with a ‘J-structure’ (thus J is a given linear
operator from V into itself such that J* = —1). Suppose that we are given a
positive definite symmetric bilinear form B in V' such that B is invariant under
J, that is,

~ B(Jx,Jy) = B(x,y) , x,yeV.

Let V* be the dual space of V. Then the J-structure on V' induces canonically
a J-structure on V*:

X, Y =X, JY*>, XeV,Y*eV*.
Let V¢, V*¢ be the complexifications of ¥ and V*, and put

Vil = {veVe|Jv = iv}, Vol =lveVe|Jv = —iv},
VL = {ve V¥ |Jv = v}, Vel = {peV* |Jv = —iv}.
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Then V¢ = V0@ V!, V¥ = P*L0p V*01 and furthermore
VELe = {p*¥ e V¥ | (v¥, wy =0 for we PV},
Vol = {v* e V¥ |{v¥,wy =0 for we V"% .
Thus V*"® and V**! are respectively the dual space of V"' and V%'

Let 2n be the (real) dimension of V. There is a unique element (volume
element) e ¢ A"V* such that B(e,e) = 1 and for any basis e, Je,, - - -, e,, Je,
of V'*,

e=oae, NJe, N\ --- N\ e, N\ Je,, with a positive constant a.
We extend the bilinear form B to Ve¢(V*) as follows:

B(X +iY, X' +iY)=BX,X") + BY,Y) + iB(Y,X') — iB(X,Y)) .

The bilinear form induces a map ¢’ of V' into V*:
{P'x),yy = Bx,y), x,yeV .

We extend the map ¢ by complex linearity to a map ¢ of V¢ into V*¢. The
map ¢ is an isomorphism and thus defines an isomorphism ¢ & I,: V° & V*e
— V¥ @ V*e I, being the identity endomorphism of V*¢. Combining the
isomorphism ¢ & I, with the canonical map from V*¢ & V*c to V*e A V*e
(v, ® v,— v, A\ v,) we get a map, which we shall denote by ¢, from V¢ & V*¢
to V*e A V*e,

Lemma 2.4. Let A, -, A, e V"' & V** (thus each A; is an endo-
morphism of V**Y), Then

(20(—1)11 Tr (DA, 0 ... quAn)>e = (—D"p(A) A - N o(4,) .

Proof. There exist vectors e, .--,e, in V such that e,Je, - -,e,,Je,
form an orthonormal basis (see Proposition 1.8 of [2]). Let e*, —Je*, .- .,
e,*, —Je,* be the dual basis for V*, and put v; = i(e; + iJe;) and v*; =
ef + ile¥. Then v, - - -, v, and v¥, - - -, v} are dual bases for V! and V*"1,

Let 4; = 3 alyv; ® v¥. Then we have

5 (=10 Tr (D4, o -+ 2 DiA,)

= (—1)* coefficient of x, - - - x,, in det (x4, + --- + x,4,),
by Lemma 2.1

= (—1)" coefficient of x, - - - x,, iIn >} €, [] (2 x:a%, 1) »
Pl i=1 3
¢, denoting the sign of the permutation ¢
=(=D" X e 2 ay - al
4 0

p— n 1 7
=(—=D" Y e, €, Ay Aoty >
asp
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GA) A - A ol(Ay)
- %(2 @0F A VDA - A (S ahoF A P

1 _
_ 1 n 7k sk * %
= 2 G G N Vi A o N 0 A U
7,
1
— 1 _— * ok *
= o 21 € €, ooyt Dypm Dy N\ Uy A oo N 0Fay N 0
7,0
1 1
— - - *
= 2 € B, WP N VEAN o ANTEN VF
a,p
— 7 1
=0 Y€, €, Ayt B N JeF N oo N eF N Je,*
a,p
— 1
=1 (Z € € Qo af(n)p(n))‘?
7,0

= (—i)"(q‘; (—1)*Tr(D%4,0 -+ o DqAn))e .

This completes the proof of lemma.

Now let W be a complex vector space. There is a natural map ¢, from
WRW*QV* AV*) x ... x (WQW*Q V* A V*%) (k-factors) into
WOWH® --- QW Q W*RQ N\*V*e,

W, @WEQ (v, Auy, -+, w, @WFR (v A uy))
'—’W1®W;k®"'®wk®wf®(v1/\u1/\ AN TWAR /3
w,e W, w¥eW*  ov,,uelVic.

Moreover the map ¢, from (W & W*) x ... X (W & W*) (k-factors) into C
defined by

SDZ(fl’ M ‘9fk) = TI' (fl o+ 0 fk)a fie W® W*(z Hom (W5 W))

is bilinear and therefore defines a linear map @, from WX W*® --- W&
W* to C. Let ¢ = (¢,&1,;)0p,, I, being the identity endomorphism of A 1/*,
Lemma 2.5. LetA,,..-,A, beelements of W Q W*Q V"' Q V*"!, Then

( 20(_1)(, Tr (D°A,0 -+ o DqAn))e = (=), @) Ays -+, Uy R 0)A,) .

Proof. It is sufficient to prove the lemma for 4, = B, ® C;, B;e W ®
W*, C,e V"' @ V*"' 1 < i < n. But in this case the lemma is an immediate
consequence of the previous lemma.

Corollary 2.6. Assume SeWQW*Q V"' QV*"' andlet A,, ---, A, be
arbitrary elements of V"' @ V*"' k < n, and ¢ be a permutation of 1 to n.
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Assume B,,, =1, ® A, for 1 < r < k, I, being the identity endomorphism
of W, and B,,, = S fork + 1 <r < n. Then

<§}0(—1)‘1 Tr (DB, o -+ - o DqB,,))e

= | D T @S e oD U@ DM, o -0 DIA)e
= ()AL B PS, - U @D A pld) A - A gldy) .

The last lemma of this section is about the polynomial functions defined on
the Lie algebra #l(n, C) of the Lie group GL(n, C) (the group of n X n in-
vertible matrices with complex entries). Let f,,f,, - - -, f, be the polynomial
functions defined on #l(n, C) by

2.1) det(lln _ Zwl_tlx) - iozn-rf,()(), Xc%ln,C) .

With respect to the canonical basis for %Il(n, C), we can represent every
element X of %l(n,C) by a n X n matrix (X%) and then have the following

explicit formula for the functions f,, f,, - - -, fn:
2.2) ) = GV sy x|
Q2rv —1) r! o (D) a(r)

where the sum runs over all ordered tuples (i, - - -,i,) and the permutation ¢
of {1,---,r}.

Let r < n be a positive integer, and § a permutation of {1, - - -, r}. Define
a polynomial function g, on the Lie algebra %I(n, C) by
2.3) X)) = lsil,--Z-,iTSn X;ﬁ;u) e X;Z;m .

We can define the polynomial function g, in an intrinsic way as follows. Let
h, be the endomorphism of ®~” C" (r-th tensor product of the complex vector
space C™) defined by

]’l,;(?h@ ®?)T) = ,Ub(l)@ ®’U§(,) .
Then g,(X) = Trace (h; - @ X), X e %l(n, C), and
g(Y'XY) = Trace (h; c ®" (Y'XY))
= Trace (h, o (" Y V) c (®" X) o (K" Y))
= Trace (" Y Do h, o (R X) o (K" Y))

= Trace (1,0 (®" X) o (R®"Y) o (K" YY)
= Trace (h, o ®" X) = g(X), X,Ye%Iln,C).
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Therefore g, is invariant under the action of the Lie group GL{n, C).

Lemma 2.7. There exists a unique polynomial P(Y,, --.,Y,) in the vari-
ablesY,, ..., Y, P(Y, .., Y,) = > Pr Yo ... Yer, such that
(2'4) ga(X) = Pa(fl(X)a R} fr(X)) ] X € gl(ﬂ, C) .

Proof. We shall first prove the lemma for diagonal matrices. A diagonal
matrix X with entries X, .- -, X, on its diagonal can be identified with the
tuple (X,, - --,X,). The functions f,, ---,f, are then constant multiples of
elementary symmetric functions of X, - --,X,. Moreover, the function g, is
easily verified to be a symmetric function of X,, - - -, X,,. In fact, any invariant
polynomial function (on %i(n,C)) restricted to diagonal matrices is a sym-
metric function. Hence there exists a unique polynomial P,(Y,, ---,Y,) such
that (2.4) holds for all diagonal matrices X. Since the functions P;, f,, - - -, f,
are invariant under the action of the group GL(n, C), we have (2.4) for all
matrices X which can be diagonalized. In particular (2.4) holds for all matrices
X which have distinct eigenvalues. Since the matrices which have distinct eigen-
values form an open set and both sides of (2.4) are analytic functions, we have
(2.4) for all matrices X.

3. Commutation formulas for covariant differentiation

Let & be a hermitian inner product in the holomorphic vector bundle &.
Then there is a unique connection (called the hermitian connection) in the
principle bundle associated with £ such that the metric tensor is parallel and
the connection form is of type (1,0); see [2, Chapter 1X, § 10]. Let U be an
open subset of X such that U is holomorphic to an open subset of C*, (we shall
denote the coordinate functions by z,, - --,z,) and the bundle ¢ is trivilized
over U. Let s,, - - -, 5, (k = rank of E) be the holomorphic cross sections of E
defined on U, which are everywhere linearly independent. Let

ey = BGws),  1<ab<k,
and (h°?) be the inverse matrix of (k,;) so that >, h*¢h,, equals O if a == b and

equals 1 if a = b.
With respect to the hermitian connection we have the following formulas for

covariant differentiation:

Va/aza(sa):Zlagsb5 1_<_a£n,1£a£k,
b
where [ 2 = Zc: aa‘};ac—h”, and Va/aé,,(sa) = 0.

Let S be the curvature tensor associated with the hermitian connection and
set (5(9/0z,,0/0Z,))s, = 2, Sh.p8- Then S8),; = —al.%/0Z,.
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Let H be a hermitian metric in the tangent bundle 7(X) of X. Thus for each
xe X, H is a positive definite inner product in T (X) such that HUX,Y) =
IH(X,Y) = —H(X,JY). Let g be the Riemannian metric in 7(X) defined by

g(X,Y) =Realpartof HX,Y), X,YeT, (X), xeX.
We extend g to the complexified tangent bundle 7°(X) as follows:
gX, + iX,, Y, +iY,) = g(X,,Y) + g(X,, Y, + ig(X,,Y)) — ig(X,,Y,) .

Let g, = g(3/0z,,3/0z;) and (g*/) be the inverse matrix of (g,,).

We consider the hermitian connection in the principle bundle associated with
holomorphic vector bundle 7(X). The principle bundle associated with 7T'(X)
can be regarded as a real vector bundle (say {) with structure group GL(2n, R),
and the hermitian connection defines a connection in {. We extend the covariant
differentiation in 7'(X) (regarded as a real vector bundle) given by this con-
nection in { to 7¢(X) as follows:

VY1+7;Y2(Z1 + iZz) = VY;(ZI) - VYQ(ZZ) + iVYl(Zz) + iVYg(Zl) ’

Y., Y;, Z,, Z, being vector fields defined on an open subset of X. Then we have
the following formulas for covariant differentiation:

Va/aza(a/aZ5) == Z lega/azr N Va/aia(a/azlg) = 0 , 1 S «, ﬁ S n,
where

0g
I, = 3 Y56 ger |
s =2 2

Let K be the curvature tensor, and set
(K(3/0z,,0/9Z,))(8/0z,) = Z,,: K:,;3/0z, ,
(K(3/0z,,3/0Z,)(@/0Z,) = } K3,;0/0Z, .

Then
ol 5 ar
3.1 1s= ——-« and Ki,= &
raf az@ faf oz,

where [, denotes the complex conjugate of I . From now on we shall assume
that the metric g is a Kaehler metric. The Kaehler property is equivalent to
the following relation of summetry:

Iy =1T%,

(that is the hermitian connection has no torsion).
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Let
o= T hoadln Ao Ady)
B1<i<Bq

be a C~-(0, q) form defined on U with values in the vector boundle ¢ (thus
peC=(U, £® A'T*"(X))). Then we have the following formulas for covariant
differentiation (with respect to canonical connection in & ® A1T*¢(X)):

(32) (Va/azaQD)gl...pq = angl...ﬁq/azn + Z laab§031...pq )

(3.3) (Va/za@)gl---ﬁq = a?EI---ﬁq/aza - Z Fﬁﬂr¢gl"'ﬁr—lﬁﬁr+l‘“ﬁq .

Let AeC(U, e Q &E*Q TO(X) Q T**(X)). Then for each xe U, A(x) is
an element of £, ® &F ® T%Y(X) ® T**(X) and hence defines an endo-
morphism D%(A(x)) of &, ® AT*%(X). Thus we get an endomorphism D74
of C=(U, Q@ NT*"(X)) (regarded as a module over the ring of C*-complex
valued functions on U):

D A())(x) = (DA (x) ,  aeC(U,&§® NT*UX)) .

In the following lemmas covariant differentiations are taken with respect to
the canonical connections in the bundles & Q £* @ T(X) ® T*(X), £ Q@ A¢
T**Y(X) induced by the hermitian connections in the bundles &, T(X).

Lemma 3.1. Let X,,.--,X,, be C-vector fields defined on the open set
U, AeC=(U, & ® &%), and the operatorsV y , - - -,V 5, of covariant differentia-
tion be denoted respectively by V,, - ..,V ,.. Then we have the following com-
mutation relation;;

Vlo"'OV'm,O(A®Iq):(A®Iq)OVlo"'OVm
+ Z Z ((Va(l) R OVa<k)(A))®Iq)°Va(k+1)° OVﬂ(m) .

= o,
where I, denotes the identity endomorphism of NT*"{(X).

Lemma 3.2. Let X,, -.-,X,, be C*-vector fields defined on the open set
U, Ae C~(U, £ Q &*Q T*(X) ® T**'(X)), and the operators Vy , -,V
of covariant differentiation be denoted respectvely by V., --.,V,. Then we
have the following commutation relation ;

ViowivolVypoDIA=D'AclV 0.-.-0olF,

+ Z Z Dq(Va(l) 0+ 0 Va(k)(A)) ° Va(k+l) © s+ 0 Va'(m) s

k=1 oQ)<---<a(k)
g (k+1) < v e Lo (m)

where the second sum on the right hand side runs over all permutations ¢ of
{1, .-, m} such that o(1) < - .. < o(k) and a(k + 1) < ... <a(m).
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The proofs of Lemmas 3.1 and 3.2 by induction on m are analogous to the
proofs of Lemmas 3.2 and 3.3 of [3]. Here we shall not go into the details of
the proof which are quite straight forward.

For any two vector fields X, Y defined on U, K(X,Y) is an endomorphism
of C~(U,T*(X)) and maps C=(U,T**(X)) into itself. Therefore we can
regard K(X, Y) as an endomorphism of C=(U, T**'(X)), and then have

VxolVy —VyoVy)a= (DU QK(Y, X))
(3.4 —8Y, X)) Q1 + Vixy)(@) ,
aeC=(U, § @ NT*(X)),

I, denoting identity endomorphism of & and I, the identity endomorphism of
NIT*Y(X).

Formula (3.4) for ¢ = 1 is just the definition of curvature tensor. Moreover
it is easy to see that if (3.4) is true for « = ¢y, ¢,, where

@ e C°(U, §® N"T*(X)) , @, € C=(U, N2T*"Y(X)) ,

then it is true for « = ¢, /A ¢,. Hence by induction on g, we get formula (3.4).

Lemma 3.3. Let X, X,, - --,X,, be C”-vector fields defined on U, and the
operators Vy, - - -,V of covariant differentiation be denoted respectively by
V-,V Then

Vlo---onoVX:VXono”-on
m—1

+ Z Z . Dq(le & (Vu(l) o +r- 0 V.;(j)(K(X, Xv(j+1))))
F=0 ()< ee<a(F+1)
g (f+2)<ovr<la(m)

OVv<j+2)°"‘ OVa(m)

((70(1) o rr- 0 Va(j)(S(Xa X.:(j+1)))) ® Iq)

1

8
1

|
™

I

0 o)<+ <o (J+1)
o (J+D < La(m)

i
°© Vu<j+2) o0 V,,(m)

m
_ZVIO"'OVi—loV[Xi,X]OVi+IO"'on'

Proof. Lemma 3.3 follows easily by arguing inductively on m and using
Lemma 3.1, Lemma 3.2 and formula (3.4).

4. Construction of a parametrix and the fundamental solution

We shall first obtain an expression for the operator 4,. This expression will
be an analogoue of the expression (1) of § 3 of [3]. Let U be an open subset
of X such that U is holomorphic to an open subset of C”, and the bundle £ is
trivilized over U.
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Let o = (2 ¢8,...5,4%5, N\ --- N\ dZ;), be a C=(0,q) form defined on U
with values in the vector bundle £. We have the following expressions for the
operators d, and d¥ (see [5, Chapter 3, § 10]),

(d2¢)g1"'ﬁq+1 = Z ("l)r_l(VﬁTSD)gl...ﬁr...pq_)_1 s

where “A” denotes that the particular term is to be omitted, and

A5y = — 2 8V a1y -
Therefore
(d;kdé(p);l'-'ﬁq =—280,- Vp(@))gl...gq
— Z (— 1)7'g5ﬂ(l7n [} Vﬁr(so))gﬁl"'ﬁr"'ﬁq 5
AN, = — T (=078 o 7 (D)sryty -

Thus we get
“4.1) d, = —(@*d, + dd*) = Y gV, Vie) + Rp) ,
where
Ry(@f,py = L (=178 (W, 0 Ve = Voo V5 )ONp, 5rpg
= X A(=1)""¢"{(0/3Z;,) Uar@hpse--rte)
— gs L5V a@)5pse b o5 sa8g
— 5 T Vbt
+ (a/aza) ( §s f‘;rﬁsgogﬁl'"ﬁr"'ﬁs—1353+1“'ﬁq)
+ (8/0z,) (Fgrﬁwgh...ﬁr...ﬁq) - le(Vg,go)E,ql...g,...;q} .

By the relation ['g, = I'%, the second and fourth terms on the right side of the
above equation are zero, and we thus obtain

(Ry(Nty5, = 2 (= 1)77'8%{(01,3/0Z5,) 0hp,...b,r--84
— I L3 by T @I%,5/02.) @i, breeobg
LA A P
+hi D s Pt brbsmisbossreiba) -

Therefore

(Rq(ga))gl...pq = Z gﬁﬂ (ala%/azﬁr) SD%I"'FT—IH.ET—\‘-I"'F(]

4.2) _
+ Z gﬁa (argrﬂ/aza) 90g1"'ﬁr—1fﬁr+1-"ﬁq .
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At each point ze X, the curvature tensor fields § and K are elements of
£, Q& Q@ THX) ® THX), TAX) @ THX) ® THX) ® T#(X) respectively.
But by the hermitian metric we can identify T3(X) with T,(X). Moreover
there are projection operators from T¢(X), T*(X) onto T%'(X), T**'(X)
respectively. By using the above isomorphism and the projection operators,
S and K define elements (which we shall also denote by § and K) of £, ®
ERTYX) QT X)), TP (X)) Q@ TH'(X) Q@ Ty'(X) ® TF'(X). Thus we
may have

S =3 S5, ®s5,*® -0 ®dz,,

0Z,
K=yki ? ®d4,0-0 @4z,
Z, oz,
where
ol 2 7 ols
Sa? — Ba ab , K?I — ve U~ 9B .
or 28 iz, W= nE

By contracting the second and third indices the tensor field K defines a tensor
field K of type (1,1):

9 @dz, .

K = % K3
x5 8T

@

The tensor ﬁelds S and K, as we have stated in § 3, define endomorphisms
DS, I, ® DK of C=(X,& ® NT**"Y(X)), and now we can write (4.2) as

R(p) = —DiS(p) + (I, @ DK)(p) .
Hence by (4.1) we get the expression
(4.3) 4, =3 gV, oV; + I, D'K — D°S .
Therefore for any complex-valued C~-function f defined on U we have

(4.4 4Gp) = (Lo + (L) + &V HW.0) + & W.NW ) ,

o*f
4.5 Af =g 2 .
4.5) f=2g 52,02,

We now proceed to construct a parametrix for the fundamental solution of
the heat operator 9/t — 4,. We shall first fix some notation. By a double
(0, g)-form ¢ defined on an open subset W of X X X, we shall mean an element
of C=(W, (¢ ® NT* (X)) @ (£ @ NT**(X))). Thus for each (Z',2)eW,
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we have ¢(z/,2) € £, @ N T (X)®E,Q NITF(X). Let ze X and ve §,Q
NTFX)YQ &, ® AT*1(X). Hermitian metrices in € and T(X) introduce
canonically a hermitian metric in £ ® AT**!(X). By this hermitian metric in
& ® NT*Y(X) we can identify &, @ AIT**(X) with its dual vector space,
and thus there is a canonical isomorphism of (£, ® AT* (X)) ® (&, ®
NITFH(X)) with (&, @ NITFHX))* ® (&, ® N1TF(X)). We therefore can
regard v as an endomorphism of &, @ AT*"(X), and shall denote the trace
of this endomorphism by Tr ».

We fix an integer ¢, 0 < g < n and construct a parametrix H%(¢,7’,z) in a
sufficiently small neighbourhood of the diagonal in X X X. We set

(4.6) Hy(1,2,2) = Qmt)"(exp (— P/ Q2D)) 51U, 2) ,

where U9z, z) are double (0, g)-forms defined in a sufficiently small neigh-
bourhood of the diagonal, and r is the geodesic distance between z’ and z.
The forms U*4(z’, z) are to be determined such that U®%(Z’, z’) is the identity
endomorphism of &, @ AT%%(X) and

(% - Aé) H3(t,2',2) = —Qat)™" exp (=7 | OV A,UY (', 2) .

The integer N is to be chosen larger than n, and these conditions determine
the double forms U*9(z’,z) uniquely in a sufficiently small neighbourhood of
the diagonal as we shall see now.

We have
? : or or 1
ool L)~ 2 e,
P\To)) T8 T, n
But gﬂ“rz% 684 = %rZ; in fact, by denoting the Riemannian inner product
Ze 0%,

by (, > we have

gﬁﬂ r2<afr _air
0z, 0Z,

Il

oo| = K|

d, dp?y = %{@ra drs + dp, drd)
2 2 1 2
= (dr s dr> = —r
2
by choosing normal coordinates around z’. Therefore we have

slow(=3)) = (o[- 5)) (e — %)

and, by (4.4),
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sl o)< ) [ 2~ s

+ 4,U%4,z) — gﬁ“L Ty urdz,z) — gl i17,,U"-‘1(z’, z)} .
t 0%, t 0z

a

Therefore

(i _ A2> Hi(t, 2, 7) = Qat)~" exp (_2th>

ot
N 2 l‘ —n
izn_ 1y r2>U“’z 2) — AU, 2)
s {(2t2+ t 2t2+ ) Uz (
+ gl T p iz, g + g pgia, z)} :
t 0%, t oz,
Equating the coefficient of Z_ln exp(—r_z) in (i — A2> Hi(t,7/,2) to
zero gives (2a1) 2t at
(= n+ JOVUE D + (g T, + gl ALECD
4.7 0Z, 0z,
= 4,02, 2) .
On the other hand,
or 0 or 0
(4.8) rl =g T Oy gpey 0T O
ar ~ 8oz, 5 T8 e

d/dr denoting differentiation along the geodesic joining the points z’ and z.
In fact, we consider the differential form 1dr? (defined in a sufficiently small
neighbourhood of the point z'), d denoting the exterior differentiation with
respect to the second variable. The Riemannian metric (which by definition is
the real part of the hermitian metric) in 7'(X) induces an isomorphism ¢ of
T (X) with T*(X) for all x¢ X. By using normal coordinates one can easily
see that ¢~(3dr*) = r-d/dr. On the other hand, we have

3drt = 4d* + } 6r az, ,
Z a
so that
or 0 or a
~i(1drt rgfe— -~ L r— g¥f ~ |
oG = o VS o,

Hence we obtain (4.8) and can write equation (4.7) as
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VriaadUPUZ2) + (0 — n + 34,°DU, 2) = LU U2, 2) ,

4.9
(4.9) O0<i<N.

In [3] it is shown that the system of equations (4.3) of that paper has a
unique solution in a neighbourhood of the diagonal. One can in an exactly
similar way show that the system of equations (4.9) has a unique solution in
a sufficiently small neighbourhood of the diagonal in X X X, with the initial
condition U*%(z’, ) equal to the identity endomorphism of &, ® NITHU(X).
Thus we can construct a parametrix H(¢, z’, z) in a sufficiently small neigh-
bourhood of the diagonal W in X x X. Starting with this parametrix H%(t, Z/, z)
one can carry out the construction of the fundamental solution (¢, 7/, z) for
the heat operator 9/t — 4,. The method is completely analogous to the method
used in [3, § 4]. Furthermore one can show that

(Tred)(t,2/,2) = (Tr HY(, 2/, 2) + 0¥ -7+
= 2rt)™" Z_; 1 Tr U2/, 2') + O(tV~"*1), by (6).

(See the proof of formula (4.8) of [3].) Since U*%(z/,z’) is the identity endo-
morphism of &, @ ATE%(X), we get

(Tr (1, 7', 7) = (2m)—n{k( Z) 4T UM, Z) + -
(4.10)
+ N Tr UV, ) + 0¥, ¢ |0,

k being the rank of the vector bundle &.

5. Two crucial lemmas

We fix a point z’ of X, and let U be an open neighbourhood of z’ such that
U is holomorphic to an open subset of C*, ¢ is trivilized over U and any two
points in U can be joined by a unique geodesic lying in U. To start with
some elementary observations let X be a C=-vector field defined on U. Then

[ , ; ] = X 4+ Y, where Y is a C=-vector field such that Y(z’) = 0. To
r

prove this we introduce normal coordinates (y,, - - +, ¥,,) in U such that z’ has
coordinates (0, - --,0) and the matrix (g,;,(z')1<; j<on> 815 = <8/0Y:,0/0Y,),

equals the identity matrix. Then rdi = > y,0/0y;, andif X = 3 X,;0/dy;
r

for any C~-function f defined on U we have

rer

o*f
ay jay 3

3

(f)—ZX +Z'
i)
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(rd OX)=ZIy»an Tt 5yx )

dr 3y, oy “ayy,
Therefore
d ] 0 0X, 0
X,r =y X, - + ok T =X4Y,
[ dr Z ] ayj Z Vs a)’j oYy, T

where Y is a C=-vector field such that Y(z’) = 0. We also observe that
(4,2, 2))(2/, ') = 2n, which follows from the relations 4, = {4 and
4, (r(x, y)D(x, x) = 4n, 4, denoting the usual Laplace operator; the latter
can be shown by using normal coordinates.

We now state our first lemma of this section, which we think can legitimately
be named as a cancellation lemma.

Cancellation Lemma 5.1. Let 1,1, L, i be non-negative integers such that
L2+ L, +i<n. Let X,, ---,X,, be C*-vector fields defined on U, A,, - - -, A;,
be C=-sections of £Q &* Q@ T*(X) Q® T*"(X) defined over U and By, - - -, B, be
arbitrary elements of C=(U,E®&*). Let ¢ be a permutation of {1, -+ -, I, + L}.
For any integer q, 0 < q < n, define the endomorphisms S, 1 < i <1, + 1,
of C~(U, & ® NT*"(X)) by

Dq(Ai)’ for 1 S i S lz ’
Sty ={1B;_,,®1,, for l, <i <, + L, 1, being the identity endomorphism
of NIT*%(X).

Let the operators Vy,, - - -,V x, be denoted by V,, - .., V,,. Then we have

M=

(=D TrlSte -+ oS8t 0Fio - oV (U2, )N, 2) = 0

0

I

q

(all the operators act with respect to the variable 7).

Proof. We shall prove the lemma by induction on i and /,. Let j be a non-
negative integer and suppose that the lemma has been proved whenever i < j.
We shall prove the lemma for i = j. Let y, be the operator defined by

/quStlzo"‘OS?:&Z:;OVIO"'VL

"

First suppose that I, = 0. If j == 0, then the lemma follows from Lemma 2.3.
Therefore we can assume that j > 0. The double form U7 %(z/, z) satisfies the
differential equation

Vrdi(Uf"’(z’, )+ (G —n+ 40U, 2) = 4V, 2)

(5.1 = gV Ve U~"4(,2) + DU @ KU/, 2))
—DiS(UI~v(z/,2)) by (4.3).
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Since the double form F rt U747, z) is zero at (2, z) we have
[P U@, D)@, 2) = 0.
r

Therefore applying the operator g, to both sides of equation (5.1) and then
taking the trace we obtain

j z (—1)* Tr [p (U2, DD, 2)

= g 33 (— DO Tr [y o 7, o P09, D), 2)

+ f_; (— 1D Tr [, o DU, @ K)UI %2, 2D, 2)
=0
- 20(— 1)4 Tr [t o DUSYUI 42, DN, 7)) -

Since by the induction hypothesis each term on the right hand side of the above
equation is zero, we have

gjo(— 1) Tr [ (U2, D)2, 2) = O .

Now suppose that I, > 0 and the lemma has been proved for smaller values
of I,. We wish to apply the operator g, to both sides of equation (5.1) and
then take the trace. Let

T;I:S‘llo"'OS;I2+13°VT-;.°VXO"'OVll’
Tj= % StooStuo DL OK(r L X))
r

o
a(2) <0 <a (ly)

OVa<2)°"'°Va<zl) d
Iy
T§= 318to oS olie ol ol a]olie ol
i=1 r

By Lemma 3.3, p, o Vrdi = T? 4+ T¢ + T? + a sum of operators for each of

which the induction hypothesis for I, applies. Since the vector field r7 is zero
at the point 7, r

[TY(U> 4, NI, 2) = [TUU Y2, 2NN, 2) = 0.
Also by the remark made at the beginning of this section,
[
ngo oslqz+13°’71° OVi-lc’V[Xi,ri]oVino OVh
i=1 ar
11
= ll,uq + leilo 08?24-130710 OVi—loVX’iOViHO OVZI »



RIEMANN-ROCH-HIRZEBRUCH THEOREM 271

where X;’s are vector fields such that X,(z') = 0. By Lemma 3.3,

11
Z:S%O"'OS;IstOVlo“'OVi—l"V)?iOViHO"'OVll
i=1

151 A
=3 8008, ,0Fg 0V 0 --0oV0--.0F, 4+ a sum of
i=1
operatars for each of which the induction hypothesis for [
applies.

Lastly since X,(z/) = 0 for 1 < i < I,, we have

11 A .
[ZS?O croShgo Vg olVie ol onl(U"q(z’,z))](z’,z’) =0.
t=1

Therefore the induction hypothesis gives

5 (— 10 Tr [ o P £ (U, 20| @, 2)
= I 33 (=D Tr [ (U7, DI, 2)

and also
1 (4,07, 2)) = A p(UP U2, 2))

11

+ 2 2 (Vv(l) O Va<k)(dz("2)))53 o o8h.,

k=1 o (1) <o Za (k)
o (k+1) <+ <o (l1)

© V:r(k+1) O 0 Vn'(h)(Uj’q(z,a Z)) .

Thus by the induction hypothesis for I, we obtain
2, (=D Tr [p(4.() U2, 2D, 20)
=
=2n 3 (=1 Tr [p U4, ), 2) .
q=0
Similarly, by the induction hypothesis (for i) we have

2 (— 1D Tr [z 0 877, 0 Py(U (2, DDI, 2) = 0 .
g=0
Lastly Lemma 3.2 together with the induction hypothesis (for i) gives

é;]o(— D4 Tr [;lq ° D‘I([E ® K)(Uj—l,q(z/’ N, 2) =0,
i (— 1) Tr [ o DISWU 4, 2)I(Z,2) = O .

=0
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Therefore applying the operator g, to both sides of equation (5.1) and then
taking the trace we get

a4+ z (— 1) Tr [ (U2, D)UZ> 7) = 0 .
Since I, + j > 0, we have
5 (=D T [ (U4, D)@, 2) = 0.,

which completes the proof of Lemma 5.1.

We now come to our next lemma of this section, and shall first introduce
some notation. Greek letters @, 8, - -+ will run from 1 to n. We shall denote
the operators V', ;, , V3,5, by V., V , respectively, and the element K(3/0z,, 3/9Z;)
of TP1(X) ® TF*(X) by K(w, p)(K(3/0z,,0/0Z,) is in fact an endomorphism
of T%(X) and it maps T¥%(X) into itself. We restrict this endomorphism
K(9/0z,,3/0Z5) to T**(X) and denote it by K(a, §)). By P, we shall denote
the group of permutations on k-symbols. Let peP,, and A4,, ---,A4; be
operators from a suitable space into itself. By p(A, o - - - o A;) we shall denote
the operator A,y o -+ o 4,4 . For the sake of simplicity from now on we
shall assume that the coordinate functions z,, - --,Z, are chosen such that
(8:;(z)) is the identity matrix.

Lemma 5.2. Let [, m, p,i be non-negative integers such that l + m+p +i
= n, ¢ be a permutation of {1, - - -,m + p}, p be a permutation of {1, - - -, 2p}
and t be a permutation of {1, - --,1 + m}. Then

X io(— 1) Tr [{=((DS)! o (I, @ DK (aty, @y ) - - -

1<ay, @y p<n q=

o (Ie @ DK(ap, aa(m)))) ° P(Vam+1 °© V&a(m+1> Or-- 0 V“m+p ° Vﬂa(m+13))}
(5.2 (U, ), 7)) = ZV'_. DI 2

r=1 3€Pp—y 1<y, 8p_y<n

S (= DT [(DIS) o (I, ® DK (aey, ) © - - -
a=0
4 (Ie ® DqK(an—n C_Y;s(n—r)))](zl) 5

where F,;'s are constants depending upon 8,1, m, p, i and the permutations g, p.

Proof. 'We shall prove the lemma by induction on i and p. Let j be a non-
negative integer and suppose that the lemma has been proved for i <j. We
shall prove the lemma for i = j. Let A4, denote the operator

Z T((Dqs)l © (Ie ® DqK(a'b &a(l))) O+ 0 (Ie ® DqK(am’ &v(m))))

1<8q, 00, @ 1 p< 7

° p(V“mH °© Vaa(mﬂ) o0 V“m+p °© Vb?a(m+p)) .
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First suppose that p = 0. If j = 0, then the lemma follows from Corollary 2.6
since U%%z’,7") is the identity endomorphism. Therefore we can assume that
i>0.

Applying the operator A, to both sides of (5.1) and then taking the trace
we get

j i}o(— 1)q Tr [Aq(Uj»Q(Z/, Z))](Z/, Z/)

n

N (=DITr[A,0F, o F (U2, DI, 2)

q

=2

=3

+ —1)7Tr [A4, o (I, ® DEYU 42, )7, 2)

q=0

2 (
_ 2 (—1)7 Tr [, o DISU 42, DUZ, 2)

q=0
By the induction hypothesis Lemma 5.2 holds for each of the three terms on

the right hand side of the above equation. Hence we have (5.2) for i == j and
p=0.

Now suppose that p > 0 and the lemma has been proved for smaller values
of p (and i = j). Let B,, C, be respectively the operators

T((Dqs)l © (15 ® DqK(“U aa(l))) O+ 0 (Ie ® DqK(am’ (Ta(m)))) 5
p(V"m+1 © Vﬂn(m+1> R V” °© V

m+p '741(7n+p)) ’

and X, - - -, X,, be vector fields such that

Xp—l(zk+1) = a/az"‘mﬂcﬂ’ 0 S k é b — 1; X.”"l(‘zlc) = a/az“u(mﬂc)’ 1 S k S D.

Then C, = Vy, 0 -+ oy, . As in the proof of Lemma 5.1, we want to apply
the operator A4, to both sides of (5.1) and then take the trace. We first look
at the term A, oV, 4 (U»%(z/, 2)), and shall apply Lemma 3.3 for the operator

. d .
Vyyo-+oVyg,oV, . Since the vector field r- - is zero at z/, we have
dar ¥

[Bq o Vrdi oV g0 -0 Vsz(Uj’q(Z/,Z))](Z’,Z') =0,

z B, (If ®D‘1K(r~j;, Xa(l))>o Vigw o -

o
6(2)<--+ <o (2p)

o U2, )] @20 = 0.

IfO0<r<2p—1 and ¢ is a permutation of {1, -..,2p}, we obtain, by
Cancellation Lemma 5.1,
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i (—DeTr [Bq o ((VX,,u) 0 «nn OVX«(r)S<r§;

=0

) ®1q)

°© VXa(r+2) o0 VX.,(gp)(Uj'q(Zl, Z))](Z/,Z,) =0 )

I, denoting the identity endomorphism of C=(X, NT*"(X)). Also, if 2 < r
< 2p — 1 and ¢ is a permutation of {1, ---,2p}, we have (by Cancellation
Lemma 5.1)

(=D*Tr [Bq ° Dq<le FVx, oo VXa<r>K<r‘j'j” Xﬂ<7+l)))

g=0
© VXa(’r+2) O VX.,(zp)(Uj'q(Z,a z))](zly Z/) =0.

Let I:Xs, r d
dr

] =X, + X,. Then X(z/) = 0 and it is an immediate con-

sequence of Lemma 3.3 applied to the vector fields X, X,, ---,X,_, and
Lemma 5.1 that

i:o(—l)qTr[Bq"‘7X1° rrolVx oV o Vg o
=
oV, (U2, 22, 2) = 0.

Thus
5 (01T [y o 7, 2 (U@, 2D | @ 2)
(5.3) a0 } :
=2p 3 (— 1) Tr [A (U2, DI ,2) + T,
g=0
where
T= Y Y (—1Tr [Bq o D (15 ® VX”(I)K(ri,X,,(z)»
¢ (1)<a(2) a=0 dr

o (8) Lo <o (2p)

Py o o V(U z))](z’, 7).

Since the vector field rdi is zero at z’ for any two vector fields X and Y, we
have r

relelr

Moreover,

Y@ = (K([ 7 jr ] Y))(z') — (KX, V))(Z) .
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K(3/82,,0/0z,) = K(8/8Z,,8/9Z,) = 0 ,
K(3/0z,,8/0Z,) = —K(3/0Z,,3/0z,) .

Therefore

T=ZFMMWi$4Vﬁwwm®mewﬁmm»
Z

© /2(7', S, p)(V"m+1 ° Vﬁ t e 75a(m+s) O
Va0 Va0 Va, (. U, 2T 2D

otm+ny © °°

where c(r, s, p)’s are integers depending on r, s, p, and A(r, s, p)’s are permuta-
tions depending on r, s, p. Thus by the induction hypothesis (for p) T equals
the right hand side of (5.2) possibly with different constants F,’s depending on
8,1,m,p,i,a, p. By Concellation Lemma 5.1, one can easily see that

3

(=D Tr [Ag o (4,2, )Nz, 2) = (4D, 2))

a=0

S (=) Tr [A U, DI, 2)

Let
T, = f; (— 1) Tr [A, o g#F, o V(U292 DN, 2)
T,= 5 (— D0 Tr [4, - DU, ® R)U (2, )T, 2)

™
il
M=

(=12 Tr [4, o DIS(WUI9(2, )2, 2) .

0

)
It

By Cancellatation Lemma 5.1 we obtain

M=

T)= > (—1D)Tr[d, oV, oV (U9, DI, 2,

0

1

q

and Lemma 3.2 together with Cancellation Lemma 5.1 gives

(— 1) Tr [B? o DI, ® K) o C(UI2, ), 2)

o3
il
M=

2
I
o

ll
™M=

(—1)? Tr [B, - DI @ K(8/02,,3/02,)) o CU' 742", 2NN, 2)

0

q

since K = K(3/0z,,0Z,) ,

T, = 3 (= 1) Tr [B, o DS o Co(U"(2', D) 2) -
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Hence by the induction hypothesis on i, each of the terms T, T,, T, equal to
the right hand side of (5.2) possibly with different constants F,’s. By applying
the operator A, to both sides of equation (5.1) we then have, in view of (5.3),
(5.4) and (5.5),

@p + D i:o(—l)" Tr [A (U2, D, 2) + T =T, + T, — T,

Since we have already proved that each of T, T}, T,, T, equal to the right hand
side of (5.2) possibly with different constants F;’s and 2p + j > 0, we obtain
(5.2), and the proof of Lemma 5.2 is thus completed.

6. Proof of Theorem 1.6.

An immediate consequence of Cancellation Lemma 5.1 is that
S~ Tr US(Z,2) =0  for i <n.
q=0

Therefore (in view of (4.10)) to complete the proof of Theorem 1.6 and hence
that of Theorem 1.1, it is sufficient to prove the following lemma:

Lemma 6.1. The cohomology class (271)*"( i} (=DeTr U» (2, z’)) e
equals [ch ()7 (X)],,. =0

We shall prove this lemma in this section. By Lemma 5.2, f} (=1

=0
-Tr U4z, z’) equals the right hand side of (5.2) with constants F 6’; depend-
ing only on the dimension n of the manifold and the permutation §. Let ¢ and
¢ be the maps as defined in § 2. Then

Uy @ 9IS = 3 S3581.5. ® 5,*(dz; N dZy)
= 3 Stp%a ® 5,* ® (dz, N dZy),
SD(K(C(, B)) = Z K’;aﬁ-ge,;dzs A\ dir .

Since we have chosen the coordinate functions such that (g,,(z)) is the identity
matrix, at the point 2’ we have

Ki.s = Kjy = K} = K3,
and therefore

o(K(a, ) = T Kpdz, N dZ, .
Put

S¢ =3 Stdz, NdZ,,  Kj= 3 Kjudz, N\ dz, .
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Then (S%) and (K%) are local expressions for the curvature forms of hermitian

connections in the bundles & and T(X) respectively.
By Lemma 5.2 and Corollary 2.6 we get

@0 5 (DT Uma(@, ) e = 3 g Stugsa © 51

(6.1 & (dz, N\ dZy), -, 2 S‘,,‘,,ﬁs Q s¥ @ (dz, /\ dZ,)(r-times)
A aepz FK“m) ANEAIA Kgﬁ(:lr 0

where K5 denotes the conjugate of the form K3, and F,’s are constants depend-
ing on the purmutation § and the dimension » of the manifold.

Next we shall express the right hand side of (6.2) in terms of the charac-
teristic classes of & and T(X). To this end we start with some preliminaries
about characteristic classes, and adopt the definitions and terminology of
[2, Chapter XII]. Let f be an invariant homogeneous polynomial function of
degree r defined on the Lie algebra %Ik, C) of GL(k,C). In terms of the
canonical basis we can represent an element of the Lie algebra by a matrix
Xz jen- Lot

(6.2) fX) = X Ay Xir.
The constants f“ ;{7 satisfy the condition f/s(y::/o(» = fir:7i~ for any permu-
tation ¢ of {1, - - -, r}. Then the characteristic class w(f) of the vector bundle ¢

corresponding to the function f is given by
(6.3) w(f) = 3 fluirSic N oo A SiT.

Consider the function f defined on the Lic algebra by

f(X) = trace(exp(ziﬂ X)) = trace(i} (2;1-)’ ‘f;), Xe%lk,C),

and let

f(X) =

trace X"

(ﬂ)r

The homogeneous polynomial function f* is invariant by ad (GL(k, C)). We
shall donote the characteristic class w(f?) of & by ch” (). By (6.2) we then
have

(6.4) h"@ =L ¥ SEASEA ... ASE.

2r)7r! 1cic T
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The cohomology class ch (&) = 3 ch” (§) is called the Chern character.
Lemma 6.2.

¢(Zl S?nﬁsa ® s;)k ® (dza /\ diﬁ)y Tt
2 S5apSa @ 5§ @ (dz, N\ dZy))
= rl(—2zy —1)" ch (&) .

Proof. This lemma is an immediate consequence of the definition of ¢ and
the definition of Chern character.

Let f,(X), fi(X), - -, f.(X) be the polynomial functions defined on the Lie
algebra %l(n, C) of the Lie group GL(n, C) by

(6.5) det (u,, - 2m/¥__ix) - izoz"-ff,(X) :

The polynomial functions f,,f,, ---,f, are invariant by ad (GL(n, C)). Let
C,, C,, - - -, C, be the characteristic classes w(f,), w(f), - - -, w(f,) of the tangent
bundle T(X) of X defined by these invariant functions. Then we have

— (_1)7 i1 ir
6.6) G = Ty B & K A A K,

where the sum runs over all ordered tuples (i), - - -,#,) and the permutation
g of {1,---,r}, and the symbol ¢, denotes the sign of the permutation o.
C/(X),C(X), - --,C,(X) are the Chern classes of the manifold X.

Let r < n be a positive integer, and § be a permutation of {1, - - -, r}. Define
a polynomial function g; on the Lie algebra ¥l(n, C) by

(6'7) gﬁ(X) = Z X;«;;(l) M Xi,r

. R 3(r) *
1<t ip<n

The polynomial function g,(X) is invariant by ad (GL(n, C)). By Lemma 2.7

there exists a polynomial P,(Y,, ---,Y,) in the variables Y,, - - ., Y,
P(Y,,  ---,Y,) = ) +...§n =TP§Y‘1'1 e Yo,

such that

(6.8 &X) = P,((X), - - -, £, (X)), Xe%ln,C).

As an immediate consequence of (6.1), (6.8) and Lemma 6.2 we get
Lemma 6.3. There exist polynomials

P, (Y, ---,Y)= Y OPLLYpee Yy

ﬂ1+---+rar:r

such that
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(2z>-"( 3 (= DT UnA(Z, 2))e = 33 chn 7 (§) A P, (C,(X), - - -,CT(X>) .
q=0 r=0

We now proceed to determine the polynomials P, ,, and shall prove that
P,,=P,, and the polynomials P, , satify the multiplicative property (see
[1, § 1.1] for the definition of multiplicative sequences). We need the following
lemmas.

Lemma 6.4. Let X be a complex analytic manifold of dimension n, and z
a point of X. Then there exist a hermitian metric g on X and an open neigh-
bourhood U of z such that the metric g restricted to U is Kaehlerian and
such that with respect to the hermitian connection induced by the metric
g, (C.(X)(@) = 0 and (C,(X)(z) = 0 for 0 <i < n, the forms C(X) being
defined by (6.6).

Proof. Let z, -+, 2, be holomorphic coordinate functions defined in an
open neighbourhood V of z, U be an open neighbourhood of z such that the

%%r{) There

exists a hermitian metric g on X such that restricted to U, g is Kachlerian
and, at the point z, (g;;) is the identity matrix, 9g;;/0z, = 9g;,;/0Z, = O for
all i,j,k, 0°g;,/02,0Z, = O unless k =i, ] =] and the sequence {i,j} is a
permutation of {i, ¢(i)}, and lastly 0°g,,, /02,02, = 0°€.1):/02,4,0Z; = 1.
Then the two-forms K% = 0 unless {i, j} is a permutation of {k, ¢(k)} for some
k, and

closure of U is contained in ¥, and ¢ be the permutation (

Ki, = —dz,q N dZ,, Ki®© = —dz; N\ dZ,, .

It can easily be seen that (C;(X))(z) = 0 for 0 <i < n and (C.(X))(2)
= (—2)"r""e(z), e being the volume element. This completes the proof of
Lemma 6.4.

Similarly, one can prove the following lemma.

. Lemma 6.5. Let X be a complex manifold of dimension n, z be an arbitra-
ry point of X, and & be a holomorphic vector bundle of rank k, 0 < k < n.
Then there exist hermitian metrices in X and & such that the hermitian metric
in X restricted to an open neighbourhood of z is Kaehlerian and such that
with respect to the hermitian connections in T(X) and & given by these metrices,
(CiX))(2) = 0 for 0 < i < n and (ch* (&))(z) # 0.

Given two multi-indices « = (ay, - - -, &,) and 8 = (8, - - -, B,.) We shall say
that 3 < « if there exists a positive integer s such that 5, = «, for s <t < n
and 8, < «,.

Lemma 6.6. Given a multi-index o = (a,, - - -, @,) such that 3 ie; = n,
there exist a complex analytic manifold X, a point ze X and a hermitian
metric g on X such that g is Kaehlerian in an open neighbourhood of z and,
at the point z,
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X)) - C'(X) #0, CAX) - C(X)=0for B= (B, -+, B

such that 3 if, = nand 8 < a.

Proof. Let the partition n =14+ ... + 1 (a, times) +2 + ... +2
(a, times) + -+- +n+ .-+ + n(x,times) be denoted asn=r, + «-- + r;.
By Lemma 6.4, there exist a complex manifold X, of dimension r;, a point
z; of X;, and a hermitian metric g on X, such that g is Kachlerian in a neigh-
bourhood of z; and, at the point z,,

Let X=X, X --- X X; and z = (2, - - -, 2;). Then the complex manifold
X, the point z of X, and the hermitian metric on X induced by the hermitian
metrices on X, satisfy the requirements of the lemma.

We now introduce some notations. Denote the forms P, (C,(X), - - -, C(X))

by P, .(X), let Q(Y,,...,Y,) = Z q'Yy ... Y,m be a polynomial,
XiteestMay, =m

and make the formal substitution Y; = ), Z,;X,. Then there exist unique
J+k=1

polynomials R, ;, = 2 rdZie - Z9XP .- Xk such that Q(Y,,- - -, Y,,)
ayseerjaj=g
it +Epi=k

= ) R;,(Z, --,Z;,X,, -+, X;). We shall denote the polynomials R; ,

jik=m
by QJ%,

Now we are in a position to prove the following lemma.

Lemma 6.7. Polynomials P, , satisfy the multiplicative property and P, ,
=P, for0<r<n.

Proof. We first observe the following. Let X be a compact complex
manifold of dimension #, and g a hermitian metric on X such that in a neigh-
bourhood U of a point 2’ of X, g is Kaehlerian. Let ¢ be a holomorphic vector
bundle over X, and U7/, 2), U7, 2), - - -, UM%z, 2) be C~-double forms
defined in a neighbourhood of the diagonal in U x U such that Uz, 2') is
the identity endomorphism of &, ® AT%%Y(X) and the forms U*?(z’, z) con-
stitute the solution of system of equations (4.9). Then Lemmas 5.1, 5.2, 6.2
and 6.3 hold at all points z’ of U.

Let us consider a partition n = n, + n,, n, and n, being positive integers.
Let X, X, be complex manifolds (with hermitian metrices) of dimensions »n,, n,
respectively. Suppose that there exist points z, € X, z,€ X, and open neigh-
bourhoods U,, U, of z,, z, respectively such that the hermitian metrices re-
stricted to U,, U, are Kaehlerian. Let & be a holomorphic vector bundle
(with a hermitian metric) on X, and &, the trivial line bundle on X,. Put
X =X, X X, and § = & ®&,, and suppose that {U}4z}, z)}ocicni = 1,2)
constitute the solution of system of equations (4.9) in a neighbourhood of the
diagonal in U; X U, with the initial condition that U%%z}, z;) be the identity
endomorphism.
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Given vector spaces W, M, M,, M, and N, N,, N, such that M,, M, are sub-
spaces of M and N, N, are subspaces of N, there is a natural map from
(WR NM) Q (W& ANUNY) X (AN"M,Q® AN"N) to (W N"M)Q
(W ® AT*=N) sending (W, ® x, @w,®y,x,®y,) to (W, ®(x;, A x,)) ®
w,® (v, A\ y)), where w, w,e W, x,e AN"M,, y, e A“N,, x,e \%M,,
v, € A%“N,. We shall denote the image of an element (x,y), xe (W &® A“M,)
R (W& AEN), ye NM,® A %N, under this map by x A y. Then we have

Uri(z',2) = % U™, z) N\ Up™(z;,2) ,
P

where 7/ = (2),7}) and z = (g, z,). Therefore
5T (—1)7 Tr Un%(z, 2)
q=0

_— (ﬁo(_l)% Tr U{vql(zl,z1)> (qgo(—l)‘“ Tr Uquz(zz,zz))

Jtk=n \=
- ( $ (—1)"Tr U{“’ql(zl,zl)> (qfo(—l)% Tr U;”"“(zz,zz)>
q:1=0 o=
by Lemma 5.1,

which implies

(S et @ APLO)@ = (T F e @) A P @
/\ I—I;k (Pnz,nz(XZ)) B
where [[,, [], are projections from X onto X,, X,. Since

CX) = 5 TIFCAX) N [[¥Cu(Xy) and ch*(®) = [[Fch'(€),

J+k=1i

we have

[ é.o [T# (ch*=" (&) A Py (ﬂ;k C(X), -,

Ti+Tg=7

6.9) # €0, TTE G, -+, TTE €)@
=TIt 5 ch™* @) A P (0] @ A T Pasns (X))

Let us take &, to be the trivial bundle. Then ch®(£,) = 0 for s > 0, and from
(6.9) follows

(P:,unnz(n;k CI(XI)’ Tty nik Cnl(X1)7 n;k Cl(Xz), Tty H;k C’Ilg(XZ)))(z)
= [[F Prpns(XD@) A T15 (Prg n,(XD)(2)
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which and Lemma 6.6 imply

PZ:’nM(YD ] an Zl? Tt Zn) = Pnl,nl(Yla R} Ynl) X Pnz,nz(Zly R an)

2

in the polynomial ring C(Y,, ---,Y,,,Z, ---,Z,,). This is precisely what is
needed in order that the polynomials P, , may satisfy the multiplicative
property.

Taking &, to be a holomorphic vector bundle of rank #n,, (6.9) together with
Lemma 6.5 gives

(Pnz,n(cl(Xz), ) CnZ(Xz)))(Zz) = (Pnz,nz(cl(X2)9 M) an(Xz)))(Zz) ’

since P, = 1. In view of Lemma 6.6 this implies that in the polynomial ring
C(YU s Yn2)9

Pnz,n(Yu Tttt Ynz) - Pﬂg,‘ﬂz(Yl’ Tt Yﬂg) 5

completing the proof of Lemma 6.7.

We now come to the proof of Lemma 6.1.

Proof of Lemma 6.1. In view of Lemmas 6.3 and 6.7 we need only to
prove that if X is a complex analytic manifold of dimension n, and r is an
integer less than or equal to n, then P, (C(X), ---,C.(X)) equals the r-th
component of the Todd class 7 (X). In other words, we need only to prove
that the polynomials P, , are Todd polynomials; see [1, § 1.7] for the defini-
tion to Todd polynomials.

By Lemma 6.7, polynomials P, ,, enjoy the multiplicative property. Therefore
there exists a power series Q(z) which completely determines the polynomials
P, (see[1, Lemma 1.2.1]), and we need only to prove that Q(z) is the power
series z/(1 — e~?) or that the coefficient of z* in (Q(z))"*! is equal to 1 (see
[1, Lemma 1.7.1]). For this we consider the complex projective space P,(C).
There exists a generator &, ¢ H(P,(C), Z) such that the Chern classes of P,(C)
are given by (see [1, Theorem 4.10.2])

cpuen = (" T 1)

The Euler-Poincaré characteristic y(X, 2(£)), for X = P,(C) and £ equal to
the trivial bundle over X, equals 1, and C,[P,(C)], the value of the n-th Chern
class of P,(C) on the 2n-dimensional fundamental cycle of X, equals n + 1.
Therefore we have

(6.10) Pn,,,((”;ﬂ),...,(";rl)) _ 1.

By the factorization

1+ (n_{_l)z_i_... + (n_:l)zn+zn+l:(l+z)n+l
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and the multiplication property for the polynomials P, , we thus obtain

6.11) PM((” * 1), . (” + 1)) = coefficient of z» in (Q@)"*" .
From (6.10) and (6.11) it follows that the coefficient of z* in (Q(z))"*! equals 1.
This completes the proof of Lemma 6.1 and hence of Theorem 1.6.

Remark. By an analogous method with essentially different algebraic
lemmas from those used in this paper the author has been able to prove the
Hirzebruch signature theorem.
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