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Abstract 

An analytic solution of the high /? (eft,, ~ fiqi/e ^> 1) equilibrium of a large aspect ratio 

tokamak is presented. Two arbitary flux functions, the pressure profile p(i/>) and the safety 

factor profile g(t^), specify the equilibrium. The solution splits into two asymptotic regions: 

the core region where ip is a function of the major radius alune and a narrow boundary layer 

region adjoining the conducting wall. The solutions in the two regions are asymptotically 

matched to each other. For monotonic pressure profiles, the Shafranov shift is equal to the 

minor radius. For /3 much bigger than one, the solution contains a region (in place of the 

magnetic axis) of zero magnetic field and constant pressure. At high /3 the quantity /?/, 

which is essentially proportional to the pressure over the total current squared, is largely 

independent of pressure. We discuss the important ramifications of limited /?/ for high /? 

reactors. Generalizations to shaped cross sections and hollow pressure profiles are outlined. 

We also consider the problem of equilibrium reconstruction in the high f3 regime. 

*Permanent address, Institute for Plasma Research, Gandingar Highw?v Bhat, Gandin-

gar, Gujrat, India. 1 \ •••,;. 



I. Introduction 

There are many reasons why achieving high 0 is considered desirable in tokamaks. 

Perhaps the simplest reason is that one wants to minimize JB 2 to keep the magnet costs low 

and to maximize p to maximize fusion power output. One would also like to achieve high 

pressure without supplying large vott-seconds (and therefore energy) to the transformer. 

This second requirement is often linked to 0i which is the average pressure divided by the 

current squared. This link assumes that the current must be driven by the transformer 

(or possibly noninductive current drive) and therefore large 0i is desirable. In this paper 

we show that at high 0 (specifically e/3P ~ 0q2/e 3> 1 see definition of % below) e0; 

is of order one and essentially independant of pressure and £. This, however, does not 

mean that one needs a large transformer to obtain high beta. If a high beta equilibrium is 

obtained from a low beta equilibrium via a flux conserving sequence, no volt seconds need 

be supplied. Sustaining the current at high beta also may not require a large transformer 

if the temperature is high and the resistance correspondingly low. 

Equilibrium at high 0 (strictly speaking 0 ~ 0(1)) is not well understood. Much of our 

intuitioL about tokamak equilibrium comes from low 0, large aspect ratio tokamak equilib­

rium. The analytic solutions for Urge aspect ratio, high 0, tokamak equilibrium given in 

this paper are qualitatively different from low 0 solutions. We hope the solutions presented 

here will extend our understanding of tokamak equilibrium to high 0. We have been able to 

investigate arbitrarily high values of 0 resulting in equilibria that are qualitatively different 
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from those found previously in numerical studies. To sotve for an equilibrium, we must 

specify two functions of the poloidal flux function ij>. We choose to specify the safety factor 

q(ip) and the pressure profile p[4>)- The total poloidal flux ^ m a r is also specified. Previ­

ous high j9 solutions 1 , 2 assume specific pressure and toroidal field profiles. Our solutions 

are, however, valid for arbitary q and p profiles. The specification of q($) is motivated by 

the flux conserving tokamak (FCT) concept.1 In the FCT, a high /? plasma is obtained 

by heating a low p plasma on a time scale shorter than the resistive time. This means 

that q(ip) is conserved as p(ip) increases during the heating. It is reasonable to specify the 

pressure profile since it can be measured experimentally. 

In our analysis we make two assumptions: that € <$; 1 and that tfip ~S> I where t = CL/RQ 

and /?p = (<z2#o/V'OTar)poPmax- Here a is the mean minor radius, RQ is the mean major radius 

and Pmas is the maximum value of the pressure. For the majority of the paper we assume 

the equilibrium is bounded by a circular conducting wall. The solution is easily generalized 

to shaped boundaries (see Section VIb). We contrast our analysis with previous large 

aspect ratio equilibrium expansions.3'*1 These expansions are valid if e <C 1 and t0p <K 1. 

These equilibria have circular flux surfaces and a small Shafranov shift. On the other hand, 

our high /J equilibrium solution has D-shaped flux surfaces and a large Shafranov shift of 

approximately the minor radius. Note that the regions of validity for these two solutions 

do not overlap. 

Simple qualitative physical considerations allow us to deduce the two most striking 



features of high beta large aspect ratio equilibria. These features are: (i) the existence 

of a boundary layer; and (ii) the fact that outside the boundary layer, the poloidal flux 

is a function solely of the major radius. In the poloidal plane the forces on the plasma 

may be divided into three parts: the pressure force — Vp, the force due to the toroidal 

field -VB\j2 - B^VR/R, and the force due to the potoidal field - V B 2 / 2 + B p • V B P . 

Note that from B • V p ;= 0 we deduce that p •= p(ij)) and from J • V p = 0 we deduce that 

BT = F($)/R- For /? of order one, p/Bj ~ 0(1), the pressure and toroidal forces are 

comparable. For q ~ 0(1) [see Eq. (3)] we find that nominally Bp[Bj ~ 0(e/q). Thus 

the force due to the poloidal field is nominally smaller than the pressure and toroidal field 

forces by a factor of order £2. 

The balance of toroidal field forces and pressure forces yields R2Vp ~ V F 2 which, since 

p = p(tl>) and F = F(TJI), implies ip = ip{R). This balance does not give confinement -

as is well known - because the flux surfaces are not closed. A flux surface that is closed 

has an unbalanced force of order eVp due to the lack of balance between R?Vp and V F 2 . 

This unbalanced force can only be balanced by forces due to the poloidal field. The only 

way to increase the poloidal field force for a given poloidal flux is tc squash the flux into 

a smaller volume. If one squashes the flux into a smaller volume (henceforth called the 

boundary layer) of width 5 in the poloidal plane, the poloidal field is increased from its 

nominal value (BP/ST ~ 0(e/q)) by a factor afS. One can determine 6 by balancing the 

unbalanced part of the pressure and toroidal field forces against the enhanced poloidal field 

force, -V(ep) ~ V(a 2 t 2 .B$ /{*y ) ) . Therefore 6/a ~ O{(e/0q2)1/2) ~ 0{{e^p)-^2). 
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It is obvious that a given flux surface can't be entirely in a boundary layer of width 

S otherwise q ~ 0(6). Physically it is clear that the poloidal field cannot be large over 

the whole surface if the rotational transform is to be finite. It is also obvious that a given 

flux surface cannot be entirely outside the boundary layer since it has to violate ifr = rp(R) 

somwhere in order to close. We show below that, for monotonic pressure profiles, the 

boundary layer must follow the fixed conducting wall. Thus, every flux surface must have 

a straight section where ip = il>{R) and a section in the boundary layer following the 

conducting wall. In the circular boundary case, the surfaces are circles with a straight 

section (roughly D shaped). These qualitative conclusions are born out by the asymptotic 

analysis of Section IV. 

In Section II of this paper, the initial equations are presented. Based on assumptions 

of finite q{ip) and high /?, we scale the variables appropriately and rewrite these equations 

in terms of the small parameter e (Section III). By performing an asymptotic expansion 

in e, we solve for the poloidal flux function ^(1,2) in the core in Section IVa., and in 

the boundary layer in Section IVb. The core solution and the boundary layer solution 

correspond to the straight and curved parts of the D-shaped flux surfaces, respectively. It 

is worth remarking that the core solution does not depend on the boundary layer solution 

and it can be computed by a simple one-dimensional integration. In Section IVc. it is shown 

that a region of perfect diamagnstism appears in the center of the plasma when 0 is greater 

than a critical value of order one. The main results are given in Eqs (12) and Eq. (13) for 

the core solution and Eq. (20) for the boundary layer. Using our solutions, we investigate 



the various poloidal betas in Section V. We find that e/3/ —* 7r2/16 as 0 —» oo and that 

ej9; is essentially independent of pressure and e for /3 < 1. This contradicts the conclusion 

of Clarke and Sigmar.5 In Appendix A we investigate the behavior near the magnetic 

axis. We show that the solution contains a third boundary layer at the magnetic axis. 

The difficulties associated with the magnetic axis affects a small fraction of order £ 3 / l 4 of 

the total flux and can be ignored for most considerations. The problem of experimentally 

deducing g(0) in these equilibria is considered in Appendix B. We show that q can be 

inferred from a measurement of the pressure along the midplane (the line 9 = 0 in Fig.l). 

We also show that q(ip) cannot be inferred from a measurement of the poloidal field on the 

boundary. 

I I . Init ial Equa t ions 

For an axisymmetric system the ideal Magnetohydrodynamic (MKD) equilibrium equa­

tions reduce to the Grad-Shafranov equation: 

The magnetic field B is given by 

B = i v ^ x e ^ | e # . (2) 

In this paper, we solve the Grad-Shafranov equation for a tokamak with major radius 

RQ and minor radius a as shown in Fig. 1. The boundary is a perfectly conducting shell 

with a circular poloidal cross-section. As boundary condition, we find it convenient to 
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take ^ = 0 at the wall and to assume ij> = ifrmax is given at the magnetic axis. Thus, î 

increases inwards contrary to most conventions. 

The specified free functions are the pressure profile p(i>) and the safety factor g(0). To 

close the equations, we need an equation relating q(4>) and F{ip). It is given by 

where dlp is a poloidal line element. The integration is performed along poloidal projections 

of surfaces of constant ij>. We take F and q to be positive. 

I I I . Dimensionless Equat ions 

To simplify the analysis we introduce the following dimensionless notation: 

z = z/a, R = Ro(l + ex), e = a/Rg, $ = ip/tpmax, dlp = dlp/a. 

The barred variables are dimensionless. The inverse aspect ratio e is assumed small and is 

our expansion parameter. 

We assume that the safety factor, q{4)), is finite and that we have a high /3 equilibrium. 

That is, q(tp) ~ 0(1) and pap/B^ ~ 0(1). Combining these assumptions with the defi­

nitions of the toroidal and poloidal components of the magnetic field, we are lead to the 

scalings for F and p. These, in turn, lead to the introduction of the following dimensionless 

variables: 

m a x 



We define an average poloidal beta: 

A> = TJ = P™** (5) 

so that ej}p ~ 0 (e -V9-*) . 

In the scaled variables, the Grad-Shafranov equation reduces to the dimensionless equa­

tion 

S[(l + ef) * j - J - ^ + £ t f = (1 + «S)»* + F ^ . 
ax (1 + « ; ) ox 9 s 2 a^ <zi/» (6) 

Eq. (3) becomes 

g W = - 2 ^ J ( l + ex) |W| ( ? ) 

where V operates in the barred variables. The scaled boundary conditions are: 4> = 0 on 

x 2 + z 2 = 1; and tj> = 1 on the magnetic axis. Equations (6) and (7) are, of course, exact - in 

our subsequent asymptotic theory we treat p, q, F and ^ to be order one in an asymptotic 

expansion in the small parameter e. Let us be very specific about the ordering of beta, We 

choose p ~ 0(e 2/? p) ~ 0(/?) ~ 0(1). This is a maximal ordering in the sense that it allows 

the toroidal field forces and the pressure forces to compete. In Section IVb we show that 

the boundary layer is narrower than the minor radius if p 3> £, or equivalently cfip ^> 1. In 

fact e^ p 2> 1 and e <C 1 are sufficient conditions for the validity of our expansion. 

From this point onward, hopefully without confusion, we will drop the bar notation, 

except where explicitly stated. 

IV. Solution 
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We immediately recognize the form of Eq. (6) to be that of a singular perturbation 

problem. As we shall see, it is in fact a boundary layer problem. 

a. The Core Solution. 

First we examine the solution obtained by treating ip as finitely varying in x and z. This 

is referred to as the "outer solution" in boundary layer theory. However, since we expect 

the boundary layer to be outside this region at x1 + y2 ~ 1, we refer to this solution as the 

core solution to avoid confusion. To find an approximate solution to Eq. (6), we expand ip 

and G = FF' using the small parameter v. ty — fa + £<\>\ H and G = Ga + eG\ H . To 

0(1) we have 

p'(^o)+Go(A) = 0. (S) 

Substituting <?0 = FQFQ m t o Eq. (8) and integrating we get 

p(i>o) + \F2{ipo) = C (9) 

where C is an undetermined constant. This equilibrium equation corresponds to the 

straight tokamak approximation where there is only a toroidal magnetic field. To 0(e), 

Eq. (6) is 

2xP'(iPo) + G1(J>0) = 0. (10) 

By dividing each term by p' and then differentiating with respect to z, we find that 

ipo{x, z) = i>Q(x)- As we anticipated, the solution without poloidal field is one in which ip 

is a function of major radius alone. By looking at Eq. (6) order by order, it can be shown 

that ip(x, z) = ip{x) to all orders in e. 
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This solution to the Grad-Shafranov equation implies that the poloidal projections of 

the flux surfaces are vertical lines. However, we demand that the solution consist of nested 

surfaces. Furthermore, for these flux surfaces to satisfy the boundary condition of 0 = 0 

on the wall, a rapid spatial variation in ip is necessary. These expectations suggest the 

existence of a boundary layer near the conducting wall and that the surfaces have the 

shape illustrated in Fig. 2. Sinne | Vit | > 1 (in fact we expect V ^ ~ 0(c~1^)) in the 

boundary layer, the contribution from this region to the integral in Eq. (7) will be negligible 

to lowest order. Therefore, we can approximate Eq. (7) by 

q { l p o ) - 2* drh/dx- ( 1 1 ) 

Here, £(x) = 2\ / l — x2 is the vertical line length in scaled variables as shown in Fig. 1. 

Combining Eqs. (9) and (11) and integrating we get 

2 , / * • ^ o ) #o = f^)di 

= ir/2 + xVl - x J + s i n _ 1 x . (12) 

Once the constants of integration C and D are found, equation (12) gives an implicit 

relation between t/>o and x. We show below that D is in fact zero and C is given by 

Eq. (13). The sign is selected to make the left hand side of Eq.(12) positive. 

Formally, one would determine C and D by matching to the boundary layer. However, 

we can deduce C and D without a detailed solution of the boundary layer. We shall, 

however, use some properties of the boundary layer that are formally derived in Section 

IVb. First, note that no flux surface can lie entirely in the boundary layer, i.e. some part 
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of the surface must lie in the core, since from Eq.(7), | V ^ | must be finite for some finite 

distance along the surface to give a finite q. Secondly, since Eq.(lO) has a unique solution 

for i , flux surfaces pass through the core region only once. Anticipating Eq.(19), we note 

that the boundary layer decays exponentially into the core only if p'/(dili/dx) is positive in 

the core. Here difr/dx is given by Eq.( l l ) . 

The placement of the boundary layers and the magnetic axis are dependent on the sign 

of p'. Let us first consider monotom'cally increasing p(ifi) (p' > 0). More complicated p(ip) 

are discussed in Section VI. Along the line z = 0, V1 must rise from zero at X — — 1 to i/> = 1 

at the magnetic axis, and then decrease to ip = 0 at x = 1. From the above considerations, 

we find that the region with dtb/dx positive must be in the core, and the region, with dibjdx 

negative must be in the boundary layer. Since the negative dtp/dx region has a width of 

order e 1 / 2

i ths width of the boundary layer, the boundary layer locates the magnetic axis 

at x ~ 1 — 0(e1^). There is no boundary layer at x = — 1 so consequently D = 0. Note 

the plus sign in Eq.(12) is therefore appropriate. In order for the magnetic axis to have 

zero thickness and the solutions to match, the core must locate ^ = 1 at i ~ 1 - 0 ( e , / l 5 ) . 

To lowest order this implies 

/ ' . g ( ^ rfft = -L (13) 

For moderate and low p(^) Eq.(13) determines C, The integral on the left handside of 

Eq. (13) is a monotonically decreasing function of C. The maximum value of the left hand 

side of Eq.(13) is attained when C = p(l) . if this maximum value is less than l/%/2, then 
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no solution to Eq.(13) exists! (Note that C must be real and larger than p(l) since F is 

real.) This contradiction arises at 3?rge p{ip). A qualitative change in the solution takes 

place for these cases, specifically thf magnetic axis occupies a finite region throughout 

which p = p{\) and B = 0. We call this region of perfect diamagnetism the "hole". This 

solutions is discussed in Section IVc. In the following section, Section IVb, we assume 

that Sq.(13) can be satisfied, We emphasize that the core solution can be computed via 

Eqs. (12) and(13) without computing the boundary layer solution. 

When p <Z 1 (and ij3p » 1) we can simplify the core solution. In this limit, Eq, (9) 

yields Fg = 2C (i.e. F0 is independent of Wo) and p(i/'o) can be ignored :n Eqs.(12) and 

(13^. Thus, when e/q2 <£. /? <£. 1 the toroidal field is a constant, to lowest order and ^'O(.T) 

[or z(tl>n)\ is independent of pressure. 

As an example, let us find V'o(s) from Eqs. (12) and (13) for the case q — qQ = constant 

and p -- p'aib. We obtain 

where A — x/2 + x\/l — i 2 + s i n - 1 x and /?0 = Po/?o- Equation (14) is valid for 0 < j30 < 16, 

when /?o > 16 we have a "hole" solution. We plot this tj>a(x} in Fig. 3 for various values of 

Po- Also included in Fig, 3 is i "hole" case with po = 64. 

b. The Bound \ r y Layer Solution. 

For the boundary layer solution we work in the polar coordinates (r, (?) with the origin 
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situated at the center of the poloidal cross section. In these coordinates, Eq. (6) becomes 

= ( l + e r c o s ^ | ^ g . (15) 

We look for solutions where d/dr <~ 0{t~1^). This ordering ensures that, to lowest 

order, Eq. (15) reduces to Eq. (8). To introduce this scaling, we define the boundary layer 

thickness variable 4 such that r = 1 — e^H. Keeping terms up to 0(63/2), equation (15) 

becomes 

Because 1/2 powers of £ appear in Eq. (16), we expand V> and G = FF' as follows: 

i> = 0o + e^Vi/i + # i + £ 3 /V 3/2 + • • • 

G = Go + £ 1 / 2 G 1 / 2 + e d + £ 3 / 2 G 3 / 2 + • • •. 

We substitute these expansions into Eq. (16) and equate the terms order by order. As 

required, the 0(1) equation reproduces Eq. (8). The Off 1 ' 2 ) equation implies that G\/2 = 0, 

which is consistent with the expansion in Eq.(lO). For the 0 ( E ) equation vve get 

Note that 9 does not appear in any derivatives in Eq. (17), and thus may be treated as a 

parameter. Substituting G\{4>Q) from Eq. (10) into Eq. (17), we get 
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where x{tpo) is given implicitly in Eq. (12). Multiplying Eq. (18) by dipa/dt and integrating 

we get 

i ( r ) , -« jC M * '««— ^ - " w ^ - < 1 9 > 
Where ^> c o r e(cos0) is the core solution, given in Eq. (12), with ^ofc) evaluated at x = cos6. 

Note that when ip = 0 c o r c(cosfl), ifV") = cos8. We have chosen the boundary condition 

that dip/dt —* 0 as ip —t- ^ c o l . e(cos 0), so that the boundary layer solution matches to the 

core solution. One may easily show that as ip -+ ipco„(cosd), Eq. (18) has two solutions: 

one that converges to VWc and one which exponentially diverges, By choosing the lower 

limit of integration in Eq. (19) as 0 c o r (.(cos 8), we have selected the converging solution. We 

use the notation V(4>,9) in Eq. (18) to emphasise a mechanical analogy where V represents 

the potential energy of a particle, ip its position, and t time. V is zero with zero slope at 

Tp s= tpcaK and is a monotonically increasing function of ip for ip < ipcotc Thus the "particle" 

with zero total energy (potential plus kinetic energy) can be thought of as ascending a hill 

with just enough energy to reach the summit at rp = TpCore- However it takes an infinite 

amount of time to get there. Equation. (19) can be integrated to yield, 

* - r , **». (20) 

where we have used the boundary condition that when t = 0 (the wall) ipg = 0. 

We have assumed that the thickness of the boundary layer is negligible in constructing 

the core solution - we therefore need to verify that it is indeed narrow. To investigate 
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the thickness we look at the asymptotic behavior of Eq. (20) as 4> —* '/'core- Since the 

integral in Eq. (20) is dominated by the region where il>0 ~ i>COTC, we can simply expand 

the denominator in the integrand to obtain 

t-~ - W ~ ~ - ^ ) , ( 2 1 ) 

core J 

Thus the boundary layer solution approaches the core solution exponentially as t goes 

to infinity. Noting that r = 1 - y/et, we find the scale length for the boundary layer 

thickness to be Jej{p?x') ~ \Jt[p. Using the scalings Eqs (4) and (5), we find the thickness 

to be ~ (e/Sp) - 1/ 2. Therefore, our analysis is valid if and only if tj}p ;§> 1 and f « 1. 

Equations (19) and (20) give the boundary layer solution (to lowest order in €) and complete 

the full solution, with Eqs. (12) and (13), for x(V>o)-

c. T h e Hole Solution 

As mentioned in Section IVa, a central region of perfect <-':.<*magnetisni, the hole, can 

appear if p(ip) is large. Physically, such a region arises because p + B"*/2 ~constant and 

therefore, to balance a large pressure change, a large B$ field is needed. However, to 

maintain a finite toroidal flux the large B$ field is forced to occupy a smaller region. 

Considering the p' > 0 case only, and arguing as we did in Section IVa, we conclude that 

on the line z = 0, the dipfdx positive region is in the core and the d$jdx negative region is 

in the boundary layer. The position of the magnetic axis predicted by the boundary layer 

is at a position x ~ 1 — 0(e1/2). However, when Eq, (13) has no solution the maximum x 

at which the core can place the magnetic axis is, with C = p(l) , at x = x/, with x/, given 
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by 

2x / ' , q ^ a ) # o = x/2 + x M A - xj + s in" 1 1». (22) 
7 ° \ / 2 ( p ( l ) _ ^ 0 ) ) 

Note that x^ decreases as p(l) increases (for fixed p{4>)/p(V)), and since XK is less than 

one, the magnetic axis must occupy a finite region (the hole). Throughout this hole, TJJ = 1 

therefore the hole contains no poloidal field. We imagine that we have obtained this solution 

via a flux conserving sequence starting from a low 0 finite q equilibrium without the hole. 

At a critical pressure Xh = 1 the solution has no hole, but the toroidal field and the poloidal 

field are zero at the magnetic axis. Above this critical pressure the hole opens up. r o flux 

surface can have poloidal field without toroidal field and since there is no poloidal fieid in 

the hole, there cannot be any toroidal field in the hole. Inside the hole Vp = J x B = 0, 

Thus, force balance is assured automatically. Note, however, that the Grad Shafranov 

equation is inappropriate in this region, as it is derived from Vp = J x B by assuming that 

,V >̂ is nonzero. 

Across the edge of the hole p + B2/2 must be continuous. Hence, since p is continuous 

and B2 is zero in the hole, B2 = 0 just outside the hole. From Eq.(9), with F[l) = 0, 

we find C = p(l) . Equation (11) then implies that dijrfdx = 0 in the core at the edge of 

the hole. Consequently, the hole bounds the core region at x — x^- The boundary layer 

adjacent to the hole (where 6 < cos^Xh) has a thickness J/,. Noting that at t = t/,, ip — 1 

and di>fdt = 0 for 6 < cos _ 1 xj, we obtain 
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t>{9) = Z1 . ** . (23) 

Where i/>corc(cos 6) = 1 in the definition of V, Eq. (19). For 8 > cos~xXh the boundary layer 

is the same as in Section IVb. The hole is therefore a D-shaped region and in the limit 

p ~> oo the hole engulfs the whole cross section. In Fig. 4 we illustrate a typical "hole" 

equilibrium. 

For the simple case q =constant and p = p'Qi{> treated in section IVb. we obtain in the 

"hole" limit the core solution 0 = A(x)y/j30/{2x) — <4(x)2/30/(4ff)2. This expression is valid 

when /?o > 16 otherwise Eq. (14) holds. In Fig. 3 we plot tj){x) for fa = 64. Note that Xh 

is 0 in this case. 

V. Invest igat ion of Various Be ta s 

Various betas are used to characterize equilibria. Here we discuss three. The quantities 

j9/, 0p and &$ are defined as follows: 

fii-*S

t"fZ* (24) 
why 

and 

A- = ^ 7 ^ 5 7 (25) 

where 1$ is the total plasma current in the toroidal direction. We have also defined /3„ = 

(a2iJg/t/i^ l l jr)^oPmox in Eq. (5). These quantities can be measured experimentally, and are 
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therefore useful for comparison with theory. Note that only at low pressure is /3 p the same 

order as 0P and /9;. 

To investigate /3/, we calculate HQI^, using Ampere's Law. That is 

* * = / B . « a = * = = j f | g | < » (27) 

where the integral is around the outermost flux surface. Both scaled and unsealed variables 

enter into Eq. (27), and therefore we have reinstated the bars on the scaled variables. From 

Eq. (27), 

= -fyE'feW7 ( 2 S ) 
where p(ar) = p(«/>Ccrc(z)). To obtain the second expression, we have integrated by parts and 

assumed that p(Q) = 0. Note that the current is carried almost entirely by the boundary 

layer. The numerator of Pi can be calculated using Eq, (4): 

/*O8JT IprdrdB = 8 T T - ^ £ / p(x)£(x)dx, (29) 

where £(x) = 2(1 - x2)1'2. In Eq. (29) we keep only the core contributions to the integral 

since the boundary layer is narrow. 

Combining Eqs. (24), (27), (28) and (29), we get 

tf._ i(A ?(*)«* W ( 3 0 ) 
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This formula is valid only if there is no diamagnetic hole. In the limit ^fa > 1 the 

hole takes up most of the cross section, x(ij>) ~ x\ *-• —1, and for x > Xf,, [dtj>jdr)r=x ~ 

[2/y/e)(x + 1)1!2PUL- Computing fa we obtain 

2 

lim e f t - * ^ . (31) 

This result is independent of the functional form of p(^*). 

Let us consider the behaviour of fit as pressure and « are varied. This behaviour 

depends on what is held fixed, as pressure or e varies. In the large hole limit, when 

0 -+ co, tfa —* 7r2/16, as was shown above. Let us therefore concentrate on the case 

without a hole. First note that if we set p(x) = ctf(x) in Eq. (30), efa is independent 

of a. Thus, efa remains constant if the pressure is raised, keeping the profile in x fixed. 

If, however, one keeps p{i))lpmax,c,ipmai: and q(i/>) fi^ed and raises p„,ax, tfii does change. 

In the limit /? < 1, however, ^ w ( a : ) is independent of pressure (see the end of section 

IVa). Thus when 13 is in the range e/q2 <S j3 <S 1, p(x)/pmar is fixed (and therefore fa 

constant) if p{i))!pmax is held constant as 0 is raised. Lowering e (it is easiest to think of 

letting Ro —* oo) keeping everything else fixed, leaves tfa unchanged and raises tfa. One 

can make e/3/ arbitrarily large by making p(x) arbitrarily localised about x = 1. These 

solutions are singular and may be considered unphysical. None of the above limits agree 

vith Clarke and Sigmar's 5 claim that tfii ~ 0((efaY^3) for large tfa. Clarke and Sigmar5 

made the unjustified assumption that the flux surfaces would remain circular, and they did 

not recognize the need for the existence of the hole for e7fa » 1. Not surprisingly, their 
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conclusions about the behavior of 0i are erroneous. 

For the l?rge hole limit ( e 2 ^ » 1), f)p and fir reduce to simple expressions, 

a _ "mar C%X\ 
PT~ 2J2ti(pmai-p(i,)y*qdi>- K ' 

The current profile is often specified in place of q(ii>) in mumerical solutions of the Grad-

Shafranov equation. The toroidal current I(*l>) enclosed inside a given flux surface ^ is 

given by, 

Eq. (34) is correct with and without a hole, with the rule ^on(x) = 1 for x > x^. 

V I . General iza t ions . 

In this section we discuss three generalizations of the solutions. These have been omitted 

from Section IV in the interest of clarity. 

a. Hollow and non-monotonic pressure profiles. 

We note from Eq. (18) that in order for the boundary layer solution to match to the 

core solution (x = x(ip)), we need 

< ! > < $ » ° (35) 

where dxjdij} denotes the derivative of the function x — x(i(>). When p' < 0 everywhere, 

a hollow pressure profile, Eq, (35) indicates that the magnetic axis is on the edge of the 
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boundary layer at x ~ - 1 , an inward Shafranov shift. The core solutiou is then given by 

= TT/2 - x\/l - x2 - s i n - 1 x. (36) 

C is determined as before by Eq. (13). The boundary layer solution is unchanged. Clearly 

this case has p > 0 at the plasma edge doesn't yield confinement. 

The non-monotonic pressure profile with a single maxima is complicated, since some 

surfaces have dif>/dx positive in the core and some negative. The only possible configuration, 

given that all surfaces must pass once, and only once, through the core region, is one in 

which there is an internal boundary layer at some x = 1.4, and the magnetic axis is at 

x ~ XJH. Since this is not a configuration of practical interest and the complicaf.icns are 

formidable, we omit further discussion if its properties. 

b. Non circular conducting walls. 

A relatively trivial generalization of Section IV allows the introduction of arbitrary 

shaped conducting walls. Of course the volume must still have a large average aspect ratio. 

The core solution can be obtained from Eq. (12) with i{x) replaced by the distance 

from the top to the bottom of the vacuum vessel at constant major radius. Note that, in 

the general case, the right hand side of Eq. (12) is the area in the poloidal plane bounded 

by the vacuum vessel and the vertical line x =constant. Complications can arise when the 

vertical line (1 =constant) intersects the vacum vessel more than twice. This would occur, 

for instance, in the "Bean shaped" configuration.6 The reader may verify that in this case 
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of multiple vertical segments, £(x) is replaced by the sum of the lengths of all the segments. 

As before, the boundary layer follows the conducting wall. The boundary layer solution 

is most easily solved in the coordinates v and u where v is the distance along the wall 

and d I | / z u is the perpendicular distance from the conducting wall. Note these coordinates 

are well defined near the wall but not necessarily everywhere. On the wall x = H{v), a 

known function. Equations. (18), (19) and (20) are replaced with identical eqations with 

the replacement of t by u and cos 9 by H(v). In a volume with multiple vertical segments 

there are clearly multiple boundary layer segments. 

c. Current Free Plasma Halo. 

The solution we've given has considerable current density at the conducting wall. This 

is unphysical, as the edge of the plasma is cold and highly resistive. In this section we 

demonstrate how a halo of currentless pressureless plasma can be constructed around one 

of our solutions. Consider a solution constructed as in Section IV. Let us remove the 

outermost flux surfaces, taking away a fraction S (where 5 -C 1) of the poloidal flux. Now we 

have an equilibrium with a boundary shape defined by the last flux surface, i/> = <S. Clearly 

the boundary has a circular segment which bounds the boundary layer and a straight 

segment which is part of the core solution, see Fig. 5. We now surround the solution with 

a currentless plasma and demand that no surface current exist at the interface between the 

old solutioa and new halo. Therefore we make the toroidal field of the currentless plasma 

equal to F{5)[R. The poloidal field is made continuous by setting the jump in V 0 across 
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the interface to be zero. 

To lowest order in S we place the conducting wall, ip = 0, a perpendicular distance 

d = 5/|VV>|((r=s outside the surface ip = 5, see Fig. 5. Note that d varies considerably 

with poloidal angle. In the region bounded by the boundary layer, |0| < $a in Fig. 5, 

d ~ 0(Sel/2). The region \9\ > 9Q where the currentless halo adjoins the core solution has 

d ~ 0(<52/3). Note that the new conducting wall is not quite circular. The current in oui-

halo is to lowest order in 5, zero. Higher order solutions come from solving V2t/> = 0 in this 

region with the boundary condition that V >̂ is continuous across the ^ = S surface. The 

conducting wall is placed at the 0 = 0 surface whatever shape that surface takes. There is 

no separatrix to all orders in 6. 

Conclusions. 

In this paper we present a new method for finding the high beta equilibrium of a large 

aspect ratio tokamak. The flux surfaces in this equilibrium have a characteristic shape. 

Each surface has a straight section (the core solution) where ?/> is a function of the major 

radius and a section which is confined to a boundary layer at the wall of width (e/3p)1''2. In 

Eqs. (12) and (13) of Section IVa we constucted the core solution for arbitrary pressure (p) 

and safety factor (q) profiles. The boundary layer solution is given in Eq. (20) of Section 

IVb. When the pressure is very large, beta of order one, a new type of solution occurs. 

This solution possesses a field free "hole" replacing the magnetic axis, and is described in 

Section IVc. In Section IV we assumed a circular conducting wall. The generalization to 
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a shaped boundary is given in Section VI. A small proportion of the poloidal flux of order 

e 3 / 4 is contained in a further boundary layer at the magnetic axis (in the no hole case). The 

magnetic axis boundary layer is treated in Appendix A. In Appendix B we show how the 

equilibrium, including the q profile, can be reconstructed from a measurement of p along 

the line 0 = 0. We also show that it is impossible to deduce the q profile from external 

measurements of the magnetic field. 

Analytic equilibria have many obvious advantages over numerical equilibria. In fact, 

high beta equilibria are notoriously difficult to compute, perhaps our solution can help such 

computations. At present, codes do not operate at betas large enough to find the "hole" 

solutions. The solution we present has several deficiencies. First, it is an asymptotic 

expansion in e and (e0p)~l and, therefore, it is only valid at large aspect ratio and large 

tf3T. Second, it is a fixed boundary solution, which is not realistic for most tokamaks. The 

coaducting wall could in principle be replaced with a complex system of coils which mimic 

the currents flowing in the wall. Finally, our solutions have large current densities at the 

wall. It was shown in Section Vic that a current free region can be added between the 

current carrying plasma and the wall. 

Four betas are defined in this paper: /?p defined in Eq. (5) which is of order the poloidal 

beta of the core region; /?/ defined in Eq. (24); 0P the average beta poloiaal beta defined 

in Eq. (25); and /Jy the toroidal beta defined in Eq. (26). /?/ is often used in characterising 

an equilibrium perhaps because it is easily measured. Clarke and Sigmar5 claim that 0r 
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increases like p 1 ' 3 for high betas. We show in Section V that this claim is false; 0i is 

roughly independent of pressure for fir <S. 1 and $i ~ ;r 2/16 when fir ~> 1- At low beta a 

large valu J of fix is considered desirable because we want high pressures but low current. 

Current must be driven either inductively or by radio frequency current drive. Thus a 

limit on fit might be considered unfortunate. However, consider heating the plasma (faster 

than the resistive time) to high pressure. The current will increase without any applied 

loop voltage (or current drive) keeping fii roughly constant. In heating the plasma, the 

poloidal field energy increases (by a factor of order a/6 ~ \jtfip)- This energy is supplied 

by the heating source not by the transformer Now consider raising the temperature, T, 

in a flux conserving sequence, keeping the density constant. The plasma resistivity drops 

like T~3/2 and the current channel (the boundary layer) narrows like £ <x J - 1 ' 2 . Therefore 

the resistance drops like T - 1 . Keeping /?/ constant implies that the current rise? like T 1 ' 2 . 

Thus, the loop voltage drops like T - 1 ' 2 . The volt-second requirement to sustain the current 

does fall with increasing beta (for fixed density and toroidal field). 

In this paper we have considered high beta equilibria - the stability of these equilibria 

is not discussed. We hope to address some of the stability issues in the future. One should 

note that the s — a model 7 used to study balloning modes at high presoure is a local 

equilibrium constructed about a flux surface that is assumed to be a circle on which |V^ | 

is a constant. In this paper we have shown that the only circular surface in a high beta 

large aspect ratio equilibrium is the wall. However, |Vi/>| is not constant on the wall. In 

fact, at 6 = Tt, | V ^ | = 0 and at 8 = 1. |VV>| ~ 0(<r 1 ' ' 3 ) . Obviously the s - a model will 
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not give the correct ballooning stability boundaries of our equilibria. We do not know if 

the qualitative picture of ballooning stability given by the s — a model p. nains correct in 

our high beta equilibria. 
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Appendix A: Magnetic Axis Solutions 

The solution near 6 = 0 (the magnetic axis region) is not correctly described by the 

procedure outlined in the text. A new internal boundary layer is needed to describe the 

region around the magnetic axis. This region, which we refer to as the magnetic axis region, 

separates the core and the boundary layer solutions. Note that we continue to iefer to the 

region adjoining the wall as the boundary layer. The new region is illustrated in Fig. 6. 

(This figure is not drawn to scale). The corrections described in this appendix are negligible 

except for an order e 3 / 4 amount of the poloidal flux even at 0 = 0. Thus, the solution given 

in the text describes all but an asymptotically small fraction of the flux surfaces. 

There are essentially two reasons why the solution given in the text breaks down at 

near the magnetic axis. First, the evaluation of q given in Section IVa becomes incorrect 

when 1 — if <— 0 ( e 3 ' 4 ) where the width of the boundary layer significantly shortens the 

length, £(x), of the surface in the core region. When 1 — i> ~ 0(e) the surfaces are no 

longer D shaped and the surfaces lie entirely in the magnetic axis region. In this region the 

equations are a two dimensional integro-differential system which cannot be solved easily. 

We have obtained an approximate solution which makes q correct at the magnetic axis 

(ip = 1) and correct for 1 — $ 3> £. The second reason for a modified treatment is that 

the matching between the core and boundary layer solutions breaks down because in the 

region 1 — $ ~ 0((?IA) the e1/2* term on the right hand side of Eq. (16) becomes important. 

The function Gi(ip) must be modified so that q(if>) remains correct in this region [Go is 
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still given correctly by Eq. (8)]. Let us first consider the behavior of the solution with G\(rf>) 

given by Eq. (10). From Eqs. (12) and (13) for At/> = 1 - i/> < 1 (and A T = 1 - x < 1) 

we obtain 

As(Atf>) = (aAt^ ) 2 ' 3 (37) 

where a = g(l)(3/4)jr(C - p ( l ) ) ~ 1 / 2 . At the point 9 = 0,and nowhere else, the integral in 

Eq. (20) converges as Tp —» ^ c o r e = 1. We define the width of the boundary layer in t, t0, 

by the expression 

to = £ , d \ • (38) 

Inserting Eq. (37) into Eq. (18) [or Eq. (21)] we find the typical distance, e ' / 'Ai, for the 

boundarj layer to exponentially decay into the core (for small 9) to be order fl'/V2. Thus, 

while the boundary layer has a finite width in t (for small 0), it has a much sharper edge, 

i.e. At <C r 0 . 

Nov; consider a D shaped surface where the tip of the D is at 0o ~ 0{i{^). The q 

of this surface is wrong if we take Gi to be given in the manner described in Section IVa 

since we didn't take into account the width of the boundary layer in computing the length 

of the surface in the core, t[x). If we assume, correctly it turns out, that the width of 

the boundary layer is not significantly altered by the corrections at the magnetic axis, we 

may replace £{x) by l{x) = 2^(1 - e}lHa) ~ x in Eq. (12). On the straight part of the 

D, Eq. (37) yields, | V ^ | ~ dijjjdx ~ ( A s ) 1 / 2 ~ 0(e1'4). On the curved part of the D, 

however, |V^ | ~ 0 ( A ^ / 0 j / 2 e J / s ) ~ O(e 1 / V f l o / 2 ) - Thus the integral defining q, Eq. (7), is 

still dominated by the straight section. We show below that with this modified t(x),I(x),vfe 
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obtain d O ) = -2x{ip)p'{ij>) ~ 2p'(l)[(<*A^) 2/ 3 _ l + ei/2f 0] for A$ < 1. 

The width of the D, i.e. the distance from the curved to the straight part at 9 = 0, is 

of order 6\ where 9T is the angle of the tip of the D. When this width is comparable to the 

exponentiation length of the boundary layer, # J / V / 2 the surfaces are clearly no longer D 

shaped. Thus when 6j ~ 0{e^3) the whole procedure for obtaining the correct q profile, 

which relies on a separation of the surface into a straight core region and a boundary layer 

region, breaks down. One can estimate that Aip ~ 0(e) when 9? ~ 0(ell3) by using the 

Ax(^>) as modified above by the width of the boundary layer. The problem in this region 

becomes one of finding G\(ij>) so that q(ij}) ~ q(l) . We show below that for A >̂ <K 1 G\(T[>) 

takes the form 

Gitt?) ~ 2p ' ( l ) [ - l + (a(Av> + A ^ 0 ) ) 2 / 3 + «1 / a*o + £ 2 / 3 ( 2 a p ' ( l ) ) - 2 / 3 ^ ( A 0 / £ ) ] (39) 

where A^>0 is a constant of order e and the unknown function H(u) must satisfy H(u) <S 

u 2 ' 3 for u —» co. H is determined by an integro differential system. We have not been able 

to solve for H so that q is correct everywhere. However, by relacing H by a constant of 

order one, we have made q on axis correct and q, of course, is correct for A 0 > e. 

The mathematical development of the solution around the magnetic axis is complicated. 

Let us therefore summarize the various regions that appear in the analysis (see Fig. 6). 

When 

7T > |<?| > e 1 / 4 (40) 

the core and boundary layer regions are correctly described by the solutions given by 
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Eqs. (12) and (20) of Section IV of the text. In the region 

tt»|0|»£1/3, \B\~0{J'*) (41) 

the core and boundary layer solutions are modified by the width of the boundary layer but 

no new boundary layer is needed. The regions of validity in t when 9 obeys Eq. (41) are, 

for the core solution, 

t-t0^\9\lf2,t>t0 (42) 

and for the boundary layer, 

0 < t < t i , 0 < * i - < o « l . (43) 

Note that the core and boundary layer solutions overlap in the region 1 » t — t0 > \d\:/2. 

The region 

\0\ ~ 0 ( e 1 / 3 ) < e 1 / 4 (44) 

contains three regions to be matched asymptotically. These regions .'re, for the core region 

* - i o > e 1 / 6 , (45) 

for the magnetic axis region 

| * - t o | ~ 0 ( « , / , ) « l (46) 

and for the boundary layer region 

0 < < < * i , t o - i-i > £ 1 / 6 . (47) 
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Clearly the core and axis regions overlap in the region 1 > I - ( 0 > e 1 ' 6 and the axis and 

boundary layer regions overlap in the region 1 ;» (o — r >• t 1 ' 6 . 

Modified core solution 

Let us begin the mathematical development by considering the effect of the boundary 

layer width on the core solution. Substituting the modified form of £(x), I(x) into Eq. (11) 

we obtain for Ax < 1 

where Aip = 1 — \h and Ax = 1 — x. Since we are expecting the magnetic axis to be close 

to Ax = e'^fo we may determine C to lowest order via Eq. (13). (We call this value CQ). 

While it is sufficient to use C = Co in the core region when Aar ^> e 1 / 2 , a more careful 

evaluation is required for Ax ~ 0(e1^1). Let us define A ^ 0 by the equation, 

^ k ( 2 C - 2 p W ) i / » ~ T " ( 2 C 0 - 2 p ( l ) ) ' / J

A ^ - ^ 

Also let a = $(l)(3/4)jr(C 0 - p ( l ) ) - , / 8 . Then Eq. (48) yields 

[Ax - e 1 / 2 i 0 ) = [a{ty + At/io)] 2 ' 3 (50) 

where A^o which is of order e is a parameter to be evaluated in the matching. 

Modified boundary layer solution 

Now consider the effect of the boundary layer width on the boundary layer solu-

tions.From Eqs. (10) and (16) we obtain for 9 <£ 1, 

^ = - 2 | [ - A l W + , . « ( Q + ^ ] + 2 ( i _ l 0 , , / ^ . ( 5 1 ) 
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The e'/ 2i term which is rewritten as e'^to + e ] ' 2 ( t — to), has been retained since it is 

comparable to £x(il>) and 62/2 in the matching region. The part of this term proportional 

to t — to is dropped because when Ax(^>) is finite it is unimportant, and (we show apostiori) 

when Ax{ip) ~ 02 ~ 0{^2} we find c^\t -10) ~ O ^ ' / V 2 ) . Equation (51) is integrated 

in the manner given, in Section IVb. Note that the e'^to term in Eq. (51) cancels with the 

elJ2to correction to Ax(^>) given in Eq. (50) when Â t> <C 1. After some algebra the following 

limiting expressions for the boundary layer solutions are obtained, for # 3 <g; A >̂ <K 1 

A* ~ c?{t - < 0 ) 6 ( ^ ) 3 (52) 

and for (2 3/ 2aAt/>/0 3) - 1 « 1, 

A ^ J l + A e x p _ ( ^ , ( 5 3 ) 

where B = T/ap!2sfi/y/3 and A ~ 0(1). Thus as before, without the boundary layer 

width corrections, the boundary layer solution approaches the core solution, Eq. (50), 

exponentially with a width in t of order l^l1^2. Note that the boundary layer has a width 

(in t) ta plus corrections of order |#p/ 2 . The assumption used to derive the core solution 

is therefore justified when the exponential decay length jfl|1'*e1-'2 is short compared to 

the width of the D-shaped surface, &2 (i.e. where 6 ^> e 1 ' 3 ) . Thus, by modifying the core 

solution, Eq. (50), and the boundary layer solution, Eq. (51), we have extended the solution 

to the region e 1 / ' < Q ~ 0(e.^4). 

Magnetic Axis Region 

Let us now consider the region 8 ~ 0(t1!3) and &4> ~ 0(e), the magnetic axis region. 
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The term proportional to t — ta in Eq. (51) must be included in this region. The separation 

of the core and boundary layer regions is impossible in this limit. Therefore Gi[if>) cannot 

be determined from the core solution. Let us introduce the following scalings, 

i - f o = ( a 2 p ' ( l ) ) V 3 <5 5> 

and 

With these normalisations and the form of Gj(V') given in Eq. (39) and Eq. (51) we obtain, 

tPW 
1JL = W2/3 _ s _ e2 + H t W \ ( 5 7 ) 

as 2 

Equation (57) correctly describes the solution when W <g: e - 1 . In order to match the core 

solution we require the boundary condition , 
W -* (5 2 + sf'2 (58) 

as s —> oo. When s —* —oo the solution of Eq. (57) must match limit of the boundary layer 

solution given in Eq. (52), 

w~m{* (59) 

From Eq. (7) and q ~ q(l) in this region we obtain, 

da 
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where the integration is taken over the W = constant contour. The mathematical problem 

is then to find a function H(W) so that W, the solution of Eq. (57) obeying the boundary 

conditions Eqs. (58) and (59), satisfies the constraint Eq. (60). The problem [finding 

H(W)] is independent of the specific g(̂ >) and p(^) , thus it can be solved once and for 

all. Unfortunately we have not been able to solve this problem in a rigourous manner. We 

have, however, obtained a solution by replacing H(W) by a constant s0 and choosing SQ SO 

that q is correct on the magnetic axis. The <j condition on axis becomes, 

**=\.Wd*\ ( 6 1 ) 

where the derivatives are evaluated at W = Wmi„, the magnetic axis. We find numerically 

that for so — 10.1 and Wmin = 11.5. Note that eWmin = 2p'a2Aipo, thus A^o is order e as 

has been assumed. In Fig. 7 we plot the approximate solution. Although the plot does not 

extend to the asymptotic limits in either direction, the computation was performed over a 

range extending to the asymptotic limits. Demanding that q = q(l) over this region may 

not be the most physically relevant constraint; perhaps a more realistic presrciption would 

be to demand a level of smoothness to the current profile, since short scale variations in 

the current are rapidly destroyed by resistive diffusion. 
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Append ix B : Equi l ibr ium Recons t ruc t ion . 

There are very few direct measurements of q{i>) in experiments. This is unfortunate 

since q plays a cruicial role in stability, especially in sawtooth oscilattons. The most com­

mon way to infer q is via equilibrium reconstruction,8 In this technique (in its most basic 

form) the Grad-Shafranov equation is solved for many qty) and p(i/;) profiles. These so­

lutions are then compared with the experimentally measured p(r) and the magnetic field 

at the boundary of the plasma. The q(ip) profile of the solution which most nearly fits the 

measurements is then inferred to be the experimental q profile. 

In this appendix we consider the problem of deducing q(*l>) for our equilibrium. We 

show that the q profile cannot be inferred from measurements of the magnetic field on 

the boundary. However q can, be inferred from a knowledge of the pressure profile along 

the line $ = 0, (core and boundary layer profiles are needed) and the toroidal field at the 

boundary. We will first assume a circular boundary then generalise to shaped boundaries. 

First let us consider the information obtained from the magnetic field at the boundary. 

From Eqs. (4) and (9) and the condition p(0) = 0 we obtain, 

Tmax 

where Br(0) is the toroidal field at the wall in unsealed units. The 0(e) variation of BT(0) 

with 0 is ignored since it is small and it yields no extra information. The poloidal field 

at the boundary is obtained from the boundary layer solution. From Eq. (2S) and the 
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sc&lings, Eq. (4), we obtain, 

A ^ - - 4 W ( f i ) (63) 

where p(R) is the pressure expressed as a function of major radius in the core. Therefore the 

boundary data yields the pressure in the core as a function of R (not if>). Equations. (62) 

and (63) can be used in conjunction with the core solution Eq. (11) to give the toroidal 

flux <j>(R) in the core between R = RQ — a and R, 

4> = ± - i R dR^a* -(Ro- a ) V ^ ( O ) - fiopiR). (64) 
lit JRt~a v 

There is no way to extract q(ij>) from this information. Note that p(R), not p{tp), is the 

measurable p profile; Thus, a measurement of p in the core does not add any information 

to that already deduced from magnetic measurements at the boundary. 

Clearly one must measure some other function to deduce q{$). Obviously if one could 

measure BP(R) in the core, Eq. (11) would yield q(~4>). Measurements of magnetic fields 

inside the plasma are, however, notoriously difficult. Consider, instead, measuring the 

pressure along the line 9 — 0 - thereby measuring p(R) in the core and p(i) in the boundary 

layer. For monotonic p we can then define the inverse function, t(p), in the boundary layer. 

Then, since we know p(R), we express t = t{p(R)) — t(R). From Eq. (19) one may deduce 

dfyjdR in the core as, 

s-"&[r"«<>-«*-*>/*•£. 1/2 
(65) 

where dijdR is the differential of the function t(R). Since the right hand side of Eq. (65) is 

a known function of R, one may integrate, with the boundary condition ifi[R = RQ — a) = 0, 
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to obtain ip(R). Thus, the boundary layer equation is used to deduce ip(R) in the core! 

The magnetic axis is ignored in this discussion because it only makes a difference in a 

vanishingly small region. 

We can now construct q(R) from Eq. (11), 

, m V%(Q)-w.p(fi)vk2-(*-ft.)a , _ 
q { R ] _ _ m 

where dtp/dR is given by Eq. (65). If q(4>) is reqired one can express R(il)) by inverting t/> = 

il>(R). We have assumed, as before, a knowledge of Bx(0) in Eq. (66). This construction can 

be trivially generalised to shaped tokamaks as follows. Firstly, replace \Ja? — (R — Ro)2 in 

Eqs. (64) and (65) by z(R), the vertical height of the vacuum vessel at R. Secondly, define 

Ro and a in Eq. (65) so that R = Ro + a and R = Ro — a are the intersections of the 

conducting wall and the midplane. Note that shaping does not change Eq. (63); therefore 

the conclusion that qfifi) cannot be deduced from the boundary data is shape independant. 

At very large tjip it may be impossible to measure p = p(t) accurately in the boundary 

layer. Our construction does, however, demonstrate the theoretical possibility of deducing 

the q profile from a measurement of the pressure profile! One possible test of the validity 

of our expansion is a comparison of the measured p(R) and the one deduced from the 

measurement of the poloidal field at the boundary. 
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Figures 

FIG. 1. Large aspect ratio geometry. 

FIG. 2. Core and boundary layer regions with typical flux surfaces, 

FIG. 3. Plot of ^o(z) f ° r 9 = 9o =constant and p = p'0il> for various values of /?0 = Po/?o-

Including a "hole" solution for 0o = 64 for which Xh = 0. 

FIG. 4. A typical "hole" equilibrium, showing flux surfaces and the "hole". 

FIG. 5. Currentless halo surrounding a high beta solution. 

FIG. 6. Three regions for the magnetic axis matching, the core region is constrained 

so that, t - t0 » e1'6 for 0 ~ 0(ellz) and t - t0 > 0 I / 2 for 0 1 / 3 . The magnetic axis 

region is where t — to ~ 0(e 1 ' ' 6 ) and 9 ~ 0(tl^a). The boundary layer region is where 

t0 > t0 -1 » e 1 ' 6 when 6 ~ 0(e 1 / 3 ) and i < 1 for 0 » e 1 ' 3 . 

FIG. 7. Plot of the magnetic axis solution for the "optimum" s0. 
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