UCRL - 77548
This is a preprint of a paper intended for publication in
REPRINT before publication this preprint is made available with tie understanding that it will not be cited or reproduced without the permagion of the author.

AN ANALYTIC TECHNIQUE FOR ROUTER COMPARISON

David C. Wilson and Robert J. Smith, II

November 26, 1975

This paper was prepared for submission to the 13th Design Automation Conference, Pall Alto, CA June 27-29, 1976

Af AIALYTIC TECHRIQUE IOR POUFER COHPARISON

Devid C. Wi!son
26020 Custer forbridy
Richardsan, Tesas 75080
amd
Robert J. Smith, II
Electronics Enginetring Department
Lavrence Livericur Labaratary
Livermpre, Califormia 94550

IHTRODUCTION
Design autoration of e?ectronic systems is generally separated into a number of distinct areas of effort. Breuer [1] has divided design automation into the oroas of logic synther, is, gate simulation, partitioning, placerverit, routing, and faut detection and diagnusis. mile this separation may not be complete or entircly accurate, these functions generully must be perforica.

At sone paint in the design process the components have been chosen, the logisal interconnecthons specified, and the componerts olaced on a printed circuit worlt: the next step is the physical intercannection of electricalif common elements. Hamernus techrizues have been proposed to solve the resulting intercionnecticn or routing problem, with aliost endless milinor veriations on these techniques passible [3].

Lee's algorithen [2] is one of the fow true
 guarontees that wr interconnestion sratieer two points will be found if a setisfactory fath exists. It is an exhaustive alyarithm, as ideny true aigoritms are, exploring all possibie pains. Typically it is quite slow in execution oecalise all possible patis are ex.lorea in parallet. A number of modifications to this basic technique have been proposed; mast change the algorithr to a heuristic fit can no lenger guarantee a solution will be sound) in orde. to realize a gain in execution speed.

There are also many heuristics of very different kinds of solving the rauting problen: nearly any possible technique for tracing lines is feasible, but results cannot be guaranteed. However, many heuristics run very rapisly in comperison to exhaustive algorithms and aprear to do a "reasonable" interconnection job.

One general class:ficution schene applicable to most routers is whether they are depth-ur breadth-first routers. That is, do they explore a path to a great depth et-soting to explore another then foilure is entorniereo, or do they explore multiple pains in parallel, stopping when the endpoint is reached by any path. Lee's algorithn is a breadth-first algorithm. Most heuristics use

This work was performed under the auspices of the U.S. Energy Fasearch and Developier.i Adininistration

74 cs
depth-first approdches which atternt to rejuce execution time.

There hus been scre experiment tion with molyrouters. 1.e. iwo or more rout-s operating in tandum. Often a fast heuristic dep. first router is used to make as many connections possible. fol howed by a slomer, more expentive nd exhoustive router attempting only those conneci ns that could not be made by the first state of the router.

Mose of the routers discussed in current literazure are experimentally evalivated to give some indication of their success. with performance ceneraily expressed as a percentage completion figure for the number of wires rocied on a board, compared to the nurber of wires atteripted. There are few analytical toois, nowever, to indicate or predict router performance.

This paper introduc is a model for printed cireuit bourds mish ean te probability that o router wili sutiessfully make a connection. The model reflects certain characteristics of the circuit boart that is befing routed and the nodel incrementally changes as the board is routed. houting procedures typicaliy have certain paranteters which influence selection of the set of paths that are explored, and determine the order of exoloration. These parameters obviously influence the probability that a particular connection can be made. These parameters may also be used to formulate a modea of the behavior of a particular rauting procedure.

The purpose of the soard and router models proposed here is to alio.d (comparative) predictions of router performance. Hore specifically, it is assumed that the features of a router which select the set of paths explores should impact the probability that a router nill be successful, as well as router execution time. Relationships between execution tiane and performance can be analyzed using the concepts developed below.

This study also attempts to address several other questions: Hhat factors cause a router to be good and how could d routers' performance be increased kecping the sare geners? heuristic; which router in a polyrouter should be used for a particular conneition or when Should the change over between oc 'ers be made; and finally ir, what order should the connections be mace to give the greatest expected nuster of completed connections?

Admitiedy none of the;e qatestions are answered fully in this paper. Hewerer, inv graneral jmaios:s tochnigue way hold the watentid) fur :redtiry sach issuet. It stiz ald aiso her orphoifed that buth
 statistically t ssed, and therrfore do not insrantee that a particular connection wan ve :and E-Eanen any two points; the apironk taten will ber so
 satisfactory path wall i.e teund. i,s coutle.
 this probability.

THE BASIC MODELS
The model of a printed circuit bodrd is based strictly on the 'density' of duourd. Several authors [4.6] have noted that as a board bricmins nore crowded (additiond wires conpletedi it beconcs harder to route wires, u's would be expected At a certain density it becomes neariy irpossible to route an additiond wire. This idea forlis the basis of the probleni board smade'.

The model assumes that each layer of a printed circuit board can be represented as a rectangular grid of smati squares, each of which is either empty (can be used) or occupied (fartner use is flegal:. The density of occupied stuares for just density) is defined by equation (1) as the ratio of the number of a upied sasdres to the total numder of squares all layers of a boara. As density is just the probsiblity of a square being used, equation (2) defines the groksbility F of d square being fres.
(1) Density $=0=0$ eccupied suures
2) Free $=F=1-D$

The initial noceling pfints recorted here have been focused on three general classes of boards:

MODEL 1. A board is filled ititr rancorily distributed occupied squares. Dut no !ines or groups of convected grid squares are included. This rodel might resemble a board coritaining rando.:ly placed component pads.

HODEL \%. The board has randu-ly distributed continuous segrents of occupted squeders, with alf wires naving toth expecied width and exprited lergth equil to conctant waives. This model somewhat resenbles a pacially rosted bo erd, but is more regular in tis layous.
 tiguous segmerts of cocipicd sampes. with each seg. .r. itaur.j d ians: ant expecteo wifth and a rindori lensth chosen fror 5 , we fiven uistrilu: ion. This redel attereis to more accarately represent a parisilly routed printed circult board.
bar rwaeling effurt is biset on the foltawing arguacnt. If the densit: ef thy thars is caleulated by equation (1), tren the probability that a square is occupica is f. anc the prosatility

Illot a squate ic free is F by equation (i). for a path of length n, the probability that a line can be ionted exacily :fiat astance is sir. probability that n frie squales car be found folidiwed by n occupied square, ant is given by equation (3). The oratability that a line can be routed between two points, however, is rot the probsbility that it can be ruated exac:ly the distance betwien those points, but rather the protability it can be routed at lees: trat distance, and it given by equation (4), whith is sixplified to equation (5).
(3) Probability of success for length $n=$ $P_{x}($ length:n $)=f n * 0=(1-D)^{n}=0$
(4) $P_{x}($ length $-n)=\sum_{L=n}^{\infty}(1-D)^{L} \cdot 0=1 \cdot \sum_{L=0}^{n-1}(1-D)^{C}$

$$
P_{s}(a \geq n\}=1-D-(i-0) * D-(1-0)^{2} * 0
$$

$$
\cdot \ldots \ldots \cdot \cdot(1-D)^{n-1} \cdot 0
$$

$$
(1-0) P_{5}\langle i \geq n|=(1-0)-(1-0) * 0-(1-0)^{2}
$$

$$
0-\cdots \cdots-(1-0)^{n} \cdot 0
$$

$$
P_{5}\left(t^{2} n\right)(1-1+D)=(1-0)^{n} \cdot 0
$$

(5) $P_{5}(i \geq n)=(i-0)^{n}=i^{n}$

In a similar menfier the expected length for a routed wire can be calcolated using the normal forunls for expocted value calculations, equation (6):

(7) E\{length $)=\sum_{n=0} n \cdot(1-D)^{n} \cdot 0$

$$
\begin{aligned}
\text { E(length })= & (1-0) \cdot 0+2(1-D)^{2} \cdot D+3(1-D)^{3} \\
& \cdot 0+\ldots . .
\end{aligned}
$$

$\{1-D\rangle\left[(\right.$ length $)=(1-0)^{2} \cdot D+2\left(1+C^{3}\right) \cdot D$ $+3(1-D)^{4} \cdot D+\ldots \ldots$
$E($ length $)-(1-D) E(l e n g t h)=(1-0) \cdot n$
$+(1-D)^{\dot{c}} \cdot 0+(1-0)^{3} \cdot 0+\ldots \cdot$
$0 \cdot E(1$ ength $)=\sum_{n=1}^{n}(1-0)^{n} \cdot D$
(8) E (lengtr) $=\sum_{n=1}^{\infty}(1-D)^{n}=\frac{1}{\Gamma(1-0)}=\frac{1}{0}$

The expected length valize of equotion (8) is of a very simple forill, just inversely proportional to the density if the hoard. Lising rodel 1 a series of experiments were concurted to demonstrate that this was in fact an accurate model of the environirent. For this experiment (and all cthers referenced here) the wice width Has taken to be
anc unit. Hires of griater width erola fin handed hathematically in o very similar mantire. Itop folluwimg undy'is thustrotes thes yener, t tritrique, which utes the witl wire width assuription.

「igure $;$ shents the results of routing experiment,, ussed on bodrd i.x.je] I. A very rijeg degree of agrefient Detween rymilion 8 and the wrerit mentally decermaned valide was found. I it close-

 the situdtion that has modeled: singte, rundumly placed used squeres.

When the used squares are not single fanints \{u. 9 .. there are conilijubus occupied siog emits of squares such as wirerl, then the probatility of encountering an occupted satiste is Trestl/ madified. When nowditny a router which plicis.5 wres in : single direction on eden isjer of printed circuit board. the probubility of intt. Cerence is velated to the number of distinc: segments of squares. rather than the numtuer of ozcupied saudic:.

To dcuelap equatigns for the effectire density and expected fength for boaras with wire segrents. the modeling technique shown in figure 2 is used. figure Za shows a line to be run, with one dreddy. routed line segment in the peth. The preflously routed lines arte coblapred into singie foirts (shown in Figure 2b). a corcection term is then applied to ite eapected length calculaticm to account for the finite lenyth of the presiously routed wires: this terte is the average seytent length divided by 2 . Equations 9 and 10 reflect the resules or chese calculations.
(9) $0_{\text {effective }}=0_{e}=\frac{\text { distinct segrents of }}{\text { ofsed }}$
(10) E(length) $=E(1)=\frac{1}{D_{e}}$ - ivvergeesscritingthi

Ruaning Daraltel wires has reduced the effective densily of a board; intuitively this approsch has reduced the conjestion. this suggests the importintip of minimizing the nutber of distinct wire segments that must be used. Figures 1 and 4 sumarize enpertrwats for board node is ? and 3. The average segreent length of chuat ion 10 requries a priori lnowlesge of the searent lengths developed during routing. Ohwiousiy this value tannot be computed evalily before rationg. but it can be approxirated before inzerconnection, or could be accumiater as routing procfeds if it is needed.

Figures 3 and A stow agreement betmieen the second rodel and the corresporiding experi:contd values, although with increased error over the values in Figure 2 . This increased error is the result of the variance in the average wire langths, and could have been antisipated. Lquations 9 and 10 chuld be applied to bodrd radel 1 as ietil. since the nurber of used segment 5 is the number of ecrupird squares in this coses.

Using the expected deasity walues, the prohabitity of success on a path (equations 3 and 4) can tre calculated. Itese drolability ialues are modified beeduse of the firite segrent lengen for the wires that are present, and are given
afain os equations (3) and $\{4 a\}$:
(a) $P_{s}(1=n)=(1-פ)^{n *}$ (average segment lgth/2) D
(4a) $P_{g}(1=n)=(1-0)^{n}$ (average segment lgth/2)
Note that using equations 9 and 10 the erpected nutbur of faccessful od: bis on a complete roule ra, be calcuidict, as the ruiluer of paths trind tires the pre dilitt of suitess far each putt. The verionce uf yuation (10) can also be caiculared to give a confidence factor for routing. It is also of ir.evisci, though, to oblain equations for the probdbility of success P. for severdl routers and atsengt comparisor s Esting this type of dnalysis.

MODELIMG ExARTLES

A rovificaition of Lee's atgorithm is the 'router-in-d-bor.' vevsion [7]. As shown in Figure 5 the two points to se interconnested form the corners of a two-d"Mensiond rectagle, and Lee's algorithm is appliedmithin that rectangle. Intuitively this restriction appedrs jusififisble. since the refaining three quadrents not used for routing generally lead thidy from the destiadeton point, and are tierefore likely te be unprod, itive.
figure 6 shows an: enlargement of one ares of rigure 5, wit: square at location (x, y) in the box. and the rour adjacent neighboring cells. The routing procedure is assumed to be up and to the left: the probien is to find the probability of routing from poinz $\{x, y\}$ to point $\}, 1\}$. This is function of the propabilities of success from ews neignbor points only (because of the algorithen used). and is given bu equation ill);
(ii) $P_{s}\{x, y$ to $1, y\rangle=F * P_{s}(x-7, y) * F * P_{s}(x, y-7)$

$$
\begin{aligned}
& +(1-F) \bullet F \in \theta_{S}(x-1, y\} \\
& +\{1-f\} \bullet F \bullet P_{S}(x, y-1) \\
& +F \cdot P_{S}(x-1, y] * F \\
& \left(1-P_{S}\{x, y-1)\right) \\
& +F * P_{s}(x, y-1\rangle * F * \\
& \left\{1-P_{S}(x-1, y)\right)
\end{aligned}
$$

\{quation 111\} is an fterative equation, but is easily tabulated becuase the boundary conditions are known. Figure $?$ shows the boundary conditipns for the two box sides, and the remainder of the alises rivj be tabuldied by a straigntfotwart application of (II) alcng either the rows or the collyans.

For certait points in Figure 5 an intersting phenomena eccurs: The probability of success may be uniforn in a regiun of the board. That is, equation (1i) yielas
(12) $P_{s}(x, y$ to 1,1$)=x=F * x * F * x$
$+(1-F) * F * x * 2$
$+F \cdot x * F=(1-x) * 2$
which can be shilplified to
(15) $P_{s}(x, y$ to 1,1$)=x=2=\frac{f}{f}$

This equation is graphed as Figure 8.
This is an unexpected and surprisinn result: The probuility of completing a puth betueen two points in the uniforal region is independent of the path iength betwern those bular e and deacnstat onls weon the board deveity. ilii: resuit wis suggested ds possible by teonerd ! 5]. Dut is not obvious. Cledrly, Rowever. it is z very desirusle characteristic for any rouier! figure B also shews a relatively sharp sut-af: foint for routing dt a board density of about 35 , a figure which has been observed [4] in other work.

Path length independence is rot valid over the entire 'box' of Figure 5, The boundary conditions cause certain regiors to have different (and generally much lower) P_{5} values: these regions are shown as the shaded ared of figure 9 . The exten: of this regior is dependerit only on the board density. The meinod used to calculdte these regions is by tabulation of the P_{5} value for the entire board, using equation 11.

The path lenyth independence formulds developed above do not nold for the orizind lee algorithin. In this latier tuse the eavation corresponding to squation $\left\{\cdot 5\right.$; is a cubic in P_{s}, implying that there are ipotentially) three bistinct resions of stable orobaubity. Altrough the original lee algorithrigives : higher probability of successfal routing the" the heuristic described zhove, the analysis is $=150$ mach rort difficult. Equation © 13 ! ming wall be aces \pm : more directly obtainable lower teind on performance for the lee algorithn.

Consider next a quite different routing heuristic used previously by the atihors [6]. It can be describeo as a one-turn line prope teater which attempts pathes such as those shown in Figure 10 a and 10 b , witn a darareter k desi;ating how many lines are attempted in extes direction. The equation for the P_{s} fintercunnection of two points) is developed belou, culpirating in equation (14f)
(14s) Prodidoitity of failing :o route at least ene line, i unizs long

$$
\prod_{k=-k}^{k}\left(l \cdot F^{x} \cdot F^{2}\right)
$$

(18b) Probability of success for previous (19a):
$1-\prod_{k=-k}^{k}\left(1-F^{\prime} k_{i} \cdot F^{2}\right)$
(14c) Probability of a successful intercomenction over one cross of Figure 9:

$$
\begin{gathered}
\left.\left(1-\prod_{k=-k}^{k}\left(1-F^{\mid k}\right) \cdot F^{i}\right)\right) \cdot\left(1-\prod_{k=-k}^{k}\right. \\
\left.\left(1-F^{|k|} F^{m}\right)\right)
\end{gathered}
$$

(1sa) Pruab:itity of failure of (1ac):

$$
\begin{aligned}
& \left.\left.1-\left(1-{\underset{k}{k=-k}}_{k}^{(1-F i}\right\}_{F^{\prime}}\right)\right) \cdot\left(1-\prod_{k=-k}^{k}\right. \\
& \left.\left(1-F^{|k|} F_{F}^{\pi}\right)\right\rangle
\end{aligned}
$$

(lae) Probability of failure, on bath crossas, of a routs:

$$
\begin{aligned}
&\left(1-11 \cdot \prod_{k=-k}^{k}\left(i-F^{\{ } \mid k f_{F^{2}}\right) \cdot\left(1-\prod_{k \pm-k}^{k}\right.\right. \\
&\left.\left(1-F^{|k|} f_{F^{m}}\right)\right)^{2}
\end{aligned}
$$

(14f) P_{5} for a route:

$$
\begin{gathered}
1-\left\{1-\left\{1 \cdot \prod_{k=-k}^{k}\left\{1-F^{|k|} F^{\ell}\right)\right] \cdot(\cdots\right. \\
\left.\underset{\substack{k=-k}}{k}\left(1-F^{k} \mid k_{F^{m}}^{\prime}\right)\right)^{2}
\end{gathered}
$$

This equation is of limited use; however reasonable dparoxirasions can oe made. First. assume that $k \ll i$ anc $k * m_{i}$ to yield (15a). Ihen, assume $:=m$ (meaning the two points to be interconnected determine a square. to yiela (15b). (15c). and (156)
(15 a) $1-\left(1-\left(1-\prod_{p=-k}^{k}\left(1-p^{2}\right) \cdot\left(1-\prod_{p=-k}^{k}\right.\right.\right.$

$$
\left.\left(1-F^{m}\right) 1\right)^{2}
$$

(15b) $1-11-\left(1-\underset{p=-k}{\boldsymbol{\pi}}\left(1-F^{2}\right)\right)-(1-\underset{p=-k}{k}$

$$
(1-F J)^{2}
$$

$(15 c) 1-\left(1-\left(1-\prod_{p=-k}^{k}\left(1-p^{2}\right)^{2}\right)^{2}\right.$
(15d) $1-\left(1-\left(1-\left(1-1^{2}\right)^{2 k+1}\right)^{2}\right)^{2}$
Equation (14f) has the property that is maximized if the iwn poists being interconnected are located dt the corncts of a square, rather than at the corners of anf thongated rectangie, and the value of the cquation drops off rainer sharply if the two point: form a very elongated rectungle. Equation (15) assumes (optimistically) that the point pairs dinilys determine a square, rather than a rectangle. and thus (15) represents a maximuni potential performance figure for the router. The length of the path being routed does clearly effect the P_{s} value for this router.
betause of the teris in the crivation. Jalie j shums the P_{s} value for a range of erfrictive board Gensities. [xpertence $\{6\}$ with this fouter nas indicated thot it functions reareonably aell wuth the effective farsity reaches bebwes 4 and 5 . . witich is verficd by Ioole i.

Table l

Effective Density :	P_{5}
2%	100
42	96
64	73
82	29
101	12

If the primary rectangle shape is an elongdied rectangle. equation (15) is not walic. Since (15) represents a maximum perforimance figure. however It should influence the objective function used by any placement methad: ubyiousty minimizing the distance betmeen modules does not necess drily maimice wie routdbility of a board! iquation (14) is not essily reductod. it is possible to assume on "average" rectangle, but this is not mathemat." Ically justifate. Additional wark netds to be done to detemine how the shape of the rectangle formed by the two points 20 be interconnected effects rouldbility.

The eqperionental results descrited is the previous sections used statistical sir alation models rather than iroduction rcuters and produc. tion circuit boards. Uerification of the tetmmaaes

 grelfmingry sfages of experimental verification of the models presented here, asing ino rewters. A Lee's router with lintied Lurn dollity oliz turns cause leyer changes giving parallel lares on each layer), and a many-turn ilne probe rob-ier are presently nedring completion for prodsction use in the Design Automition System at :awirenst Livermore Laboratory. A series of experiments uscog produc* tion boards and constramed versions of the routing programs is being planned and caritucted. jsing mell understood riuler's and hnozan modsfe pistesent and interconnection rely irements, the exporiments are intended to verify or contridict the emode?s, yresented here.

Experimental results will be reported in a later version of chis paper.

OROERENG

Given a set of point-to-peint interconnections, the ordering problern attempts to citermine tere optimal sequence of interconnecticns to maximize the expected nwhuer of completed atres. Previous work [4] indicates no ciear 5ignificame for dny particular ordering: although in adeh radse a particular oroering may be best fisi firini, no ordering schetile sectus clearly superior for the general case.

Our testa! gives onc solution to ehis problen. Dased on the $\mathrm{r}_{\text {, }}$ figure. P_{5} is funcion of D, the path ler.***. and the router. This function can be deter: imed, as iliustrated above. To properly order tise wires for routiry it if necessary to :ruximize the sum of the P_{s} values for each wire z to ousain the expected number of wetres that wil? be co:יrpleted (equation (16)).
maximize $\sum_{m=1}^{*} \boldsymbol{p}_{5}$ (intersonnection m)
For exarple, the Lee heuristic above has P_{5} given by (13), where D increases propurtionately to the length, of each routed wire. The longer the wire that is , orpleted the more the board density is increased for the unrouter wires. To maximize (16) if is cicar that short wíes should be routed first.

For a rore general case, such as the wecpnd router heuristic discussed. the situation is far more complex. D increases with long wires faster than Hith sturt ones, but P, detreases both with increasing length of the path dnd with inereasing D. Itw coriciusion otowi ordering there is tery oependent upon the routhar heuristic, tne P_{5} equa" tions and the distribution of wires that mus : be completed.

Assuming tite function for f shown in Figure ll. tie desired ordering again is shortest wire first to maximize (16). tote that this is mire-iength distribution cependent, in pereral. by the argument in the preceeding asragratoh. It should also be noted that diffenences in the expected
 smill in a nu-erical sense, which tay be che reason that frevious experimental results were inconciusive: tils figure is also subject to st*tistical varianie related to the from-to length distribution. de have yet to find a practical router where shortest wire first daes not maxidize the expetted tompletion value provided by the mechanisp presented above.

FODEL iJHITATISAS
I' is not clear a pripri that this model will be accurate. ine model assumes wires randomiy d'stributed over the tond area, while the wires usually are clustered cowards the canter of a nomal board. Surther, the model implicitly dssumes an infinite board, but there are noticable edge effects on finite thards. These edge effects may be compensdted for at some expense in mode? complexity. Firhans the strongest limitation of the model is that it is derived from our board rodet 1. while bodrd model 3 is much ange realistic. The corrections that must be made to obtain modet 3 predicions are not sathematicaliy justifiable in an absolute sense, but are closer to 'edutabed guesses that could be experimentaliy verified.

COHCLUSIONS
A rodel fas been presented for printed circuit board routing. The mode: is statistically bosed, and is predictive in that statistical sense. The model is supported ey linited experimentai eyidence
and verifisation, and conforms is :everal interest. ing and diverse observable feulures of the routing process -
from our calculations seaeral interesting ldeas have beell duvelaped: soree rave jet tis be verified or disproven. inr both the lee "router-in-d-box" heuristic and the line protue router the best P_{5} values are found when tim Loints to be intercunnected are lacated on the torners of d scate, and not necessarily when tor aro risiser. together or iucuted on the cormers of a reutangle. This suggests that doing plaberient ηf comanerits should attenipt to mintimize an objective function which considers prinary rectangle shape factor; as well as minirym distance.

For the line probe ropter the edrorater k (number of wires to un in paralimi? cusla be chosen, using equalion $(15 d)$. to achicie a certain P_{5} value (related to conridence reastredi frior to routing. This would give the router d degree of adpative benuyror dependin:; upon its environnent, and could potentially oe quite offectize in reducing conputation time.

The model allows corperison of gxpected router performance ds a function of the density of a printed circuit board and the routing heuristic, and thus allows comparise - of rauters and their cost/performance tradeofts. The rojel also gives some insight into the ordering problet, and supports the intuitively redsonable influence of ordering on perfortance of a porificular rouzer.

REFEREHCES

[1] Brever, H. A. "Gesign Automation Af Digital Systens. V. I. Prentice-Hall. 15:
2] Lee, C. Y.. "An Algerithm for Path Connection
 Electronic Coisputers, EL-j0, 3. DD. 346-365
[3] Wilson, D. C. and Smith, R. J., "A Dibliosra ohy on Computer Aided Pouting and Placement, SIGDA Newsietter. v. $a_{*}=1$, January 74 pp. 16-43
[4] Abel, L. C. "On the Ordering $c^{\text {F }}$ Connections for Automat ic Wire Routing." IEEE Jrans. on Computers, Now. 1972, pp 172:-1233.
[5] Leonard, P. O., Privace cortunication, 1974
[6] Wilsor, O. C. and Smith, R. J. An Experimentai Comparison of Force Directed Placement Techniques," Cesign Automation horkshop. 1974.

Board Density
Figure i. Hadel 1 Experimental Verification (locid paths per density).

Start

2a. Actual Situation

2b. Approximation corrects segment length by (average segment lengtn)/2.

Figure 2. Mudet 2 Development

figure 3. Board Model 2 Esperimental Verification.

Figure 4. Board Model 3 Experimental Verification.

Figure 5. Constrained Lee Algoritho.

figure 6. The Adjacene Square Relationships.

Figure ;. Bhundary Conditions Imposed on Constrained lee Router.

Figure 8. Prabability of a Successful Route as a Function af F.

Figure 9. Lige Effects and Fath Independence.

b. 5ccond Attempt.

Figure 10. A simple One-Bend Rcuting Algorithra.

11a. Connections Rooted Shortest first [Honinizes (16) if Router is Hodeled by (15t)]

11b. Longest First Routing.
[Minimizes (16) if Fouter is
Modeled by (15f)]
Figure 11. Distriuution of Interconnection Outcomes.

