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Abstract
We consider the problem of two-dimensional projectile motion in which the
resistance acting on an object moving in air is proportional to the square of
the velocity of the object (quadratic resistance law). It is well known that
the quadratic resistance law is valid in the range of the Reynolds number:
1 × 103 ∼ 2 × 105 (for instance, a sphere) for practical situations, such as
throwing a ball. It has been considered that the equations of motion of this
case are unsolvable for a general projectile angle, although some solutions
have been obtained for a small projectile angle using perturbation techniques.
To obtain a general analytic solution, we apply Liao’s homotopy analysis
method to this problem. The homotopy analysis method, which is different
from a perturbation technique, can be applied to a problem which does not
include small parameters. We apply the homotopy analysis method for not only
governing differential equations, but also an algebraic equation of a velocity
vector to extend the radius of convergence. Ultimately, we obtain the analytic
solution to this problem and investigate the validation of the solution.

PACS numbers: 01.55.+b, 02.30.Hq, 04.25.−g

1. Introduction

The projectile motion problem with air resistance is considered in this paper. According to
fluid dynamics [1], linear air resistance law (the air resistance is proportional to the magnitude
of velocity) and quadratic resistance law (the air resistance is proportional to the square of the
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magnitude of velocity) are known as resistance laws of a moving object in air. It is known
that a small sphere moving slowly, such as a particle of mist, has linear air resistance. The
motion equation of this case is solvable analytically. This state is indicated by Re < 1. Re is
the non-dimensional parameter called the Reynolds number, and is defined as Re = UD/ν,
where U is a velocity of the object, D is a diameter in case the object is a sphere and ν is the
coefficient of kinematic viscosity of the air (1.5 × 10−5 m2 s−1). Quadratic air resistance acts
on a sphere for practical situations such as throwing a ball in 1 × 103 < Re < 2 × 105. The
motion equation of this case is unsolvable analytically, although the problem is fundamental
and practical in elementary dynamics. Most objects, including a sphere, have a quadratic air
resistance in their own Reynolds number ranges. The motion equation of this case is

Mv̂′(t̂) = −1

2
ρ|v̂(t̂)|2ACD

v̂(t̂)

|v̂(t̂)| + K, (1)

where M is the mass of the object, ρ is the air density, A is the projected area of the object
(A = πa2 when a sphere’s radius is a), v̂ is the velocity of the object, K = (0,−Mg) is
the gravitational force vector, g is the acceleration of gravity and CD is the drag coefficient
(CD is considered constant in the range of 1 × 103 < Re < 2 × 105). Equation (1) can be
written using the components of a velocity vector, v̂ = (û, v̂) as follows:

û′(t̂) + α
√

û(t̂)2 + v̂(t̂ )2û(t̂) = 0, (2)

v̂′(t̂) + α
√

û(t̂)2 + v̂(t̂ )2v̂(t̂ ) + g = 0, (3)

α = ρπa2CD

2M
. (4)

The analytic solutions of falling motion problems with linear air resistance and with
quadratic air resistance have already been obtained. Also, the case of projectile motion with
linear air resistance has already been solved. As mentioned before, the case of projectile
motion with quadratic air resistance has previously been unsolvable without adding some
specific conditions.

We mention several analytic solutions obtained in the past and their conditions.
Firstly, Lamb described in his book [2] that this problem is solvable approximately under

the condition û � v̂ (nearly horizontal path). The solution is

ŷ(x̂) =
(

V̂0

Û0
+

1

2

g

αÛ 2
0

)
x̂ − 1

4

g

α2Û 2
0

(e2αx̂ − 1), (5)

where Û0 is the horizontal initial velocity and V̂0 is the perpendicular initial velocity. However,
this solution is unavailable in that the order of v̂ is the same as the order of û.

Secondly, Parker [3] solved this problem and obtained approximate solutions for both
short and long times. However, Parker’s short-time approximate solution is the same as
Lamb’s solution. Hence, this solution is only available for a nearly horizontal path. His
long-time approximate solution can be connected to the present solution which we obtain in
this paper.

Thirdly, Tsuboi [4] applied perturbation techniques to this problem under the conditions
of α � 1 and Û0 � V̂0 (nearly horizontal path). As a result, the first-order approximate
solution was obtained:

x̂(t̂) = Û0 t̂ +
αt̂2

24

[−(gt̂)2 + 4V̂0gt̂ − 6
(
2Û 2

0 + V̂ 2
0

)]
, (6)
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ŷ(t̂ ) = V̂0 t̂ − gt̂2

2
+

αt̂2

120Û0

[
3(gt̂)3 − 15V̂0(gt̂)2 +

(
20Û 2

0 + 30V̂ 2
0

)
gt̂ − 30V̂0

(
2Û 2

0 + V̂ 2
0

)]
.

(7)

Finally, the hodograph equation [5, 6], the relationship between the velocity f̂ =
√

û2 + v̂2

at the certain point in the orbit and the angle θ = tan−1 v̂/û can be derived under the quadratic
air resistance law as follows:

1

f̂ 2(θ)
= cos2 θ

(
C − α

g
tanh−1(sin θ)

)
− α

g
sin θ, (8)

where

C = 1

cos2 θ0

(
f̂ −2

0 +
α

g
cos2 θ0 tanh−1(sin θ0) +

α

g
sin θ0

)
, (9)

f̂ 0 =
√

Û 2
0 + V̂ 2

0 , (10)

θ0 = tan−1 V̂0

Û0
. (11)

The position (x̂, ŷ) and the time t̂ are described using f̂ (θ) and θ as follows:

x̂(θ) = − 1

g

∫ θ

θ0

{f̂ (θ)}2 dθ, (12)

ŷ(θ) = − 1

g

∫ θ

θ0

tan θ{f̂ (θ)}2 dθ, (13)

t̂ (θ) = − 1

g

∫ θ

θ0

sec θf̂ (θ) dθ. (14)

However, the above equations cannot be integrated without numerical techniques. This means
that it is impossible to obtain the orbit analytically.

The perturbation technique has frequently been used to solve nonlinear problems.
However, the perturbation technique can only be used to solve problems including small
parameters.

The homotopy analysis method [7] is a new analytic method introduced by Liao in 1992
to solve nonlinear problems. As opposed to the perturbation technique, the homotopy analysis
method can be applied to problems that do not include small parameters. It is also shown
[7, 8] that the Adomian decomposition method is a special case of the homotopy analysis
method. Liao solved various nonlinear problems using the homotopy analysis method and in
1992 obtained a second-order analytic solution of a simple pendulum that was in agreement
with the numerical result [9]. In 1997 Liao solved the governing equation of a two-dimensional
viscous laminar flow past a semi-infinite flat plate [10]. The inner and outer solutions had
already been obtained using the perturbation technique. The inner solution was extended to
the outer region of the boundary layer using the homotopy analysis method. It was found
that Liao’s solution was valid in the whole region of the boundary layer. Also, extended
solutions of the unsteady boundary layer flows were derived by Liao et al [11, 12]. In 2002
Liao obtained the approximate solution of the drag coefficient for viscous flow past a sphere
by solving the Navier–Stokes equation in the range of Re < 30 [13].

In this paper, we apply Liao’s homotopy analysis method to the problem of projectile
motion with quadratic air resistance for an arbitrary angle of projection. We obtain an analytic
solution expressed as power series for this problem.
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2. The governing equations

The governing equations (2), (3) of projectile motion with quadratic air resistance can be
expressed in the non-dimensional form as follows:

du(t)

dt
+ f (t)u(t) = 0, (15)

dv(t)

dt
+ f (t)v(t) + 1 = 0, (16)

where

u(t) = û(t̂)

vt

= û(t̂)

√
α

g
, (17)

v(t) = v̂(t̂ )

vt

= v̂(t̂ )

√
α

g
, (18)

t = t̂

vt /g
= t̂

√
αg, (19)

f (t) =
√

u2(t) + v2(t), (20)

vt =
√

g

α
. (21)

The velocity vt is called terminal velocity. Initial conditions are

u(0) = Û0

vt

= U0, v(0) = V̂0

vt

= V0. (22)

3. The homotopy analysis solution

We construct the zeroth-order deformation equations in the first step of analysis. At first, we
tried a standard method in which the homotopy analysis method is used only for governing
differential equations (15) and (16), however, the obtained solution had diverged near the top
of the orbit. Therefore, we construct the zeroth-order deformation equations for not only (15)
and (16), but for also (20) as follows:

(1 − p)
∂U(t;p, h̄1, h̄2)

∂t

+ ph̄1

[
∂U(t;p, h̄1, h̄2)

∂t
+ F(t;p, h̄1, h̄2)U(t;p, h̄1, h̄2)

]
= 0, (23)

(1 − p)
∂V (t;p, h̄1, h̄2)

∂t

+ ph̄1

[
∂V (t;p, h̄1, h̄2)

∂t
+ F(t;p, h̄1, h̄2)V (t;p, h̄1, h̄2) + 1

]
= 0, (24)

(1 − p)
[
F 2(t;p, h̄1, h̄2) − U 2

0 − V 2
0

]
+ ph̄2[F 2(t;p, h̄1, h̄2) − U 2(t;p, h̄1, h̄2) − V 2(t;p, h̄1, h̄2)] = 0, (25)

U(0;p, h̄1, h̄2) = U0, V (0;p, h̄1, h̄2) = V0, (26)

where p is the embedding parameter and h̄1, h̄2 are the homotopy parameters which are
non-zero real numbers. When the embedding parameter p = 0, (23)–(25) are transformed
into the linear differential equations ∂U(t; 0, h̄1, h̄2)/∂t = 0, ∂V (t; 0, h̄1, h̄2)/∂t = 0
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and F(t; 0, h̄1, h̄2) =
√

U 2
0 + V 2

0 . These equations must not have physical meaning in
the homotopy analysis method, however, it is necessary that those equations are solved
analytically. When the embedding parameter p = 1, (23)–(25) are transformed into the
nonlinear differential equations that are the same as (15), (16) and (20), which are the governing
equations for this system. That is to say, u(t) = U(t; 1, h̄1, h̄2), v(t) = V (t; 1, h̄1, h̄2)

and f (t) = F(t; 1, h̄1, h̄2). The solutions U(t; 0, h̄1, h̄2), V (t; 0, h̄1, h̄2) and F(t; 0, h̄1, h̄2)

are connected to the solutions U(t; 1, h̄1, h̄2), V (t; 1, h̄1, h̄2) and F(t; 1, h̄1, h̄2) by Taylor’s
expansion. Namely, U(t;p, h̄1, h̄2), V (t;p, h̄1, h̄2) and F(t;p, h̄1, h̄2) are homotopies
between U(t; 0, h̄1, h̄2), V (t; 0, h̄1, h̄2), F (t; 0, h̄1, h̄2) and U(t; 1, h̄1, h̄2), V (t; 1, h̄1, h̄2),

F (t; 1, h̄1, h̄2). Homotopy parameters h̄1, h̄2 affect the convergence of the solution. According
to Liao’s paper, the convergence region of the solution seems to increase as h̄1, h̄2 approach
zero.

Expanding U(t;p, h̄1, h̄2), V (t;p, h̄1, h̄2) and F(t;p, h̄1, h̄2) to Taylor’s series at p = 0,
we have

U(t;p, h̄1, h̄2) =
+∞∑
m=0

um(t; h̄1, h̄2)p
m, (27)

V (t;p, h̄1, h̄2) =
+∞∑
m=0

vm(t; h̄1, h̄2)p
m, (28)

F(t;p, h̄1, h̄2) =
+∞∑
m=0

fm(t; h̄1, h̄2)p
m, (29)

where

um(t; h̄1, h̄2) = 1

m!

∂mU(t;p, h̄1, h̄2)

∂pm

∣∣∣∣
p=0

, (30)

vm(t; h̄1, h̄2) = 1

m!

∂mV (t;p, h̄1, h̄2)

∂pm

∣∣∣∣
p=0

, (31)

fm(t; h̄1, h̄2) = 1

m!

∂mF(t;p, h̄1, h̄2)

∂pm

∣∣∣∣
p=0

. (32)

When p = 1,

U(t; 1, h̄1, h̄2) = u(t) =
+∞∑
m=0

um(t; h̄1, h̄2), (33)

V (t; 1, h̄1, h̄2) = v(t) =
+∞∑
m=0

vm(t; h̄1, h̄2), (34)

F(t; 1, h̄1, h̄2) = f (t) =
+∞∑
m=0

fm(t; h̄1, h̄2), (35)

with initial conditions

u0(0; h̄1, h̄2) = U0, v0(0; h̄1, h̄2) = V0, (36)

um(0; h̄1, h̄2) = vm(0; h̄1, h̄2) = 0, (m � 1). (37)
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The solutions U(t; 1, h̄1, h̄2), V (t; 1, h̄1, h̄2) and F(t; 1, h̄1, h̄2) are expressed by
um(t; h̄1, h̄2), vm(t; h̄1, h̄2) and fm(t; h̄1, h̄2), respectively.

As the first step, in order to obtain u0(t; h̄1, h̄2), v0(t; h̄1, h̄2) and f0(t; h̄1, h̄2), we partially
differentiate (23)–(25) zero time (i.e. we do not differentiate) with respect to p and set p = 0.
Equations (23)–(25) become

∂u0(t; h̄1, h̄2)

∂t
= 0, (38)

∂v0(t; h̄1, h̄2)

∂t
= 0, (39)

f 2
0 (t; h̄1, h̄2) = U 2

0 + V 2
0 . (40)

From (36), we have

u0(t; h̄1, h̄2) = U0, (41)

v0(t; h̄1, h̄2) = V0, (42)

f0(t; h̄1, h̄2) =
√

U 2
0 + V 2

0 . (43)

In the same way, we partially differentiate (23)–(25) m times with respect to p, set p = 0 and
divide by m!, we obtain

∂um(t; h̄1, h̄2)

∂t
= (1 − h̄1)

∂um−1(t; h̄1, h̄2)

∂t
− h̄1

m−1∑
k=0

fk(t; h̄1, h̄2)um−k−1(t; h̄1, h̄2), (44)

∂vm(t; h̄1, h̄2)

∂t
= (1 − h̄1)

∂vm−1(t; h̄1, h̄2)

∂t

− h̄1

m−1∑
k=0

fk(t; h̄1, h̄2)vm−k−1(t; h̄1, h̄2) − χmh̄1, (45)

fm(t; h̄1, h̄2) = 1

2f0

[
−(

U 2
0 + V 2

0

)
χm −

m−1∑
k=1

fk(t; h̄1, h̄2)fm−k(t; h̄1, h̄2) + (1 − h̄2)

×
m−1∑
k=0

fk(t; h̄1, h̄2)fm−1−k(t; h̄1, h̄2) + h̄2

m−1∑
k=0

{uk(t; h̄1, h̄2)um−1−k(t; h̄1, h̄2)

+ vk(t; h̄1, h̄2)vm−1−k(t; h̄1, h̄2)}
]
, (46)

where

χm =
{

1 (m = 1),

0 (m � 2).
(47)

Integrating (44) and (45) by t with the initial conditions (37), we obtain

u0(t; h̄1, h̄2) = U0, (48)

u1(t; h̄1, h̄2) = −h̄1U0

√
U 2

0 + V 2
0 t, (49)
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u2(t; h̄1, h̄2) = −(1 − h̄1)h̄1U0

√
U 2

0 + V 2
0 t +

h̄2
1U0

(
U 2

0 + V 2
0

)
2

t2, (50)

u3(t; h̄1, h̄2) = −(1 − h̄1)
2h̄1U0

√
U 2

0 + V 2
0 t

+
h̄2

1U0
{
(2 − 2h̄1 + h̄2)

(
U 2

0 + V 2
0

) 3
2 + h̄2V0

}
2
√

U 2
0 + V 2

0

t2 − h̄3
1U0

(
U 2

0 + V 2
0

) 3
2

6
t3, (51)

...

v0(t; h̄1, h̄2) = V0, (52)

v1(t; h̄1, h̄2) = −h̄1
(
1 + V0

√
U 2

0 + V 2
0

)
t, (53)

v2(t; h̄1, h̄2) = −(1 − h̄1)h̄1
(
1 + V0

√
U 2

0 + V 2
0

)
t +

h̄2
1

√
U 2

0 + V 2
0

(
1 + V0

√
U 2

0 + V 2
0

)
2

t2,

(54)

v3(t; h̄1, h̄2) = −(1 − h̄1)
2h̄1

(
1 + V0

√
U 2

0 + V 2
0

)
t +

h̄2
1

2
√

U 2
0 + V 2

0

× [{−2h̄1
(
U 2

0 + V 2
0

)
+ (2 + h̄2)V

2
0

}(
1 + V0

√
U 2

0 + V 2
0

)

+ U 2
0

{
2 + (2 + h̄2)V0

√
U 2

0 + V 2
0

}]
t2 −

h̄3
1

(
U 2

0 + V 2
0

)(
1 + V0

√
U 2

0 + V 2
0

)
6

t3,

... (55)

f0(t; h̄1, h̄2) =
√

U 2
0 + V 2

0 , (56)

f1(t; h̄1, h̄2) = 0, (57)

f2(t; h̄1, h̄2) = −h̄1h̄2
{(

U 2
0 + V 2

0

) 3
2 + V0

}
√

U 2
0 + V 2

0

t, (58)

f3(t; h̄1, h̄2) = h̄1h̄2(−2 + h̄1 + h̄2)
{(

U 2
0 + V 2

0

) 3
2 + V0

}
√

U 2
0 + V 2

0

t

+
h̄2

1h̄2
{
1 + 2

(
U 2

0 + V 2
0

)2
+ 3V0

√
U 2

0 + V 2
0

}
2
√

U 2
0 + V 2

0

t2, (59)

...

4. The power series solution

In the previous section, the solutions of the projectile motion problem with quadratic resistance
law can be derived by using the homotopy analysis method. However, those solutions
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are so intricate that we cannot obtain the seventh-order approximate solution by means of
MATHEMATICA. However, we may obtain a power series solution with a recurrence equation
[14, 15] from the homotopy analysis solution.

Observing (48)–(59), the structure of the solutions um(t; h̄1, h̄2), vm(t; h̄1, h̄2) and
fm(t; h̄1, h̄2) is found as follows:

um(t; h̄1, h̄2) =
m∑

n=0

am,nt
n, (60)

vm(t; h̄1, h̄2) =
m∑

n=0

bm,nt
n, (61)

fm(t; h̄1, h̄2) =
m∑

n=0

cm,nt
n. (62)

Substituting (60)–(62) into (44)–(46), we have

m∑
n=0

am,nt
n = (1 − h̄1)

m−1∑
n=0

am−1,nt
n − h̄1

∫ t

0

{
m−1∑
k=0

(
k∑

n=0

ck,nt
n

m−k−1∑
n=0

am−k−1,nt
n

)}
dt, (63)

m∑
n=0

bm,nt
n = (1 − h̄1)

m−1∑
n=0

bm−1,nt
n

− h̄1

∫ t

0

{
m−1∑
k=0

(
k∑

n=0

ck,nt
n

m−k−1∑
n=0

bm−k−1,nt
n

)}
dt − χmh̄1t, (64)

m∑
n=0

cm,nt
n = 1

2
√

U 2
0 + V 2

0

[
−(

U 2
0 + V 2

0

)
χm −

m−1∑
k=1

(
k∑

n=0

ck,nt
n

m−k∑
n=0

cm−k,nt
n

)

+ (1 − h)

m−1∑
k=0

(
k∑

n=0

ck,nt
n

m−1−k∑
n=0

cm−1−k,nt
n

)

+ h̄1

m−1∑
k=0

(
k∑

n=0

ak,nt
n

m−1−k∑
n=0

am−1−k,nt
n +

k∑
n=0

bk,nt
n

m−1−k∑
n=0

bm−1−k,nt
n

)]
. (65)

When (63)–(65) holds for an arbitrary t, we have

a0,0 = U0, b0,0 = V0, c0,0 =
√

U 2
0 + V 2

0 , (66)

am,n = (1 − h̄1)am−1,n − h̄1

n

m−1∑
k=0

n−1∑
i=0

ck,iam−1−k,n−1−i , (m � 1, 1 � n � m), (67)

bm,n = (1 − h̄1)bm−1,n − h̄1

n

m−1∑
k=0

n−1∑
i=0

ck,ibm−1−k,n−1−i − χm,nh̄1, (m � 1, 1 � n � m),

(68)
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cm,n = 1

2
√

U 2
0 + V 2

0

[
−

m−1∑
k=1

n∑
i=0

ck,icm−k,n−i + (1 − h̄2)

m−1∑
k=0

n∑
i=0

ck,icm−1−k,n−i

+ h̄2

m−1∑
k=0

n∑
i=0

(ak,iam−1−k,n−i + bk,ibm−1−k,n−i )

]
,

(m � 1, 1 � n � m − 1), (69)

where χ1,1 = 1, χm,n = 0 (m �= 1 ∨ n �= 1), am,n = bm,n = 0 (m < n), cm,n = 0 (m � n).
Now, we obtain ultimate solutions

u(t) =
+∞∑
m=0

m∑
n=0

am,nt
n, (70)

v(t) =
+∞∑
m=0

m∑
n=0

bm,nt
n, (71)

f (t) =
+∞∑
m=0

m∑
n=0

cm,nt
n. (72)

As a consequence, we have the non-dimensional positions x(t) and y(t) as follows:

x(t) =
+∞∑
m=0

m∑
n=0

1

n + 1
am,nt

n+1, (73)

y(t) =
+∞∑
m=0

m∑
n=0

1

n + 1
bm,nt

n+1, (74)

where x(0) = y(0) = 0.

5. Optimization method of the homotopy parameters and discussions

Liao [7] shows the guideline that the convergence radius increases as the homotopy parameters
decrease. Abbasbandy [16, 17] investigated the error of the homotopy analysis solution for
the homotopy parameter by comparing with the exact solution. In this section, we show the
optimization method of the homotopy parameters h̄1, h̄2 for the order of approximation N.
The homotopy parameter is an arbitrary constant when N is infinite; however, the optimum
value of homotopy parameter should be found under the finite number of N. This method can
be applied to the problem without the exact solution. The Nth-order approximate solutions
of (70)–(72) are defined as follows:

ũN (t; h̄1, h̄2) =
N∑

m=0

m∑
n=0

am,nt
n, (75)

ṽN (t; h̄1, h̄2) =
N∑

m=0

m∑
n=0

bm,nt
n, (76)

f̃ N (t; h̄1, h̄2) =
N∑

m=0

m∑
n=0

cm,nt
n. (77)
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Figure 1. Contours of log10 ε60(h̄1, h̄2).
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Figure 2. Variations of u, v(Û0 = 2 m s−1, V̂0 = 5 m s−1).

The initial conditions are

Û0 = 2 m s−1, V̂0 = 5 m s−1,

U0 ≈ 0.122, V0 ≈ 0.304,

vt =
√

g

α
=

√
2Mg

ρπa2CD

=
√

2 × 0.27 × 9.8

1.2 × π × 0.1052 × 0.47
≈ 16.46 m s−1,

(78)

where a volleyball’s dimensions are used in this paper.
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Figure 3. Variation of f (Û0 = 2 m s−1, V̂0 = 5 m s−1).
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Figure 4. Comparison of orbits between nearly horizontal path, perturbation solution (Tsuboi),
Runge–Kutta solution and the present solution.

We consider a residual of the Nth-order approximate solutions for (15), (16) from t = 0
to t1. The residual is expressed as follows:

εN(h̄1, h̄2) =
[{∫ t1

0

(
∂ũN(t; h̄1, h̄2)

∂t
+ f̃ N t; h̄1, h̄2)ũN (t; h̄1, h̄2)

)
dt

}2

+

{∫ t1

0

(
∂ṽN(t; h̄1, h̄2)

∂t
+ f̃ N (t; h̄1, h̄2)ṽN (t; h̄1, h̄2) + 1

)
dt

}2
] 1

2

,

(79)

where t1 = 0.5924 is the non-dimensional time when the orbits cross the x-axis (landing).
As the present solution approaches the exact solution, the value of εN(h̄1, h̄2) approaches
zero. Figure 1 shows the contour lines of log10 εN(h̄1, h̄2) when N = 60. h̄1 is in ordinate
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Figure 5. Comparison between the hodograph solution and the present solution.
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and h̄2 is in abscissa. The contour interval is 1.0. A minimum point of log10 ε60(h̄1, h̄2) is
h̄1 = 0.58, h̄2 = 0.28 in figure 1. Those values are optimal values of h̄1, h̄2 for the order
N = 60.

Figures 2 and 3 show variations of ũ60(t; h̄1, h̄2), ṽ60(t; h̄1, h̄2) and variation of
f̃ 60(t; h̄1, h̄2) when h̄1 = 0.58, h̄2 = 0.28. Those solutions are compared with the numerical
solutions of the Runge–Kutta method. The present 60th-order solutions are in good agreement
with the numerical solutions in the region of 0 � t � t1. Figure 4 illustrates the projectile
paths. In figure 4, orbits of the nearly horizontal path, the perturbation method (Tsuboi), and
the present solution are compared with the numerical result of the Runge–Kutta method. When
the angle of projection is small (Û0 = 6 m s−1, V̂0 = 1.5 m s−1, θ0 ≈ 14 degrees), those
orbits coincide with the orbit of the numerical solution, where N = 10, h̄1 = 0.97, h̄2 = 0.28.
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Table 1. The values of t1, N, h̄1, h̄2 for various angles of projection.

Angle of projection (deg) t1 N h̄1 h̄2

5 0.1453 10 0.90 0.73
15 0.4162 20 0.89 0.63
25 0.6600 30 0.76 0.58
35 0.8760 30 0.83 0.39
45 1.0631 30 0.57 0.33
55 1.2193 40 0.31 0.28
65 1.3418 70 0.46 0.38
75 1.4270 100 0.30 0.30
85 1.4710 120 0.27 0.22

When the angle of projection is large (Û0 = 2 m s−1, V̂0 = 5 m s−1, θ0 ≈ 68 degrees), orbits
of the nearly horizontal path and the perturbation method (Tsuboi) disagree with the orbit of
the numerical solution. In contrast, the orbit of the present 60th-order approximate solution
agrees with the numerical solution. Figure 5 shows a comparison between the hodograph
solution and the present solution in the above case in which the angle of projection is large.
The present 60th-order approximate solution also agrees with the hodograph solution in the θ

coordinate.
In figure 6, the present solution is compared with the Runge–Kutta solution for various

angles of projection
(√

Û 2
0 + V̂ 2

0 = 14 m s−1
)
. It can be known that the present solution

is in agreement with the numerical solution. The values of h̄1, h̄2 are determined using a
minimum value of (79) and are shown in table 1 with t1 and N. Table 1 shows that the
order of approximation N is small and h̄1, h̄2 are large when the differential equation has
weak nonlinearity (i.e. small angle of projection), and that N increases and h̄1, h̄2 decrease
as nonlinearity increases (i.e. the large angle of projection). Figure 7 shows variation of the
Reynolds number in each case during motion. The end points of lines indicate t1. It is found that
these results are within the range 1×103 < Re < 2×105 that CD is considered as constant and
that the initial velocity

√
Û 2

0 + V̂ 2
0 is almost the maximum value under the quadratic resistance
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law. It is predicted that the present solution is valid when the dimensionless initial velocities
U0 and V0 is smaller than the present case, however, the solution may be invalid for a much
larger dimensionless initial velocity, because the present solution is a polynomial expression
as shown in (73) and (74).

6. Conclusion

An analytic solution of the problem of two-dimensional projectile motion with quadratic
resistance law for a large angle of projection is obtained using the homotopy analysis method.
The solution is derived by means of constructing the zeroth-order deformation equations for
not only governing differential equations, but also an algebraic equation of a velocity vector.
The solution is expressed as simple power series. A residual obtained by substituting the
power series solution into the governing equation is introduced to optimize the value of the
homotopy parameters h̄1, h̄2. The optimum values of h̄1, h̄2 for the order of approximation N
are determined successfully. The present solution has sufficient accuracy because the solution
agrees with the hodograph solution and the Runge–Kutta solution.
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