USAAMRDL TECHNICAL REPORT 71-24

AN ANALYTICAL AND EXPERIMENTAL INYESTIGATION OF HELICOPTER rotor hover performance and waxe geometry characteristics

Best Available Copy

United Aircraft Corporation
Research Laboratories Unclassified
2b. ©NTOUR
2. MEPONT TITLE

AN ANALYTICAL AND EXFERIMENTAL INVESTIGATION OF HELICOPTI.A ROTOR HOVER PERFORMANCE AND WAKE GEOMETRY CHARACTERISTICS
4. DEsCRID TIVE Notes (Tyme of moper end incluelve dorea)

Final Report

Anton J. Landgrebe

6. REDORT DATE Jine 1971	Th. TOTAL NO. OF MAEEA 227 Pb. NO. OF NEFB
ma. CONTMACT OR SHANT MO. DAAJO2-69-C-0056 A. DROset mu. Tesk 1F162203A13903	Be. ORISIMATOR'S REPORT NUMPEN(S) USAAMRDL Technical Report 71-24
e. α	(une remen) UARL K910828-31

10. OHSTMDUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTAAV NOTES

12. SDONSONTN MLITANY ACTIVITY

Eustis Directorate
U. S. Army Air Mobility R\&D Laboratory

Fort Eustis, Virginia
13. ADTMTACT

An analytical and experimental investigation was conducted to scquire systemstic model rotor performance and wake geowetry data and to eveluate the accuracy of various analytical methods in predicting the effects on performance of change. in hellcopter rotor design and operating parametera. Both classical hover performance analyses and analytical metrods recently developed at the United Aircraft Research Laboratories were evaluated. Of primary concern in the study was the masessment of as:numptions in the anslyses regarding the seometry of the rotor wake. It wan found that analyses based on contracted wake eeonetry generally provided significantily improved predicticns of performance for those rotor operating condition: where the more classical uncontracted wake analyses exhibited major stortcomings. Attempt: to develop a theoretical method for predicting contracted wake geometries, were only partially successful although the method yielded good qualitative resulti. of particular interest was the prediction by the analysia of an instability of the tip vortex helix at moderate distances from the rotor which appeared to be subatantiated by available experimental results. In liels of an accurate theoretical wake method. it wan recomendet that the experimental wake data measured in this, atudy provide the contractet wake geometrien needed in performance calculntions. Analy:is of the whke lata for that portion of the wake whioh was ritable (i.e., nesr the rotor) indicntel that the data could be exprensed in relntively simple seneralized equations which faclilitate the rapil entimation of contracted wake peometires for a wide runre ne
 performance i. senaltive to :mall chances in the porition of the if vertex ralative

 rot nr wake eeome'r. charte proultat harnin.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the U.S. Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

DEPARTMENT OF THE ARMY

FORT EUSTIS, VIRGINIA 23604

This report has been reviewed by the U. S. Army Air Mobility Research and Development Laboratory and is considered to be technically sound. The purpose of the research was: (1) to examine model rotor hover performance and wake geometry characteristics as influenced by variations in rotor configuration parameters, (2) to evaluate the accuracy of various hover performance theories, and (3) to modify the distorted wake program to permit the preciction of hover wake geometry characteristics.

The report is published for the exchange of information and the stimulation of ideas. The program was conducted under the technical management of Mr. John L. Shipley and Mr. G. Thomas White of the Aeromechanics Division of this Directorate.

Task lF162203A13903
Contract DAAJ02-69~C-0056
USAAMRDI Technical Report 71-24
June 1971

AN ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF HELICOPIER ROTOR HOVER FERFORMANCE AND WAKE GEOMETRY CHARACTERISTICS

UART K910828-31
by

Anton J. Landgrebe

Prepared by

United Aircraft Corporation
Research Laboratories
East Hartford, Connecticut
for

EUSTIS DIRECTORATE
U. S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY FORT EUSTIS, VIRGINLA

Approved for public release; distribution unlimited.

SUMMARY

An analytical and experimental investigation was conducted to acquire systematic model rotor performance and wake geometry data and to evaluate the accuracy of various analytical methods in predicting the effects on performance of changes in helicopter rotor design and operating parameters. Both classical hover performance analyses and analytical methods recently developed at the United Aircraft Research Laboratories were evaluated. Of primary concern in the study was the assessment of assumptions in the analyses regarding the geometry of the rotor wake. It was found that analyses based on a contracted wake geometry generally provided significantly improved predictions of performance for those rotor operating conditions where the more classical uncontracted wake analyses exhibited major shortcomings. Attempts to develop a theoretical method for predicting contracted wake geometries were only partially successful although the method yielded good qualitative results. Of particular interest was the prediction by the analysis of an instability of the tip vortex helix at moderate distances from the rotor which appeared to be substantiated by available experimental results. In lieu of an accurate theoretical wake method, it was recommended that the experimental wake data measured in this study provide the contracted wake geometries needed in performance calculations. Analysis of the wake data for that portion of the wake which was stable (i.e., near the rotor) indicated that the data could be expressed in relatively simple generalized equations which facilitate the rapid estimation of contracted wake geometries for a wide range of rotor designs and operating conditions. Finally, it was demonstrated that rotor performance is sensitive to small changes in the position of the tip vortex relative to the following blade, and it was recomended that additional full scale correlation studies be made to provide further information on the adequacy of the generalized wake geometry charts provided herein.

FOREWORD

This investigation was sponsored by the U. S. Army Aviation Materiel Laboratories (now the Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory) under Contract inAJO2-69-C-0056, Task 1F162203A13903. Efforts under this contract were initiated in April 1969 and completed in February 1971. The experimental program reported herein was conducted during the period July to October 1969.

The guidance and assistance provided to this investigation by Mr. Peter J. Arcidiacono, Chief, Aerodynamics (UARL), is gratefully acknowledged. In addition to general management, Mr. Arcidiacono provided invaluable assistance with (1) the evaluation of the Wake Geometry Program and (2) preparation of the final report. Also acknowledged is the assistance provided by Mr. M. C. Cheney, Supervisor, Rotary Wing Technology (UARL), E. Dean Bellinger, Research Engineer, and Charles B. Pike, Computer Analyst. The Technical Representatives of the Contracting Officer for this contract were John L. Shipley and G. Thomas White.

TABLE OF CONTENTS

Page
SUMMARY. iii
FOREWORD v
LIST OF ILLUSTRATIONS. ix
LIST OF TABLES xvii
LIST OF SYMBOLS. xviii
INTRODUCTION 1
MOLEL ROTOR HOVER TEST 3
TEST EQUI PMENT. 3
TEST PROCEDURES 5
data reduction. 9
TEST DATA ACCURACY. 12
DISCUSSION OF EXPERIMENTAL ROTOR PERFORMANCE RESUITS. 14
DISCUSSION OF EXPERIMENTAL ROTOR WAKE GEOMETRY RESILIS 18
COMPARISONS OF TIP VORTEX GEOMETRY WITH OTHER SOURCES 29
THEORETICAL METHODS FOR PREDICTING HOVER PERFORMANCE 31
BLADE ELEMENT - MOMENTYM ANALYSIS 31.
GOLDSTEIN-LOCK ANALYSIS 32
UARL PRESCRIBED WAKE HOVER PERFORMANCE PROGRAM. 33
PRESCRIBED CLASSICAL WAKE ANALYST.S. 35
PRESCRIBED EXPERIMENTAL WAKE ANALYSIS 37
PRESCRIBED THEORETICAL WAKE ANALYSIS. 39
fVALUATION OF ANALYTICAL TECHITIQUS 52
MODEL BLADE AIRFOIL DATA 52
EVALUATION OF WAKE GEOMETRY PROGRAM 52
EVALUATION OF PERFORMAYCE METHODS 54
RESULTS AND CONCLUSTONS. 62
RECOMMENDATIONS 65

I. Equations for Computing the Velocities and Displacements of Wake Vortex Elements
 203

II. Convergence of Wake Geometry-Bound Circulation Solution 205
DISTRIBUTION 207

LIST OF ILLUSTRATIONS

Figure Page
1 UARL Model Helicopter Rotor Hover Facility 66
2 Rotor Test Rig 67
3 Schematic Cross Section of Rotor Test Rig. 68
4 Rotor Hub. 69
5 Schematic of Model Rotor Blade Construction. 70
6 Flow Visualization Grid. 71
7 Sikorsky Aircraft Full-Scale Rotor Whirl Stand 72
8 Schematic of Rotor Wake Structure. 73
9 Sample Flow Visualization Photograph 74
10
Schematic of Wake Cross Section Showing Wake Coordinate System. 75
Sequence of Photographs Showing Time History of Wake --b = 2. .
Tip Vortex Coordinates Measured From Photos of Figure ll. 78
Inboard Vortex Sheet Coordinates Measured From Photos of Figure 11. 79
14 Repeatability of Tip Vortex Coordinates 80
15
Experimental Model Rotor Performance -- $\theta_{1}=0^{\circ}$, AR $=18.2$ 81
16 Experimental Model Rotor Performance -- $\theta_{1}=-8^{\circ}$,$A R=18.2$.84
17 Experimental Rotor Performance $-\theta_{1}=-16^{\circ}$, $A R=18.2$. 86
Figure Page
18 Experimental Model Rotor Performance -- $\theta_{1}=-8^{\circ}$, $A R=13.6$. 89
19 Typical Effect of Collective Pitch on Model Rotor Performance 91
20 Typical Experimental Model Rotor Performance Expressedin Terms of Thrust and Torque Coefficients92
21 Effect of Aspect Ratio on Experimental Performance of Model Rotors Having a Solidity of 0.140 93
22
Effect of Blade Twist on Experimental ModelRotor Performance94
23
Effect of Tip Speed on Experimental Model Rotor Performance -- $\theta_{1}=0^{\circ}, \mathrm{AK}=18.2$. 95
24
Effect of Tip Speed on Experimental Model Rotor Performance -- $\theta_{1}=-16^{\circ}$, $\mathrm{AR}=18.2$. 96
25
Experimental Model Rotor Performance for Various Rotor Heights Above the Ground 97
26
Effect of Rotor Height Above the Ground on Rotor Thrust Augmentation. 98
27 Sequence of Photographs Showing Time History of Wake -. $b=4$. 99
28 Sequence of Photographs Shuwing Time History of Wake -- $b=6$ 100
29
Sequence of Photographs Showing Time History of Wake -- $\mathrm{b}=8$ 101
30
Sequence of Photographs Showing Wake Instability 102
31 Photographs Zhowing Effect of Thrust on Wake Geometry -- $\mathrm{b}=2$ 104
32 Typical Wake Flow Time Exposure Photograph 105
Figure Page
33 Photographs Showing Effect of Thist on Wake Geometry -- $\mathrm{b}=2$. 106
34 Photographs Showing Effect of Nunber of Blades and Thrust Level on Wake Geometry 107
35 Photographs Showing Effect of Number of Blades on Wake Geometry for Rotor Solidity of 0.140 108
36 Photographs Showing Effect of Tip Speed on Wake Geometry -- b = 2 109
37 Photographs Showing Effect of Tip Speed on Wake Geometry $-b=6$ 110
38 Photograph Showing Effect of Ground and Whirl Stand on Wake Geometry -- b = 2 111
39
Photograph Showing Effect of Ground and Whirl Stand on Wake Geometry -- b $=6$ 112
40 Photograph Showing Effect oi Ground on Wake Geometry 113
41 Effect of Thrust on Tip Vortex Coordinates $--b=2$ 114
42 Effect of Thrust on Tip Vortex Coordinates $--\mathrm{b}=6$. 116
:3 Effect of Number of Blades on Tip Vortex Coordinates for Constant Blade Loading $\left(C_{T} / \sigma\right) \cdots \theta_{1}=0^{\circ}$ 117
44 Effect of Number of Blades on Tip Vortex Coordinates for Constant Blade Loading $\left(C_{T} / \sigma\right) \cdots \theta_{1}=-8^{\circ}$ 1.18
45 Effect of Number of Blades on Tip Vortex Coordinates for Constant Disc Loading (C_{T}) 119
46 Effect of Twist on Tip Vortex Coordinates -- b $=2$ 120
47 Effect of TWist on Tip Vortex Coordinates -- b $=6$ 122
48 Effect of Aspect Ratio on Tip Vortex Coordinates for Rotor Solidity of 0.140 123
49 Effect of Tip Speed on Tip Vortex Coordinates $-\mathrm{b}=2$ 124
50 Effect of Tip Speed on Tip Vortex Coordinates -- b $=6$ 126
51 Effect of Whirl Stand Conditions on Tip Vortex Coordinates -- $b=2$ 127
52 Effect of Whirl Stand Conditions on Tip Vortex Coordinates -- $b=6$ 129
53 Experimental k_{1} Wake Parameter for Model Rotors 130
54 Experimental k2 Wake Parameter for Model Rotors -$\theta_{1}=0^{\circ}, A R=18.2$.131
55 Experimental k_{2} wiske Parameter for Model Rotors .- $\theta_{1}=-8^{\circ}, A R=18.2$ 132
56 Experimental k2 Wake Parameter for Model Rotors --
$\theta_{1}=-16^{\circ}, A R=18.2$ 133
57 Experimental \mathbf{k}_{2} Wake Parameter for Model Rotors -- $\theta_{1}=-8^{\circ}, A R=13.6$ 134
58 Experimental Wake Radial Coordinates for Model Rotors -.
$\theta_{1}=0^{\circ}, A R=18.2$ 135
59 Experimental Wake Radial Coordinates for Model Rotors .-
$\theta_{1}=-8^{\circ}, A R=18.2$ 137
60 Experimental Wake Radial Coordinates for Model Rotors --
$\theta_{1}=-16^{\circ}$, AR $=18.2$ 139
61 Experimental Wake Radial Coordinates for Model Rotors =- $\theta_{1}=-9^{\circ}$, AR $=13.6$ 142
Figure Page
62 Experimental Wake Contraction Rate Parameter, λ, for Model Rotors 143
63
Experimental $K_{1_{\bar{r}}=1}$ Inboard Wake Parameter 144
64
Experimental $K_{2_{\bar{r}}=1}$ Inboard Wake Parameter 145
65
Experimental $K_{\Sigma_{\bar{r}}=0}$ Inboard Wake Parameter. 146
66 Comparison of THp Vortex Soordinates from Model and Ful? -Scale Rotor Tests 147
67 Comparison of Generalized Wake Results With Those from References 1, 10, and 11 -- Axial Coordinates 148
68 Comparison of Generalized Wake Results With Those from References 1,10 , and 11 -- Radial Coordinates 149
69 Comparison of Generalized Wake Results With Those of Reference 12 150
70 Comparison of Generalized Wake Boundaries With Theoretical Resulta of Reference 14 151
71 URL Prescribed Wake Hover Firformance Program 152
72 Computar Wake Trajectories for Ore Blade 153
73 Iteration Procedures for Computing Wake Ceometries 154
74 Segmented Discrete Vortex Representation of the Make 155
75 Typical Trunceted Wake Reaults 156
76 Fer-Whe Representation 157
77 Coordinate Syztem and Nomenclature for Theortichi Whe Cometry Computations 158
Figure Page
78 Intersection of Wake With $\overline{\mathbf{F}}-\overline{\mathrm{Z}}$ Plane Showing Typical Inboard Vortex Sheet Representation 159
79 Typical Predicted Rotor Wake Boundaries at Various Time Steps 160
80 Model Rotor Fhotographs Showing Typical Local Roll-Up of Tip Vortex 161
81 Photograph of Wake for a Full-Scale Rotor Showing Local Roll-Up of the Tip Vortex 164
82 Fhotograph of Wake of Model Rotor Taken in Water Tunnel Showing Local Roll-Up of the Tip Vortex 165
83
Schematic of Stable and Unstable Mp Vortices 166
84 Typical Ti= Ristories of Computed Tip Vortex Coordinates Showing Convergence of the Extrese Near Wake 167
85 Computed Redial and Axial Coordinates of Tip Vortex for Two Tim Stepe 168
86
Initial Wake Cemetry Uned in Sample Computation 169
87 Approrimition to Llade Cireulation Distribution in Sample Computation. 170
88
Appromimetion to Extren Mear-hem in Sample Computation. 17
89 Comparison of Initiel and Secood Eatimetes of Blade Circulations in Semple Computation. 172
90 Synthesiand Model Retor Tro-Dimencional Airtoil Detin 173
91 Predieted Effect of Rotor Trust on Mote Ceomery 17
∞ Predicted Effect of llade gist on Mate Conmery 17
93 Predicted Effect of muber of Bloges ond thruet ievel on soke Geanetry 17

94 Predicted Effect of Blade Aspect Ratio on Wake Geometry. . 177
95 Predicted Effect of Tip Speed on Wake Geometry 178

96 Comparison of Predicted Wake Geometry Results With Results of Reference 9179

97 Comparison of Results of Uncontracted Wake Analyses With Experimental Performance Results for Two- and Six-Bladed Model Rotors $-\theta_{1}=-3^{\circ}, A R=18.2, \Omega R=700 \mathrm{Ips}$100

98 Comparison of Results of Uncontracted Wake Analyses With Experimontal Performance Results for Four- and Eight-
Bladed Model Rotors -- $\theta_{1}=-8^{\circ}, A R=18.2$,
$\Omega R=700 \mathrm{fps}$181

Comparison of Results of Uncontracted hake Analyses With Experimental Performance Results for Two- and Six-Bladed
Model Rotort $=\theta_{1}=0^{\circ}, A R=18.2, \Omega R=700 \mathrm{fps}$ 182

105 Compariser of Resulte of Uncontracted Wake Analysi: With Experimmtal Performace Resulte for Tro- and Six-Bladed
Mcdel Rotors $-0_{1}=-16^{\circ}, A_{R}=18.2, \cap R=700 \mathrm{p}$183
102. Csparisco of Resulty of Uncontracted Wabe Analyses With Experimental Performance Resulte for Two- and Six-Bladed Madel Rotors $=0_{1}=-8^{\circ}$, AR $=13.6$, AR $=700 \mathrm{fp} . \cdots 284$

102 Comperison of Results of Uncontrected Make Amalyass With
Experimental Purformance, Reulta for Two and Six-Meded
Model Rotors $=1=-8^{\circ}$, AR $=18,2, ~ \cap R-525 \mathrm{fp} . .$. 183

103 Comperison of mesults of Contrected tian Amolysen With
Coldstein-tock thsulte and Experimental Prformence
Psules for model Rotor $=-0_{2}-8$. AR 18.2 .
n思 - 700 TP 186
Figure Page
104 Comparison of Results of Contracted Wake Analyses With Coldstein-Lock Results and Experimental Pirformance Results for Model Rotors $-\theta_{1}=0^{\circ}, A R=18.2$, $\Omega R=700 \mathrm{fps}$ 387
105 Comparison of Results of Contrected Wake Analyses With Coldstein-Lock Results and Experimental Rerformance Results for Model Rotors $-\theta_{1}=-8^{\circ}, A R=23.6$, $\Omega R=700 \mathrm{fps}$ 188
106 Comparison of Results of Contracted Have Amelyses With Coldstein-Lock Results and Experimental Pertormance Results for Model Rotors $-0_{1}=-8^{\circ}$, AR $=18.2$, $\boldsymbol{n}=52 \% \mathrm{Tp}$ 189
107 Comparison of Model Rotor Blade Section Charecteristics ns Predicted by Various Analyses 190
108
Sensitivi ity of Predicted Model Rotor Performance to Changes in Pip Vortex Location 193
109 Sensitivity of Model Notor Blede Section Maracteriatics to Changes in Tip Vortan Locatiom. 19\%
110 Comparison of Results of Varions Analyset With
Experimental Rerformace Results for CR-53A Rotor 195
111 Sensitivity of Predicted CH-53A Rotor Performance to change in Tip Vortin location 19%
112 Comparison of CH-53A Blode Angle of Attect Distribution Predicted by Verious Anulyase 197
113 Comparison of kesult of Various Analywes Mith
 198
11 Variacion of computed z_{1} and M_{2} Nowe Parameter: Mith Moxita Dian Circulation 199

LIST OF TABLES

Pege

I Model Rotor Blade faraneters. 4
II Test Paramer Consinations 7
III Prescribed ćlassical Wake Conditions. 36
IV Preecribed Experimental Wake Conditions 38
V Prescribed Theoretical make conditions. 44

A, B	denote und points of straight vortex element in wake (Figure 77 and Appendix I only); otherwise, A represents the fiameter of far wake nondimensionalized by radius
\bar{A}	typical intersection of smoke filament with vortex sheet (see iligure 10)
AP, BP	distances fron vortex end points, $A \& B$, to point P in wake at which induced velocities are computed, rt
AR	blede aspect ratio, chord divided by roter radius
b	number of blades
$\overline{\mathbf{B}}$	typical intersection of vortex sheet extension vith tip vortex boundary (see Figure 10)
c	blade chord, ft
cd_{d}	section dreg coefficient
${ }_{4}$	section Lift confficient
C	constant of proportionality relating to he and $\sqrt{c_{2} / 2}$
$\overline{\text { ce }}$	typiend intarsection of intomard swoke filament vith viade tyan uxiz (me Figure 20)
c_{T}	rotor thrust coefricient: rotor thrutt divifed by $\rho \pi R^{2}(G U)^{2}$
c_{0}	rotor torque confricient: rotor torque divided by $p \cos ^{3}$ (in)?
1	oxisi spacing of trimate (see Pigur 76)
5	diometer of ror woke, equal to toist the rediel coordinate of the lott point in near woke (tee figure 75)

radial location at which blade circulation is a maximum

I, J,K	functions of wake geometry defined in Appendix I
ICB	abbreviation denoting In-Ground-Effect
k_{1}	average axial velocity of a tip vortex element from the tim at which it vas shed by aiven blade until it passes the following blade, nondimensionalized by $\Omega \mathrm{R}$
H_{2}	average axial velocity of a tip vortex element generated by a given blade after it passes the following blade. nondimensionalized by Ω R
$x_{1}=12$	parameters defining the axial position of an imaginary extension of the inboard shect to $\overline{\mathbf{r}}=1.0$; see Equations (4) and (5)
$\begin{aligned} & K_{1} \text { and } 2, \\ & =0 \end{aligned}$	parameters defining the exial position of an imaginary extension of the inboard sheet to $\overline{\mathrm{r}}=0$; see Equations (4) and (5)
K	function of wake eemetry defined in Apperdix I
M	local blede section meh aumber
$n_{\underline{T}}$	meh number of blade tip
\#	number of far wate revolutions (ste Figure 76)
\boldsymbol{x}	abreviation denotin out-or-Ground-Effect
?	denotes representative point in weke at which wake-induced velocities are to be computed (see Figure 77)
7	diftanct ircierotor axiz of rotation to blede zection or woke vortex elemant, mesured parallel to pleme of rotaifon and nondimusionalited by .
\%	rotor redius, ft
T	rotor chruat, 16

v	velocity of vortex slement, fps
$\mathrm{v}_{\mathbf{z}}$	induced velocity at blade in axial direction, fps
$\mathrm{v}_{\mathrm{Z}}^{\text {MOM }}$	momentum value of induced velocity, equals $\Omega R \sqrt{C_{T} / 2}$, fps
WS	abbreviation denoting whirlstand
x,y,z	fixed axis sysiem coordinates, ft
$\bar{x}, \bar{y}, \bar{z}$	fixed axis system coordinates nondimensionalized by R (see Figure 77)
$\overline{\mathbf{z}}_{T}$	axial coordinate of wake element measured from the tip of the blade, positive in the direction of rotor thrust and nondimensionalized by R
Z_{G}	distance between the center of the rotor hub and the simulated ground, ft
α	section angle of attack, deg
Γ	local blade circulation (equal to $\Omega_{\mathrm{RF}_{\boldsymbol{r}}} / 2$), or strength of vortex element in wake, $\mathrm{ft}^{2} / \mathrm{sec}$
$\Gamma_{\text {max }}$	maximum value of Γ on blade, also equal to strength of tip vortex, $\mathrm{ft}^{2} / \mathrm{sec}$
$\Delta\left(\mathrm{C}_{\mathrm{T}} / \sigma\right)$	increment in rctor thrust coefficient/solidity resulting from k_{1} and k_{2}
$\Delta \mathrm{k}_{1}, \Delta \mathrm{k}_{2}$	increments in k_{1} and k_{2} wake parameters
Δt	time increment used in numerical integration of wake velocities, sec
$\Delta \mathrm{x}_{\mathrm{p}}, \Delta \mathrm{y}_{\mathrm{p}}, \Delta \mathrm{z}_{\mathrm{p}}$	increments in x, y, and z coordinates of wake element end point resulting from an integration of the velocities acting on that point over a time Δt, ft (see Appendix I)
$\Delta \overline{\mathbf{z}}_{T}$	increment in $\overline{\mathrm{z}}_{T}$

$\Delta \psi$	nondimensional time increment, $\Omega \Delta t$, used in numerical integration of wake velocities, equal to rotation of rotor blade during time Δt, rad
$\Delta \psi_{\mathrm{w}}$	increment in wake azimuth angle, deg or rad
θ_{1}	rate of change of local blade pitch angle due to built-in linear twist with respect to blade spanwise direction, positive when tip section is twisted leading-edge up relative to root section, deg or rad
${ }^{7} 75$	blade collective pitch as measured at three-quarter span station, deg or rad
λ	wake parameter representing rate of contraction of the wake (see Equation (3))
ρ	air der.sity, $1 \mathrm{~b}-\mathrm{sec}^{2} / \mathrm{ft}{ }^{4}$
$\boldsymbol{\sigma}$	rotor solidity, ratio of total blade area to disc area, bc/ πR
ϕ_{W}	local pitch angle of helix, rad
ψ	blade azimuth angle measured from x axis (see Figure 77), deg or rad
ψ_{W}	wake element azimuth angle measured from blade (see Figure 77), deg or rad
$\psi_{w, F}$	wake element azimuth angle as measured in the fixed coordinate system (see Figure 77), deg or rad
ω	torsional frequency of blade, rad/sec
$\boldsymbol{\Omega}$	rotor rotational frequency, rad/sec
SUBSCRIPTS	
deg	denotes units in degrees
IGE	denotes quantity evaluated in-ground-effect
OGE	denotes quantity evaluated out-of-ground-effect

denotes point at which velocity is computed
denotes units in radians
x, y, z
denotes direction of velocity

INTRODUCTION

The need for attaining peak lift system performance is greater with rotary-wing VTOL aircraft than with conventional aircraft. This results directly from the generally lower payload to gross weight ratio of such aircraft which, in turn, increases the payload penalty associated with any unexpected deficiencies in performance that might arise as a result of shortcomings in the design analyses employed. For example, since the payload is typically 25% of the gross weight, a performance deficiency of 1% in lift capability can result in a 4% reduction in payload.

As described in Reference 1. mmonly used theoretical methods bec me inaccurate as number of blades, blade solidity, blade loading, and tip Mach number are increased. The discrepancies noted appear to stem from simplifying assumptions made in the analyses regarding the geometric characteristics of the rotor wake. In Reference l, a method for considering the effects of wake contraction on hover performance was introduced. This computerized method, developed at the United Aircraft Research Laboratories (UARL) and termed the UARL Prescribed Wake Hover Performance Method, requires a prior knowledge of the wake geometry. However, at the time Reference 1 was written (1967), available wake geometry data were extremely limited. Due to the expense involved, systematic wake geometry data on full-scale rotors were almost nonexistent. Available model results, on the other hand, were limited to rotors having three blades or less and operating at low tip Mach numbers. Thus, two methods of approach were initiated under this investigation to obtain the required wake geometry information. In the first an experimental investigation, using model rotors, was conducted in which a systematic, self-consistent set of data on rotor performance and associated wake geometry characteristics was obtained for a wide range of blade designs and operating conditions. In the second, an available analytical method for predicting rotor wake geometry in forward flight, describel in Reference 2, was extended to the hover condition. Briefly, the method developed involves the establishment of an initial wake model comprised of finite vortex elements and the repeated application of the Biot-Savart law to compute the velocity induced by each vortex element at the end points of all other vortex elements in the wake. These velocities are then integrated over a small increment of time to determine the new positions of the wake elements, and the entire process is repeated until a converged wake geometry is obtained.

The incorporation of the experimental and analytical wake geometry in the Prescribed Wake Method results in two analyses (the Prescribed Experimental Wake Analysis and the Prescribed Theoretical Wake Analysis) for computing hover performance. The availability of model rotor data permits the evaluation of these analyses by (1) providing experimental wake data both for input to the Prescribed Experimental Wake Analysis and for comparison with predicted wake geowetry results of the Prescribed Theoretical Wake Nethod, and (2) providing consistent experimental performance data for comparison with predicted performance results. Thus, the principal objectives of this investigation were to:
(a) Provide experimental information on the performance and wake geometry characteristics of hovering model rotors as influenced by number of blades, blade twist, blade aspect ratio, rotor tip speed, and blade collective pitch setting
(b) Modify an existing forward-flight distorted wake program to permit the prediction of the wake geometry characteristics in hover
(c) Evaluate the accuracy of various hover performance theories having differing rotor wake geometry assumptions

Included in this report are: (1) a description of the model rotor experimental program, (2) a discussion of the experimental rotor performance and wake gecmetry results, (3) comparisons of the experimental weke geometry results with other experimentel sources, (4) descriptions of the theoretical wethods for predicting wake gecmetry and hover performance, (5) a discusaion of the resulta of the evaluation of the wake gecmetry annlysis, and (ó) a discussion of the results of the evalumion of the theoreticel wethods for predictipe hover parformance.

TEST EQUI PMENTT

Model Test Facility

The test progran was conducted on a model rotor hover test facility located at the United Aircraft Research Laboratories (UARL). The test facility, shown in Pigure 1, consists of a large enclosed area approximately 45 by 55 feet with a ceiling height of 40 feet. The facility is equipped with a rotor test $\mathrm{Fig}, \mathrm{flcw}$ visualization equipment, and a movable ground plane which was considered to be in an out-of-ground-effect positicn when lowered to 3.5 rotor radii below the rotor. A whirl-stand model is also available for the simulation of conditions on the sikorsiy Aircraft full-scale whirl stand. This facility is the sam one used for the model tests reported in Reference 1.

A photograph of the model rotor test ris is shown in Figure 2. A 40-horsepower, variable-speed electric motor vas used es a power source. The rotor was driven through a $3: 1$ apeed reduction syaten to allow operaticn at a tip speed of $700 \mathrm{ft} / \mathrm{sec}$ at maximan available power. Average rotor thrust and torque measuremants were made by mans of strain-gaged load cells mompted above the rotor on a suppert fram. The moter-balance assembly is show schmatically in Ficure 3. Mditional instrumentation, used to montor operation, included a colid-state comper for masuring rym, vibration metars, and a mod power control console.

Flow visualization equipent included the followins:

1. Amonity sulpisite "smoke".
2. Variable-position amoke rabeti.
3. Two high-intensity, short-duration light sources '(ficroflash units) for stop-action still photographs.
4. Bigh-intenaity lighte for Mgh frem-apeed mowies.
5. An electronic timedelay control for cemeres and aicronash unite to permit aytumatic photogrophing of the cyelic time history of the rotor mine.
6. Polaroid, 70 m , and Puttax morie comeres.

The model rotor system consisted of a multibladed rotor hub and specially designed model blades. The rotor hub, shown in figure 4, was de:igned to accommodate any number of blacics up to and including eight. flapping hinges were provided (but no lag hinges), and blede collective pitch was varied manually.

Four sets of model rotor blades were used to conduct the test program. The model blade design consisted of an aluminu spar and a balsa trailing-edge section, as shown in Pigure 5 . The biades were untapered and designed such that the elastic axis, section center of gravity, and center of pressure were coincident at the quarter-chord position (within 1% of the chord). The mase and stiffness properties of the model blades greatly exceeded those of model bledes dymancally scaled to typical full-scale blades. For example, the lock number of the blades with an aspect ratio of 18.2 operating at tip speed of 700 fps was approximately 3.0 compared to a typical full-scale lock number of 10. Hence, model blede coning angles were lower than full-scale coning angles. However, the use of such rotor blades permitted concentration on the aerodynamic, rather than aeroelastic, aspects of rotor hover perfsrance. The blade parameters are summarized in Table I.

Blade Parameter	Design (1)	Design (2)	Design (3)	Desien (4)
Linear Tist, O_{2} (deg)	0	-8	-16	-8
Aspect ratio, Ar	18.2	18.2	18.2	13.6
Radius, R (in.)	26.75	26.75	26.75	26.75
chord, 5 (in.)	1.67	1.47	1.4?	1.96
Aircoll jection (maca)	0012	0012	0012	0012
Root cutout (\%)	14.8	14.8	14.8	14.8
flappine tine ofrset (\%	R) 6.8	6.8	6.8	6.8
Taper	None	Mone	None	Nione

The second set of blades listed in Table $I\left(\theta_{1}=-8\right.$ deg, $A R=18.2$) was constructed and performance-tested by United Aircraft prior to this investigation. At the time of this investigation, four of these blades were available in their original form and eight were availabie in a modified form. The modification consisted of the adaption of a plastic tip section to the outer 12% of the blade. This tip section was nominally identical in shape to the removed aluninum-balsa section. The plastic tip blades were used in this investigation to obtain ground-effect and flow visualization results for the six- and eight-blade configurations of this particular blade design. Otber performance results for this desigr. are included from the United Aireraft investigation mentianed above. The blades corresponding to the thres other blede designs were fabricated specifically for this investigation.

Each rotor blede design was tested with the following numbers of blades and rotor solidity ratios:

ESST PRCCEDIRES

Calibration

Prior to testing, the thrust and torque instrumentation vas calibrated. The thrust lond cell was calibrated on the test rig by hanging veights frow the rotor shaft. Ime ric wes calibreted in toyque by suspending vaights through a bnow moment are. The thrust and tarque calibration derivetives mere deteruined directy in terain gege units par pound (SCUS/1b) and strain sege units per foot=pound (SCuS/ft-1b), respectively.

A dows pin, mounted perpandicular to an are extanding from the root of the blade along the blade chord (see Pipure 4), wat used to manuliy set collective pitch angle relatiw to flat on the blede retention fitting (attached to the hub). For ench blode, the distance frow the pin to the flet, masured by mans of depth eicrometer, was colibroted with respect to the collective pitcin angle th che chere-quarter redius. Blede tracking wet checked by observetion of the biade tipt throunh trantit,

Witio lighting supplied by a Strobotac triggered at a specified number of flashes per rotor revolution. In this mannes, several blades were observed at once, and their tip positions were coupared.

To calibrate the flow visualization photographs and to miniaize errors due to camera angle and lens distortion, a planar grid indicating 2% increments of the rotor radius (0.475 in .) was placed in the plane of the smoke (refarence plenw) and photographed prior to the test. Fhotographs of this grid systen (Pigure 6) were used in the construction of a grid template overlay for the reduction of the flow visualization photoaraphs to redial and axial wake coordinates. The blede aximutb posirion was calibrated for each rpa by culculating the dolay time butween the passage of a reference blade through the roference plane and the passage of a single gear tooth mounted on the rotor slaft.

Test Paresters

Systemtic data were obtained to masure the effect of the following parameters on rotor hover performance and associated wake geometry charecteristics.

Verietions in three of the sbove primary test paremeter: mere equivieat to indepandent veriotion in thres releted parameters. That is, varietican in number of blades were equivalept to wriations in rotor solidity. as specified previously, Tariatices in rotor tip spend of 523,600 , and 700 tpe were equivalent to variations in tip mech number of $0.46,0.525$, and 0.61, respectively, Tinally, varistion in collective pitch mere uned to produce verietions in rotor thruet level. Honinal collective pteh mettiage of $0,6,8,10$, and 12 det wert uned whenever posibible. Additionel vilues were tested to prowide more extensive dote for tom tatt Fonfigurotions, particuleriy it the stall region where the maximio collective pitch ves liat ted at the hightr tip speeds by en oppereat stall Ruter.

Data regarding the effect of the parameters listed above were obtained with rotors operating substantially out of grcund effect (beight above the ground plane equal to 3.5 rotor radii). In addition to the out-of-ground-effect (OCE) conditions, a number of data points were taken in ground effict (IGE) and with a Eodel whirl stand simulating the Sikorsky Aircraft full-scale rotor whirl stand shown in Figure 7.

Test Configurations

The test paraneter combinations (test configurations) that were investigated are given in Table II.

mabIs II. test pararsugh conbliations						
Linear Twist (deg)	Aspect Ratio	$\begin{gathered} \text { Rotor } \\ \text { Condition } \end{gathered}$	Rotor Bleicht/ Padius	No. of Blades	no. of Tip Speeds	210. of Collective PItch Values
0	18.2	Ors	3.5	2,4,6,8	3	5*
-8	18.2	06	3.5	$2,4,6,8$	3	5*
- 26	28.2	ors	3.5	2,4,6,6	3	5*
-8	13.6	Oes	3.5	2,4,6,8	3	$5 *$
-8	18.2	IES	1.67	2,4,6,8	3	1
-8	18.2	ICS	$\begin{gathered} 0.67 \\ 1.0 .3 .33, \\ 1.67,2.0 \end{gathered}$	6,8	3	2
-8	16.2	Whirl Stand	1.67	2,4,6,8	3	1
Minimamerner - Performance reaults obtaimet frow previon investigation.						

Data Acquisition

The procedure for data acquisition fundamentally consisted of setting the test configuration (collective pitch, ground plane position, and number of blades) and then recording performance and wabe gecmetry data at the required tip speeds. The enbient temperature and pressure in the enclosed area were monitored and recorded during the test. The rotor thrust and torque data were obtainad by manaliy recording the oatputs of the thrust and torque loed selle on self-balmeing potentionetars in strain gege units (sris). Oscillations of the potentioneter readings as high as ± 10 SGUS ($\$ 0.03 \mathrm{lb}$) for thrust and 530 scus ($\pm 0.2 \mathrm{ft},-1 \mathrm{~b}$) were observed for some test conditions. To obtain regresentative steady-state values, averuge readings were recorded. Each test condition was repeated twice within a test run (a test run consisted of data recorded between the starting and stogping of the rotor rotation), and the results were averaged. In addition, most test conditions were repeated in two consecutive runs. Mmy of the test conditions were also repeated on difforent dates to check the repeatability of the data.

For cost rotor conflgurations, the maxime collective pitch at which operation vas possible was limited by the oceurrence of a rapid iserease in rotar noise as tip speed wes increaced beyond a certain level. A strain gege to measure torsional responee vas placed at the root of the blude and substantial increaces in blade torsican 1 response were noted under these conditions, and it was infurrad that atall Rutter boundory wif being pantratid. Collective pitch (thrust level) at given tip spacd wat then linited by wht vill be described as a stall flutter boundiary in the discussion of results.

To obtain flew visumbiation deta, smoze was injected into the flow by movable smok rekes located above and to both sidez of the roter

 on the smoke rekez. The smoke raket were positioned by ramote control to insurt a clecyly defiped tip vortex. The whe petterns were recorded on film vith remotely optrated comerts. Illumination was provided for still photograph by two encroflsth unit itime durwtion 0.3 deronecond for :*op uction) and for high rreme-tpeed morins by tixteen 350-vatt flood-
 Tosh wita when the rotor was ot detired ezimoth potition. The delay
 telay tide (dmanily adjotted) wat menared on on electronic counter. For eheh test condition, 70 photopraphs wert taken et preselected animeh poititions of refrunce blade with respect to the plane of the
smoke. For exmple, for a two-bladed rotor, photographs were generally taken at aximuth angles of $0,15,30,60,90,120$, and 150 deg . For a six-bladed rotor, esimuth angles were geperally $0,15,30$, and 45 deg. Hormally, two or three photographe were taken at each azimuth position. Two cameras were used to obtain ghotograghs of both the complete rotorwake system and cloes-up views of the right half of the rotor-wake systom. To supplement thece still photographs, hich tramespeed movies (3000 $1 \mathrm{rams} / \mathrm{sec}$) were thisen at selected conditions.

DAZA ERDUCTIO

Performace Date

Thrust asd torque measuraments (in sCUB) were converied to thrust (1b) and torqu ($\mathrm{ft}-\mathrm{lb}$), thrust coefficient (C_{T}) and torque coefficient (C_{Q}), and thrust coefficient-solidity ratio $\left(C_{T} / \sigma\right)$ and torque coefficientsolidity ratio ($C \sigma / \sigma$) values for all test conditions. The air density (ρ) used in moodimanifonalising the data was calculated for each tast conditica, based on the recorded temperature and pressure readinge.

Fow Maulimation Den

To introduce the proemdures used in reducion the flew visunlisntion data, brief diseusision of the fundanntal charecteristie of the hovering roter whe and the iaterpretitice of these charecterfstics fro smone photarrephe is prestated. A schematic of the wate frow one blede, reproduced directly from Oray's interpretation in ferurance 3, is shom in Figure 8. ithe whe contalas two primery componett. The Hrat, und out promiater, is the strone tip vortex which arises trow the rapid rollide up of the portion of the vorter shetet and frow the tip racion of the blede. The second feature is the vortax shent ahed from the inbourd section of the biode. This sbeet does not roll op but gemerally remins in the fore of distributed vorticity, Tmertical or axith tranoport velocity pear the outer onf of the inbond vortax shat is much erentar than that of the tip vorter. The varticel velocity of the intomin batet

 shom in Pigured 9 and 10. Twase charagencistics result directly from che wlocities ixtured by the strong tip vortex. Althoug the reilial oxtent of the vortex thete is sepicted io Figur 8 as andins obruptiy, it
 of thit commection, hovever, man bea difficult to distiaguish in flow Vismilication stulies. In edition to the mate structur strom it

Figure 8 for one blade, similar wake structures for otier blades also exist, with the aggregate forming the complete wake representation.

The schematic in Figure 8 is representative of the three-dimensional wake pattern which would be observed if smoke were emitted from the blade (i.e., in the rotating system). To take advantage of the symmetrical nature of the wake of a hovering rotor as well as to facilitate the acquisition of quantitative data, the wake for this investigation was observed by emitting smoke externally from the blades (i.e., in the nonrotating system). Smoke was emitted from smoke rakes in a single plane and the flow patterns were photographed, as shown for the two-bladed rotor in Figure 9. In this manner, a two-dimensional cross section of the wake was recorded. The cross sections of the tip vortices appear as circles in which the central regions are clear of smoke due to the local centrifugal field which forces the smoke particles radially outward. The center of the circular cross sections are interpreted as the centers of the vortex core. The vortex sheet cross sections are indicated by the discontinuities present in the smoke filaments passing through the inner region of the rotor wake.

The photographic wake data were analyzed for selected test conditions to determine the principal wake geometry characteristics. The conditions were selected so as to permit assessment of the effects of the primary test parameters. Radial and axial wake coordinates were determined from the photographs as functions of the wake azimuth angle (ψ_{W}), whicn is equivalent to the blade azimuth travel ($\psi=\Omega t$) from the time it generates the vortex cross section. For example, on the right side of Figure 9, the uppermost tip vortex and vortex sheet cross section were shed by blade 2, which has travelled 180 deg from the time it passed through the plane of smoke on the right side (reference side). The following tip vortex and vortex sheet cross section were shed by blade 1 the previous time it passed through the reference side of the smoke plane, and thus the wake azimurh argle for these cross sections is 360 deg . Likewise, the azimuth angle of the third cross section, shed by blade 2 , is 540 deg. It should be noted that the cross sections in the visible wake near the rotor remain approximately in the same plane (rotor wake tangential velocities are small). The azimuth angle, ψ_{w}, was used as the third coordinate in the wake geometry analysis. In Figure 10, a schematic of the wake of Figure 9 and the wake coordinate system is presented. For a stable, hovering rotor wake, the radial and axial coordinates at a given azimuth angle are equivalent for each blade due to symmetry. Thus the complete coordinate system of the wake for a given test condition was determined by the following procedure.

A transparent grid template was constructed from the photograph of the reference grid shown in Figure 6. With the grid template as an overlay, the radial and axial coordinates of the wake from several blades in a single photograph were determined along with the corresponding wake azimuth coordinates. This was repeated for a sequence of photographs taken with the rotor at a series of prescribed rotational positions. A sample sequence is presented in Figure 11, in which the rotor rotational positions are designated by the azimuth position, ψ, of the biade which most recently passed through the reference plane containing the smoke. Considering the known azimuth positions of the reference blade and relating each vortex cross section to the appropriate blade, the radial and axial coordinates were obtained from the photographs in Figure 11 for the following wake azimuth angles:

Reference Blade Azimuth, ψ, deg	Wake Azimuth, $\psi_{w, \text { deg }}$
0	$0,180,360,540$
15	$15,195,375,555$
30	$30,210,390,570$
60	$60,240,420,600$
90	$90,270,450,630$
120	$120,300,480,660$
150	$150,330,510$

The coordinate results from the series of photographs were then plotted as functions of ψ_{w} as shown in Figures 12 and 13. To facilitate the comparison of wake geometries from varying rotors and test conditions, the radial and axial coordinates were nondimensionalized by the rotor radius, and differences in axial coordinates due to blade coning were eliminated by using the blade tip as the reference (\bar{z}_{T} instead of \bar{z}). The range of wake azimuth angles for which data could be acquired was limited by the visibility of the smoke. For example, for two- and four-biaded rotors, generally only 1 to 2 tip vortex revolutions per blade, were visible. For six- and eight-bladed rotors, less than one revolution from each blade was visible. However, it will be shown that rotor performance is mainly sensitive to this near wake geometry and insensitive to reasonable extrapolations of this geometry made to define the far wake. Thus, knowledge of the exact positioning of the far wake elements is not essential to the objectives of the rotor performance portion of this study.

Since the cross sections of the vortex sheet from each blade are essentially lines rather than discrete points, as is the case for the tip vortex cross sections, the following procedure for transforming the photographic data for the vortex sheets to coordinate form was found to be convenient. Assuming the vortex sheet cross sections to be linear, the axial position of a vortex sheet at a given azimuth can be defined by two points. For simplicity, the two points selected were the imaginary extensions of the cross section to $\bar{r}=0$ at one end and to $\bar{r}=1.0$ at the other end, as shown in Figures 10 and 13. These two points establish the intercept at the axis of rotation and the slope of the vortex sheet. Using this procedure, it is unnecessary to reduce, for each smoke filament, the coordinates of their intercepts with the vortex sheet cross sections if the following assumption is made. It was assumed that the radial position of such intercepts (e.g., point \bar{A} of Figure 10) is linearly proportional to the radial coordinate of the intersection of the vortex sheet with the vortex sheet boundary (point $\overline{\mathrm{B}}$). With the exception of the inmediate vicinity of the blade ($\psi_{\mathrm{w}}<2 \pi / \mathrm{b}$), the vortex sheet boundary was assumed to be equivalent to the boundary formed by the locus centers of the tip vortex cross sections (equivalently, tip vortex streamline). For ψ_{w} less than the blade spacing, $2 \pi / b$, the boundary was faired from the point of maximum circulation on the blade (point $\overline{\mathrm{D}}$ of Figure 10) to the tip vortex boundary. The constant of proportionality was assumed to be the ratio of the radial position of the origination of the smoke filament streamline at the blade (point $\overline{\mathrm{c}}$) to the radial position of the vortex sheet boundary at the blade (point D). That is,

$$
\begin{equation*}
\bar{r}_{\bar{A}}=\left(\frac{\overline{r_{C}}}{\overline{r_{\bar{D}}}}\right) \overline{r_{\bar{B}}} \tag{1}
\end{equation*}
$$

It was found that this was a reasonable approximation for use in the theoretical wake model for rotor performance calculations to be presented in a later section.

IEST DATA ACCURACY

Static data repeatability for thrust and torque was determined from repated calibrations of the strain gages mace while determining the calibration derivatives discussed in the Test procedures section. The repeatability values, represented by two standard derivations, are listed below:

	Thrust, 1b	Torque, ft-1b
Static Repeatability:	± 0.0087	± 0.1130

The dynamic data repeatability was established by considering the range of C_{T} / σ and C_{Q} / σ measurements observed from consecutive test points at a given tip speed for each test configuration. Normally, four test points were available from two consecutive runs between which the rotor was stopped and restarted. The mean range was established and related to the standard deviation using the procedures outlined by Hoel (Reference 4, p. 241). The results obtained are given below.

By choosing consecutive test points in the above analysis, variations due to differences in collective pitch setting were eliminated. These differences were significant, as will be shown in the presentation of the performance data. However, they did not significantly influence the rotor thrust - torque relationship.

The estimated accuracies with which the parameters determining a given test condition could be set are as follows:

Parameter	Accuracy
Collective Pitch, $\theta_{75} 75$	$\pm 0.2 \mathrm{deg}$
Tip Speed, Ω_{R}	$\pm 1 \mathrm{fps}$
Rotor Height, $\mathrm{Z}_{\mathrm{G}} / \mathrm{R}$	$\pm 0.03 \mathrm{R}$

The estimated accuracy and repeatability of the tip vortex coordinates are listed below.

Wake Coordinate	Accuracy	Repeatability
Azimuth, ψ_{w}	$\pm 3 \mathrm{deg}$	--
Radial, $\overline{\mathrm{r}}$	± 0.005	$\sim \pm 0.01$
Axial, $\overline{\mathrm{z}}_{\mathrm{T}}$	± 0.005	$\sim \pm 0.01$

The accuracy of the radial and axial coordinate represents the degree of accuracy to which coordinates of a wake point could be measured from the grid system used. The repeatability represents the normal repeatability of a wake point in a series of photographs taken during a single test condition (e.g., see Figure l2). This repeatability pertains only to the tip vortex in the near wake region of the rotor (to be discussed later). Figure 14 shows the repeatability of the tip vortex coordinates for a test condition as repeated on three different dates.

DISCUSSION OF EXPERIMENTAL ROTOR PERFORMANCE RESUTTS

The rotor performance test data were transformed to graphical form for the various combinations of number of blades (solidity), blade twist, aspect ratio, tip speed, and simulated ground height. The resulting graphs were analyzed to assess the separate influence of each of these parameters on model rotor hover performance. The performance characteristics of the model rotors are presented in nondimensional form in Figures 15 through 18 for each combination of blade twist and aspect ratio tested. This series of graphs, which contains data for out-of-ground-effect operation ($Z_{G} / R=3.5$), also includes results for various tip speeds.

Thrust (Collective Pitch) Limits

As noted previously, maximum thrust (collective pitch) was limited, for each rotor configuration, by the rapid increase in noise level when a specific tip speed was exceeded. Oscillograph records, displaying a signal produced by torsional strain gages mounted at the root end of a blade, were analyzed to determine the frequency of the blade torsional response. The frequency (ω = approximately 12 cycles per rotor revolution) was found to agree with both the measured acoustic frequency and an estimate of the first natural frequency of the blade in torsion when nondimensionalized by Ω. Thus, it was concluded that the performance boundary had the characteristics of incipient stall flutter. Previous stall flutter investigations (e.g., Reference 5) have shown that the thrust boundary (hereafter referred to as the stall flutter boundary) is lowered with an increase in the following parameter which is the inverse of the reduced frequency parameter:

$$
\text { S'TALL FLUTTER PARAMETER }=\frac{\Omega R}{c \omega}
$$

The test results indicated that the stall flutter boundaries were lowered with increased tip speed, Ω, and decreased chord, c, indicating apparent agreement with the above relation. The stall flutter boundaries were also lowered with decreasing blade twist due to the earlier stall of the blade tip section.

Effect of Collective Pitch

The results of Figures 15 to 18 are presented in terms of rotor thrust versus rotor torque to minimize scatter introduced by the accuracy with which collective pitch, θ_{75}, could be set. Nominal values of constant collective pitch are, however, indicated by the dashed lines in each figure. In addition, representative variations of C_{T} / σ and C_{Q} / σ with
θ_{75} are presented in Figure 19 corresponding to the faired data presented in Figure 17. As anticipated, rotor torque increases rapidly at the higher collective pitch levels due to divergence of the airfoil drag characteristics. However, no corresponding fall-off in thrust, an indication of lift stall, is evident for the range of pitch values tested.

Effect of Solidity and Number of Blades

Rotor solidity was changed, for each blade design, by varying the number of blades from 2 to 8 as indicated in Figures 15 through 18. Since each of these figures represents rotors with fixed blade chord, radius, and tip speed, $\mathrm{C}_{\mathrm{T}} / \sigma$ and C_{Q} / σ are directly representative of thrust and torque per blade (blade thrust and torque loading). Comparison of the results for varying numbers of blades within each figure demonstrates the improved blade efficiency (thrust/blade ($\mathrm{C}_{\mathrm{T}} / \sigma$) per torque/blade (C_{Q} / σ)) with decreasing solidity. The improved blade efficiency occurs for two reasons. First, and most important, at a given blade loading, the fewe. the number of blades (or the smaller the solidity), the lower will be the total thrust and disc loading of the rotor. As a result, the average downwash (which is a measure of energy expended) induced by the rotor wake will be lower and hence the blade induced drag will be less. A second smaller effect arises from the reduced local interference caused by the tip vortex shed by one blade on the loading of the following blade. This will be discussed further in a later section of this report.

Although lower solidity at constant aspect ratio implies greater blade efficiency, there is a limit to which it also implies greater rotor efficiency. This is shown in Figure 20, in which the total rotor performance coefficients (C_{T} and C_{Q}) are presented for the blade design and tip speed corresponding to Figure $16(a)$. Since the blade radius and tip speed
are fixed in Figure $20, C_{T}$ and C_{Q} are representative of total rotor thrust and torque. Figure 20 shows that the rotor efficiency (rotor thrust per rotor torque) is improved with lower solidity only up to a point which is determined by blade stall considerations.

Effect of Aspect Ratio at Constant Solidity

Of particular interest to the rotor designer is the trade-off in performance between chord and number of blades while maintaining corstant rotor solidity (total blade area and disc area held constant). The experimental results comparing the hover performance for eight 18.2-aspect-ratio blades ($c=1.47$ in.) and six 13.6 -aspect-ratio blacies ($c=1.96$ in.) at a constant solidity of 0.140 are presented in Figure 21 . Over the thrust range tested (i.e., up to the stall flutter boundary), the results are essentially equivalent for the two configurations. The existence of the stall flutter boundary prohibited the investigation of the trade-off of number of blades and chord at conditions associated with deep penetration into stall. The eight narrow chord-blades exhibited stall flutter at lower performance levels than the six wide-chord blades. This implies that the aeroelastic, rather than the aerodynamic, characteristics of the blades may ultimately be the determining factor in selecting blade aspect ratio.

Effect of Blade Twist

The effect of blade linear twist rate on experimental model rotor performance is shown in Figure 22 for two- and six-bladed rotors operating at a tip speed of 700 fps. For clarity, only the faired curves through the experimental data from Figures 15 to 17 are presented. An improvement in performance is noted at the higher thrust levels as blade twist is increased. For the six-bladed rotor most of the improvement is due to the initial 8 degrees of twist. For the two-bladed, -16-degree-twist rotor blades, the higher profile drag at low thrust and the improved performance in the stall region result in a crossover in blade efficiency relative to the blades of lower twist.

Effect of Tip Speed

The effect of variations in tip speed (from 525 to 700 fps) ac rotor performance is shown in Figures 23 and 24. As in Figure 22, only the faired experimental curves are presented. Performance results are presented for two- and six-bladed rotors with 0 and -16-degree-twist blades. The influence of compressibility, which results in decreasing performance
with increasing tip speed, is evident for all rotors. The influence is less for the -16-degree-twist blades because the high-Mach-number tip sections are operating at lower angles of attack relative to the tip sections of the zero-twist blades.

Ground Effect

The relative position of the rotor with respect to the ground was varied by raising or lowering the ground plane. The rotor conflguration and collective pitch setting were held flxed during a series of simulated rotor height variations. The effect of rotor height above ground (ground effect) on rotor performance coefficients is shown in Figure 25 for sixand eight-bladed rotors with a -8-degree twist and an aspect ratio of 18.2. Data are presented for variations in rotor height from 3.5 R , which is essentially out of ground effect ($O \mathrm{CH}$), to 0.67 R , which is well in ground effect (IGE). The COE data differs slightly from that presented previously becsuse the plastic tip blades were used for this series of data; however, thes should have no effect on the relative performance between the IGE and OGE conditions. It is shown in Figure 25 that the variation of thrust with torque is essentially linear as rotor height is varied. Thrust augmentation, which is defined as the increase in rotor thrust at corstant torque for IGE operation over that for OGE operation, was obtained using the following relation:

$$
\frac{T_{\text {IGE }}}{T_{O G E}}=\left[\frac{\left(C_{T} / \sigma\right)_{\text {IGE }}}{\left(C_{T} / \sigma\right)_{\text {OGE }}}\right]_{\text {CONSIANT } C_{Q} / \sigma}
$$

The thrust augmentation results are presented in Figure 26 , where it is shown that the effect of rotor height is virtually independent of both variations in solidity corresponding to six and eight blades and variations in OGE thrust level. The thrust at the minimum rotor height tested was increased by approximately 18% over the thrust for OCE operation. It should be noted that the results presented are for -8-degree linear twist blades. The detailed investigation of ground effect was not a primary objective of this study and thus was not investigated for all rotor configurations. Results of recent tests at UARL and Sikorsky Aircraft indicate variation in thrust augmentation with blade twist.

In addition to the variation in rotor height discussed above, the -8-degree-twist blades ($A R=18.2$) were tested IGE in a manner to simulate typical full-scale whirl-stand operation. For these conditions, the rotor
was 1.67 R above the ground plane and was tested with and without the presence of a model whirl stand (IGE and IGE/WS). The following tabulation consists of representative averages of the thrust augmentation results.

Thrust Augmentation Ratio, $T_{\text {IGE }} / T_{\text {OGE }}$

Tip Speed (fps)	No. of Blades	IGE	IGE/WS
700	$2,6,8$	1.03	1.035
525	$2,6,8$	1.02	1.025

Although the scatter in the individual $T_{I G E} / T_{D G E}$ results used in determining the above averages was approximately $\pm 1 \%$, taken in aggregate, the data indicated a slight increase in thrust augmentation due to the presence of the whirl stand.

DISCUSSION OF EXPERIMENTAL ROTOR WAKE GEOMETRY RESULTS

Sample Photographs.
In addition to the sequence of photographs previously presented in Figure if for a two-bladed rotor, similar sequences for four, six, and eight blades are presented in Figures 27 through 29. These photographs, for the zero twist rotor operating at a tip speed of 700 fus and a collective pitch setting of 8 degrees, show the time histcry of the wake as the reference blade rotates to various azimuth positions. The tip vortex cross sections in the "near wake" (portion of waice within one or two wake revolutions beneath the rotor) are clearly evident, as are the discontinuities in the inboard smoke filaments which identify the inboard vortex sheet locations. Also evident are the rapid cantraction of the wake and the decreased axial wake spacing with increasing number of blades.

A characteristic of all the photcgraphs taken during this investigetion is the absence of the tip vortex cross sections beyond those corresponding to approximately three to four blade passages. That is, no more than four vortex cross sections normally appear cleariy on any given photegraph. Thus, the limiting azimuth for visualization of the tip vortex varied with number of blades according to the following:

No. of Blades \begin{tabular}{ccc}

\& \begin{tabular}{c}
Azimuth Spacing

Between Blades

(cleg)

 \&

Approximate Azimuth Limit

(Azimuth Spacing $\times 4$)

(deg)
\end{tabular}

2 \& 180 \&

4 \& 90 \& 720

6 \& 60 \& 360

8 \& 45 \& 240

\& \& 180
\end{tabular}

At first it was believed that the tip vortex cross sections became indistinguishable due to diffusion of the smoke by turbulent wixing as mentioned by Gilmore in Reference 6. However, close scrutiny of the photographs and high-frame-speed movies resulted in the conclusion that the far-wake region of a hovering rotor is unstable or, at best, neutrally stable. Whether the tip vortex undergoes a form of viscous dissipation (decay) or vortex breakdown (bursting) as characterized by certain fixed wing tip vortices (Reference 7) is conjecture at this time. However, the results of this investigation indicate a definite departure from the classical concept of a smoothly contracting wake below the rotor. Evidence of this is shown in Figure 11, in which the fourth vortex cross section proceeds to travel radially outward (note particularly the photographs for $\psi=9 n$ and 120 deg) until it is no longer visible at $\psi=150$ deg. Perhaps a mare dramatic example of the instability is presented in the series of Figus 30 , in which the fourth vortex cross section moves radially out and eventually to the side of the third. Although it is recognized that amall perturbation such as a small amount of abient vind or silght blede-out-of-track may be necessary to precipitete the instability, this is believed to be an acadenic consideration aince full-acale rotor operation is certainly subject to greater disturbances than those present under the laboratory conditions of this investigation. More photographic examples and a more complete discussion of the unstable nature of the far wake vill be presented in a later section of this repert.

Sample enlarged photographs for combinations of rotor configuxations and test conditions representative of veristions of the primary test parameters are presented in Figures 31 througt. 40. Three photographs for IGE and whirl-stand conditions are also inciuded, Single photographs for each configuration and condition are shown with the reference blade at the zero azimuth position. Note that the cop lip vortex cross section in esch photograph corresponds to the tip vortex thed from the previous blede. A time exposure (Figure 32) of the vake is included to show the streamine petterns of the amoke filaments. Note thet
tris photograph is fior the same condition as one of the previous stopaction photographs $\mu r e s e n t e d$ in Figure 31. Sample photographs for the rotor in a simulated whirl-stand enviroment and IGE are presented in Figures 38 through 40. The radiai expansion of the wake as it approaches the ground plane is evident in these latter photographs. One of the observations made during review of these and other photographic data was that the tip vortex never passed above the blades.* Fhotographic evidence of the location of the tip vortex of a full-scale rotor above the plane of rotation was shown in Reference 1 , where it was attributed to a 3 mald amount of wind. The absence of tilis phenomenon in the modei tests is ascribed to the controlied laboratory coaditions. The vake characteristics observed in tibe How visualization photographs are discussed in more detail in the following section.

T1p Vortex Coordinates

Sample resuits obtained from the reduction of the flow visurilsation photograpis to coordinate form, are presented in Pigures 41 through 52 for the tip vartex. Note thet in order to present the axinl and radial coordinates on the sam scaln, and since the experimental tip vorices were always located below the rotor tip path plane, the degative of the axial coordinate with respect to the blade tip ($-\mathrm{E}_{\mathrm{P}}$) vas plotted. The symbols at a apecific animuth represent an average of all the data reduced from mitiple photographs for a den rotor operating condition. The repeatability of the radial and axial cocrdinates was peperaliy vithin $\mathbf{0} 0.01$ R in the stable mear-uhe resion. The ficht conditices for which date ure presented vere selected trom over 70 analyzed conditions to provide typical results indicating the effect of independent variations of the primary test paraseters. Since the ditn in Figures 41 through 52 corraspond to specific test pointe, it is sugrested thet they be used only to exemplify trends but not for final wave fonermlisttion purposes. Generalized plote besed on date from all reduced tent conditigas will be presented in a later section.

[^0]
General Wake Features

Several general features of the tip vortex geometry are evident in Figures 41 through 52. When an element of the tip vortex is shed from a blade, its rate of axial displacement is very low until it passes beneath the following blade (at $\psi_{N}=360 \mathrm{deg} / \mathrm{b}$). At that point, the tip vortex Eiement lies radially inboard of the tip vortex of the following blade and thus experiences a large downward induced velocity from that vortex. The axial transport velocities before and after the passage of the following blade are fairly constant in the near wake, as can be seen from the substantially linear variations of the axial displacement, \bar{z}_{T}, with wake azimuth angle in these regions. The radial displacement, \bar{r}, of the tip vortex decays in an apparently exponential manner as the wake azimuth is increased. The fairings of the data in the figures are based on these general wake characteristics.

Effect of Thrust Level (Collective Pitch) for Fixed Number of Biades
The tip vortex coordinates for a two-bladed rotor operating at three thrust levels corresponding to three collective pitch values are shown in Figure 41. Figure 42 shows the coordinates for a six-bladed rotor for a similar variation. The axial displacement and radial contraction of the tip vortex is shown to increase with increasing thrust level. It should be noted that this result differs from the generalized wake model assumed by Rorke and Wells (Reference 8), which was based on limited experimental data.

Effect of Number of Blades at Constant Blade Ioading

The effect on tip vortex geometry of varying the number of blades while holding the blade loading (or $\mathrm{C}_{\mathbb{T}} / \sigma$) constant is shown in Figure 43 for the zero-degree-twist rotor. The rates of axial displacement for the two- and six-bladed rotors are equal up to the azimuth position corresponding to that of the following blade. Beyond this point the tip vortex of the six-bladed rotor, which has a greater total thrust, travels downward at a faster rate. The radial contraction for the six-bladed rotor is also greater than that of the two-bladed rotor. Similar results are shown in Figure 44 for a -8-degree-twist rotor.

I'he effect on tip vortex geometry of varying the number of blades while holding the rotor disc loading (or C_{T}) constant is shown in Figure 45. The rate of axial displacement is greater for the two-bladed rotor, which has the greater blade loading, up to the azimuth position corre. sponding to the following blade. Beyond this point the displacement rates are equivalent. Also, the radial coordinates are equivalent at constant disc loading.

Effect of Blade Twist

To show the independent effect of blade twist rate on tip. frtex geometry, the tip vortex coordinates have been plotted in Figure +6 for a two-bladed rotor at a constant thrust level. Although the rag al coordinates are independent of twist variations, the axial disp cement decreases with increasing twist rate -- particularly between -8 and -16 degrees. Similar results are shown in Figure 47 for a six-bladed rotor.

Effect of Aspect Ratio at Constant Solidity

The effect of aspect ratio on tip vortex geometry is shown in Figure 48, in which the data for six wide-chord blades are compared at a constant thrust level with the data for eight narrow-chord blades having the same solidity ratio. The radial coordinates and the axial displacement rates are approximetely equivalent. The axial displacement after the following blade passes is greater for the high-aspect-ratio rotor dus to the lesser biade spacing of the eight-bladed rotor.

Effer, ai Tip Speed

Tip vortex geometry is shown in Figures 49 and 50 to be independent of tip speed. Data for two- and six-bladed rotors are presented for tip speeds of 525,600 , and 700 fps , which, as previously mentioned, correspond to the tip Nach number range of 0.46 to 0.61 .

Effect of Ground and Whir Stand

The effect of the simulated ground and whirl stand on tip vortex geometry is shown in Figures 51 and 52 for two- and six-bladed rotors. For each rotor, the collective pitch setting was held constant, and the ground plane position was changed from the OGE to the IGE position and the whirl-stand model inserted. As shown in these figures, the axial
displacement of the tip vortex is not sensitive to the whirl stand and corresponding ground plane position ($Z_{G} / R=1.67$). Conflicting results were obtained for the radial coordinates of the two- and six-blade tip vortices. For the two-bladed rotor, the presence of the ground or ground and whirl stand resulted in an expansion of the tip vortex boundary (Figure 5l). However, no difference was evident for the six-bladed rotor (Figure 52). It is noted that these IGE results are based on a limited amount of data, and further investigation is recomended. Also, the rotor height above ground for the simulated whirl-stand condition does not correspond to what would be considered a severe ground effect condition (see.Figure 26). Investigation of the effect of ground height on wake geometry was beyord the scope of this program.

Generamed Tip Vortex Geometry Results
It has been shown in the preceding section that the tip vortex flow visualization data can be well represented by a series of straight lines for the axial coordinate and by an exponential function for the radial coordinate. The parameters defining these curves were determined for all conditions that were reduced and cross plotted in an attempt to generalize the tip vortex geometry in terms of fundamental rotor parameters. The procedures followed and results obtained are described below. It is recognized that some of the conclusions reached in interpreting these data depend on the manner in which the data are faired. The fairings used represent our interpretation of the data and are believed to be consistent and reasonable, taking into consideration, as they do, all of the data
.ilabe for the different blade designs.

Tip Vortex Axial Coordinate
All axial coordinate data, including those of Figures 41 through 52, have been approximated by the following relations:

$$
\bar{z}_{T}=\left\{\begin{array}{l}
k_{1} \psi_{W} \text { for } 0 \leq \psi_{W} \leq \frac{2 \pi}{b} \tag{2}\\
\left(\bar{z}_{T}\right) \psi_{W}=\frac{2 \pi}{b}+k_{2}\left(\psi_{W}-\frac{2 \pi}{b}\right) \text { for } \psi_{W} \geq \frac{2 \pi}{b}
\end{array}\right.
$$

The constants k_{1} and k_{2} are defined as follows:

$$
\begin{aligned}
& k_{1} \text { or } k_{2}=\frac{\Delta \bar{z}_{T}}{\Delta \psi_{w}}=\frac{v_{2}}{\Omega R}=\tan \phi_{W} \\
& \text { for } k_{1}: \Delta \psi_{W}=\frac{2 \pi}{b} \\
& \text { for } k_{2}: \Delta \psi_{W}=\psi_{W}-\frac{2 \pi}{b}
\end{aligned}
$$

k_{1} applies prior to the azimuth position of the following blade ($2 \pi / \mathrm{b}$) and k_{2} applies thereafter. It is shown in the above equation that k_{1} and k_{2} also represent (1) the axial transport velocity of the tip vortex, v_{z}, nondimensionalized by the rotor tip speed and (2) the tangent of the local pitch angle of the contracted helix (ϕ_{W}) of the tip vortex. k_{1} and k_{2} values were determined by linear fairings through the axial coordinate data as previously shown in Figures 41 through 52.

It was indicated in Figures 42 and 43 that for a given blade design, k_{1} may be uniquely determined by blade loading (or more precisely, $\mathrm{C}_{\mathrm{T}} / \sigma$). Thus, the variation of k_{1} with the parameter $\mathrm{C}_{\mathrm{T}} / \sigma$ was plotted and is presented in Figure 53. Data for all numbers of blades and tip speeds of the test are included for each of the four blade designs (twist, aspect ratio combinations). The feirings of the data which eliminate differences due to number of blades and tip speed are believed to be justified in light of the experimental accuracy of the flow visualization data. If the repeatability of $\Delta \mathrm{z}_{\mathrm{T}}$ in the k_{1} region and for a given test condition is ± 0.015 (see Figure 14), the following accuracy of k_{1} results from Equation (2) for rotors of varying numbers of blades:

No. of Blades	Accuracy of k_{1}
	± 0.005
4	± 0.010
6	± 0.014
8	± 0.019

Essentially all of the data points in Figure 53 lie within the accuracy range of the faired lines. It is possible that the consistency of the separation of the data for six and eight blades, -8-degree twist, and an aspect ratio of 18.2 from the faired line may be attributable to the use of the plastic tip blades for these rotor configurations. Based on the faired lines, the following is concluded regarding the k_{1} wake parameters for the tip vortex:

1. k_{I} increases linearly with blade loading (or $\mathrm{C}_{\mathrm{T}} / \sigma$).
2. At a given $\mathrm{C}_{\mathrm{T}} / \sigma, \mathrm{k}_{1}$ is independent of tip speed.
3. At a given $\mathrm{C}_{\mathrm{T}} / \sigma, \mathrm{k}_{1}$ is independent of number of blades - at least within the range of experimental accuracy of this investigation.
4. The rate of k_{1} kith respect to C_{T} / σ is independent of blade twist and aspect ratio (slopes of k_{1} vs $\mathrm{C}_{\mathrm{T}} / \sigma$ are essentially constant in Figure 53).
5. At a given $\mathrm{C}_{\mathrm{T}} / \sigma, \mathrm{k}_{1}$ increases with blade twist rate.
6. At a given $\mathrm{C}_{\mathrm{T}} / 0 ; \mathrm{k}_{1}$ is independent of aspect ratio.

It is noted that conclusions 5 and 6 are qualified by the fact that the variations of the fairings are within the experimental accuracy.

It was indicated in Figure 44 that for a given blade design, k_{2} may be uniquely determined by rotor thrust coefficient. Thus, the variation of k_{2} with the parameter C_{T} was determined, and the results are presented in Figures 54 through 57. Data for all numbers of blades and tip speeds of the test are included. Considering the experimental accuracy, it, was again possible, for each blade design, to determine a single fairing which eliminates differences due to number of blades and tip speed. I^{+}, was found that the k_{2} data could be faired in direct proportion to the $\sqrt{\mathrm{C}_{\mathrm{T}} / 2}$. This enables the axial displacement velocity of the tip vortex in the k_{2} region to be directly related to the momentum inflow velocity as follows:

$$
\begin{gathered}
k_{2}=c \sqrt{C_{T} / 2} \\
v_{z}=\Omega R k_{2}=\Omega R C \sqrt{C_{T} / 2}=C v_{Z_{\text {MOM }}}
\end{gathered}
$$

The proportionality constant, C, Jaried from -1.41 to -1.19 with increasing twist (0 to -16 deg), and was not affected by variations in aspect ratio. Based on the faired curves, the following is concluded regarding the k_{2} wake parameter for the tip vortex in the stable wake region:

1. k_{2} is linearly proportional to $\sqrt{\mathrm{C}_{\mathrm{T}} / 2}$. This implies that the axial displacement velocity of the tip vortex is linearly proportional to the momentum inflow velocity.
2. For a fixed C_{T} (or dise loading), \mathbf{k}_{2} is independent of tip speed and number of blades.
3. The constant of porportionality between k_{2} and the $\sqrt{C_{T}} / 2$ (or between v_{2} and $v_{\mathbf{z}_{\text {MOM }}}$) decreases with increasing blade twist but is independent of blade aspect ratio, being given by the expression $C=-1.41-0.0141 \theta_{1}$ (deg).

It was indicated in Figure 44 that the tip vortex radial coordinate, \bar{r}, may be uniquely determined by rotor thrust coefficient. Thus the variation of the radial coordinates with C_{T} at selected azimuth positions was determined, and the results are presented in Figures 58 through 61. The data symbols in these figures represent the mean of all available data points reduced at a given azimuth for a specific rotor configuration and test condition. Data for all numbers of blades and tip speeds are included, and, again, it was possible to represent the data with faired lines which eliminate differences due to number of blades and tip speed. The faired lines shown for a given azimuth are identical for each blade design, indicating that the radial coordinates are also insensitive to twist and aspect ratio variations at a constant C_{T}. For a given azimuth, the radial coordinate decreases linearly with increasing C_{T}. Further analysis of the faired lines shown in Figures 58 through 61 indicated that they could be accurately represented by the following equation:

$$
\begin{equation*}
\bar{r}=A+(1-A) e^{-\lambda \psi_{W}} \tag{3}
\end{equation*}
$$

provided that the constant A was selected as 0.78 and that the constant λ was determined from the function of rotor thrust coefficient given in Figure 62. The values of A and λ were selected to fit the near wake radial coordinates.

In summary, then, the following is concluded regarding the radial coordinates of the tip vortex in the stable wake region:

1. For a given azimuth, the radial coordinates are linearly proportional to disc loading (or C_{T}) and decrease with increasing disc loading.
2. For a fixed disc loading (or C_{T}), the radial coordinates are independent of tip speed, number of blades, blade twist, and aspect ratio.
3. The radial coordinates (near wake) are accurately represented by the equation

$$
\bar{r}=0.78+0.22 e^{-\lambda \psi_{w}}
$$

where λ is a function of C_{T} alone and is given in Figure 62.

Vortex Sheet Axial Coordinates

As discussed in the subsection entitled Flow Visualiation Data, it was convenient to approximate the cross sections of the vortex sheet shed by the inboard portions of the blades as varying linearly with $\overline{\mathbf{r}}$. These linear approximations are extended (as in Figure 10) at both ends until they intercept the axis of rotation ($\bar{r}=0$) or an imaginary cylinder of radius $\bar{r}=1$. The axial coordinates of the intercepts were found to be approximated well by the following equations:

$$
\begin{align*}
& \left(\bar{z}_{T}\right)_{\bar{r}=1}=\left\{\begin{array}{l}
\left(k_{1_{\bar{r}=1}}\right) \psi_{W} \quad \text { for } 0 \leq \psi_{W} \leq \frac{2 \pi}{b} \\
\left(k_{\left.\right|_{\bar{r}=1}}\right) \frac{2 \pi}{b}+\left(k_{2 \bar{r}=1}\right)\left(\psi_{W}-\frac{2 \pi}{b}\right) \text { for } \psi_{W} \geq \frac{2 \pi}{b}
\end{array}\right. \tag{4}\\
& \bar{z}_{\bar{r}=0}=\left\{\begin{array}{l}
0 \text { for } 0 \leq \psi_{w} \leq \frac{\pi}{2} \\
\left(k_{2_{\bar{r}=0}}\right)\left(\psi_{W}-\frac{\pi}{2}\right) \text { for } \psi_{W} \geq \frac{\pi}{2}
\end{array}\right. \tag{5}
\end{align*}
$$

The fairings through the data shown in Figure 13 are based on these equations. Although better fits to the data for $\overline{\mathbf{r}}=0$ could be obtained for individual conditions, the parameters used in Equation (5) above appeared to give the best overall fit to the $\bar{r}=0$ data for the conditions aralyzed. Further refinements were not considered valid in view of the scatter present.

An attempt was made to express the constants appearing in Equations (4) and (5) in terms of more fundamental rotor parameters, as was done for the tip vortex coordinates. Analysis of the results indicated that reasonable correlation of the data with rotor thrust coefficient existed, as shown in Figures 63 through 65. There appeared to be little measurable effect of twist, aspect ratio, tip speed, or numbers of blades or the outboard axial coordinate parameters, $K_{l_{\bar{r}}}=1.0$ and $K_{2_{\bar{F}}}=1.0$ (Figures 63 and 64). However, some effect of twist was noted on the inboard axial coordinate parameter, $\mathrm{K}_{2}{ }_{\bar{Y}}=0$, as shown in Figure 65. Although scatter is present, the data of Figure 65 show a reasonably consistent trend of increasing $\mathrm{K}_{Z_{\bar{r}}}=0$ with increacing twist. This means that the axial velocities of the air through the inner portion of the rotor increase with twist. This appears to be reasonable since twist is used to increase the loading and, hence, the circulation of the inboard blade sections.

With the axial locations of the inboard sheet cross sections established (from Figures 63 through 65) together with the radial coordinates of the tip vortex (from Figures 58 through 62 or Equation (3)), the radial coordinates of the inboard vortex filaments can be computed using Equation (1). This equation essentially assumes that the contraction of the inboard vortex filaments (as measured along the sheet cross section) is determined by the degree of contraction of the tip vortex at the axial location where the inboard sheet extension intersects the tip vortex trajectory.

Generalized Wake Equations

The generalized wake equations (applicable in the stable wake region) are summarized below.

1. Tip Vortex Axial Coordinates:

$$
\bar{z}_{T}=\left\{\begin{array}{l}
k_{1} \psi_{W} \text { for } 0 \leq \psi_{W} \leq \frac{2 \pi}{b} \\
\left(\bar{z}_{T}\right)_{\psi_{W}}=\frac{2 \pi}{b}+k_{2}\left(\psi_{W}-\frac{2 \pi}{b}\right) \text { for } \psi_{W} \geq \frac{2 \pi}{b} \\
k_{1}=-0.25\left(C_{T} / \sigma+0.001 \theta_{1 \mathrm{deg}}\right) \\
k_{2}=-\left(1.41+0.0141 \theta_{1 \mathrm{deg}}\right) \sqrt{C_{T} / 2} \\
\end{array}\right.
$$

2. Tip Vortex Radial Coordinates:

$$
\begin{aligned}
& \bar{r}=A+(1-A) e^{-\lambda \psi_{W}} \\
& A=0.78 \text { (near wake) } \\
& \lambda=0.145+27 C_{T}
\end{aligned}
$$

3. Vortex Sheet Axial Coordinates:

$$
\begin{aligned}
&\left(\bar{z}_{T}\right)_{p=1}=\left\{\begin{array}{l}
K_{\mid F=1} \psi_{W} \text { for } 0 \leq \psi_{W} \leq \frac{2 \pi}{b} \\
\left(k_{1 ;=1}\right) \frac{2 \pi}{b}+\left(k_{2 F=1}\right)\left(\psi_{W}-\frac{2 \pi}{b}\right) \text { for } \psi_{W} \geq \frac{2 \pi}{b} \\
k_{1 ;=1}=-2.2 \sqrt{C_{T} / 2} \\
K_{2}=-2.7 \sqrt{C_{T} / 2}
\end{array}\right. \\
& \bar{z}_{i=0}=\left\{\begin{array}{c}
0 \text { for } 0 \leq \psi_{W} \leq \frac{\pi}{2} \\
\left(k_{2 ;=0}\right)\left(\psi_{W}-\frac{\pi}{2}\right) \text { for } \psi_{W} \geq \frac{\pi}{2}
\end{array}\right.
\end{aligned}
$$

$$
K_{2 \bar{r}=0}=\left[\frac{\theta_{1 \operatorname{deg}}}{128}\left(0.45 \theta_{1_{\mathrm{deg}}}+18\right)\right] \sqrt{C_{T} / 2}
$$

4. Vortex Sheet Radial Coordinates:
(see Equation (1))
It is recognized that some of the above equations and constants for the wake parameters depend on the manner in which the data is faired. The fairings used represent our interpretation of the data and are believed to be consistent and reasonable, taking into consideration, as they do, all of the data available for the different blade designs. However, it will be shown that the analytical rotor performance results are very sensitive to wake geometry. In view of this sensitivity, small systematic refinements to the fairings and thus the above wake constants may be required if consistently accurate performance predictions are to be achieved.

COMPARISONS OF TIP VORTEX GEOMETRY WITH OTHER SOURCES

The model rotor tip vortex geometry was compared with available data from other sources to investigate the consistency between data obtained on different rotors, on different test stands, and by different personnel. The available data was found to be quite limited in that no one had previously conducted a test program such as the one described herein, in which wake geometry was obtained from systematic variations of the blade design and operating parameters.

One of the most important considerations concerning model rotor wake geometry is whether it agrees with thut of full-scale rotors. Tip vortex geometry obtained from the model rotor tert wes compared with limited fullescale $\mathrm{CH}-53 \mathrm{~A}$ deta measured on the Sikorsky whirl stand as presented by Clark and Leiper in Reference 9. A comparison of the model and fullscale tip vortex coordinates is shown in Figure 66. The model coordinates were obtained by extrapolating the generalized model rotor wake to thrust coefficient of 0.01 . These coordinates are in good agreement with the full-scale tip vortex coordinates. If this correletion is representative, it may be concluded that the generalized vake deternined from model testing is applicable to full-scale rotors. However, since it will

A principal objective of this investigation was to evaluate the accuracy of certain theoretical methods, including several. developed at UARL, for predicting rotor hover performance -- particularly as affected by assumptions made regarding rotor wake geometry. The methods considered in this study are listed below.

1. Blade Element - Momentum Analysis
2. Goldstein-Lock Analysis
3. Prescribed Classical Wake Analysis
4. Prescribed Experimental Wake :nalysis
5. Prescribed Theoretical Wake Ancilysis

Each method is described below with emphezis placed on the last three, inasmuch as the first two methods have been in widespread use for many years.

BLADE ELEMENT - MOMENTUM ANALYSIS
As described briefly in Reference 1, this analysis is based on the assumption that the lift acting on an annulus of the rotor disc is equal to the change in momentum of the air passing through that annulus. Each annulus or, equivalently, each blade section is assumed to operate independently of all other sections. The relations developed can be shown (Heyson, Reference 15) to be equivalent to those obtained using vortex theory in which the rotor is modeled by an infinite number of blades and the vorticity deposited in the wake of the rotor forms a continuous cylindrical vortex sheet having a diameter equal to the rotor diameter. The equations relating local blade thrust and local induced velocity at the disc are solved iteratively on a digital computer using appropriate two-dimensional airfoil data to account for any stall or compressibility effects that may be present. Losses due to flow around the tips of the blades are accounted for by specifying a "tip loss factor", which assumes complete loss of lift over a small, arbitrary percentage of the blade tip region. As used herein, the parameters specifled as input to the analysis were rotor radius, solidity, tip speed, blade twist, collective pitch, blade coning angle, air density, speed of sound, airfoil c_{ℓ} and c_{d} date, and tip loss factor (0.97).

A principal objective of this investigation was to evaluate the accuracy of certain theoretical methods, including several developed at UARL, for predicting rotor hover performance -- particularly as affected by assumptions made regarding rotor wake geometry. The methods considered in this study are listed below.

1. Blade Element - Momentum Analysis
2. Goldstein-Lock Analysis
3. Prescribed Classical Wake Analysis
4. Prescribed Experimental Wake Analysis
5. Prescribed Theoretical Wake Analysis

Each method is described below with emphasis placed on the last three, inasmuch as the first two methods have been in widespread use for many years.

BLADE ELEMENT - MONBITTUM ALALYSIS

As described briefly in Reference 1 , this analysis is based on the assumption that the lift acting on an annulus of the rotor disc is equal to the change in monentum of the air passing through that annulus. Each annulus or, equivalentiy, each blade section is assumed to operate independently of all other sections. The relations developed can be shown (Heyson, feferepce 15) to be equivalent to those obtained using vortex theory in which the rotor is modeled by an infinite number of bledes and the vorticity deposited in the wake of the rotor forms a continuous cylindrical vortex sheet heving a diameter equal to the rotor diameter. The equations relating local blade thrust and local induced velocity at the disc are salved iteratively on a digital computer using appropriate twodimenainal airfoil data to mecount for any stall or compreasibility effects thet my be present. Losses due to flow around the tips of the blades are accounted for by specifying a "tip loes fretor", which assumes complete loss of lift over amall, arbitrary pereantege of the blade tip recion. As used berein, the paranters apecife ed input to the analysis vere rotor redius, solidity, tip apeed, blede twist, collective pitch, blade coniag angle, air density, speed of sound, airfoil $c_{\text {, }}$ and c_{d} deta, and tip lose factor (0.97).

In sumary, the Blade Element - Monentum Analysis neglects efiects due to the finite number of blades as well as those related to wake contrsction.

GOLDSTEIN-LOCK ANALYSIS

This analysis is effectively the =ctary-wing equivalent of the classical lifting-line snalysis used successfully for fixed wings. The analysis is based principally on the work of Goldstein (Reference 16), who obtained a solution for the velocity potential for the flow about an axially translating, doubly-infinite, rigid helicoidal surface. This surface was shown by Betz (Reference 17) to represent the minimum energy wake of a propeller (or rotor) having a finite number of blades. By satisfying the flow bcundary conditions on the helical surfaces representing the wake, the optimum (or Goldstein) distribution of circulation in the wake was obtained. Goldstein's results were applied by Lock (Reference 18), who showed how the results could be used to design a propeller. This was accomplished by assuming the propeller to be lightly loaded so that the wake was essentially uncontracted, in which case the circulation distribution in the wake can be related directly to the circulation distribution on the blade. Through this assumption and the use of the Goldstein velocity potential to define the induced velocities at the plane of the propeller, the blade twist and chord distributions necessary tc produce the coldstein (optimum) circulation can be determined. Lock also postulated techniques for handling the inverse problem, wherein the blade geometry is defined and the circulation distribution and the associated propeller performance are required. Inis situation arises, for example, when one designs an optimumpropeller for operation at a specified design condition and then w^{2}.shes to know the performance of this propeller at off-design operating conditions. In his approach, lock assumed that the circulation at each blade section was part of a Goldstein optimum circulation distribution but silowed the optimum distribution associated with each section to be different. This implies a different wake pitch angle variation with radius than would be the case for blade whose local circulation values formed part of the same optimum distribution. The resulting wake structure is, therefore, technically inconsistent with the optimum wake assumptions made by Goldstein; however, reasonable answers are expected for couditions where large departures from the Goldstein optimum circulation distribution are not in:olved. Numerical implementation of the Goldstein-Lock method, which involves an iteration at each blade section between the local circulation and local wake pitch angle, was accomplished using an existing computer program provided by the Sikorsky Division.

In sumary, the Goldstein-Jocik Analysis accounts for the finite number of blades on a rotor (thereby eliminating the need for fictitious tip loss factors) but still retains the assumptions that the blades are lifting lines and that the wake is uncontracted (light loading).

UARL PRESCRIBED WAKE HOVER FERFORMANCE PROGRAM

The next three enalyses to be discussed all employ the UARL Prescribed Wake Hover Performance Program (or briefly, the Prescribed Wake Program) for the solution of the blade circulation and inflow distribution and the corresponding integrated rotor performance. Complete generality (within the framework of the assumptions to be mentioned) regarding the specification of the geometry of the wake was maintained in the computer program. This generality permits the evaluation of a wide variety of wake geometries such as a classical uncontracted waike geometry (hereafter referred to as the classical wake), a realistin model of the experimental wake, and a theoretically defined wake. The incorporation of these three wake models in the Prescribed Wake Program rasults in the analyses $2 i$ i. ied below:

1. Prescribed Classical Wake Analysis
2. Prescribed Experimental Wake Analysis
3. Prescribed Theoretical Wake Analysis

These analyses are identical except for the representation of the wake. A description of the wake model used in each will be presented in the following sections. Other than assumptions regarding wake shape, the following are the major assumptions that currently exist in the Prescribed hake Program:

1. Each blade is represented by a lifting line (bound vortex) divided into a finite number of segments (blade segments), each having a different circulation strength. The aerodynamic characteristics determined at the centers of each segment are assumed to be representative of the entire segment.
2. The vake is represented by a finite number of vortex filaments trailing from the blade segment boundaries. Each filament is divided into straight segments, the lengths of wich are determined by a specified wake a:imuth interval, $J \psi_{\text {. }}$. The circulation strength of each trailing vortex rilament is constant alcrig its length and is equivalent to the sifference
between the circulation values of its adjacent bound vortex segmer: \lessdot s in accordance with Helmholtz laws of conservation of vorticaty.
3. The blade and wake characteristics are assumed to be independent of ezimuth position.
4. The airflow at the blades is assumed to be two-dimensional (radial induced velocity components are neglected). For the rotor perforrance calculations, tabulated two dimensional airfoil data (c_{1}, c_{d}, α) are provided which include compressibility effects (Mach number variations). For the circulation calculations, a set of lift curve slopes and stall angles of attack are provided which vary $w!$ th Mach number.
5. Tangential induced velocity components are neglected.
6. Small-angle assumption are acluded for the inflow angles in the circulation solution.
7. Following the blade circulation and i.iflow solution, conventional strip theory is assumed applicable to compute the rotor performance characteristics.

The method differs from that developed by Rorke and hells (Reference 8) in that the blade inflow distribution is determined completely by the induced effects of the wake (by application of the Biot-Savart law) as opposed to introducing approximate momentum considerations. A flow diagram showing the reauired input, sequence of major operations, and output of the program is presented in Figure 71. As indicated in this fieure, the program is divided into three independent parts. The first transforms the wake geometry input to wake coordinates. The second contains the computation of the waice influence coefficients at the blade, a: lefined by the Biot-Savart law, and the numerical procedures for solving the circulation matrix and associated induced velocity distribution. In the third part, performance characteristics are computed. A provision for automatic plotting of the wake rilaments is included. : ample computer plots are shown in figure 72 for a typical experimental wake and a classical wake model. In the prescribed Theoretical whe Analysis, the treoretical wake geomety is determined from a sepate proxram (inake Deometry Procram) and is used as input to the Prescribed wike froeram. The computer time required by the Prescribed wake Program
normally varies from approximately 15 seconds to 2 minutes (UNIVAC 1108 computer) depending on the number of blades, number of wake elements, and number of internal iterations required.

For all applications reported herein, the blade-wake model in the Prescribed Wake Program was renresented as follows:

Number of biade segments	15
Number of wake filaments per blade	16
Number of wake revolutions	11
Wake azimuth increment	30 deg

The 15 blade segments were distributed such that 10 were spaced at $0.02 R$ intervals over the outer 20% of the blade span. Wake revolutions beyond the eleventh were found to have a negligible effect on rotor performance.

PRESCRIBED CLASSICAL WAKE ANALYSIS

This analysis is, in many respects, similar to the Goldstein-Lock Analysis described above in that finite number of blades is assumed, each blade is represented by a lifting line, and an uncontracted wake geometry is prescribed. The primary differences in the analyses are as follows:

1. The helical sheets of vorticity representing the blade wakes are approximated by a finite number of discrete trailing vortex filaments to facilitete numerical solution (on a computer) of basically the same equations which, for the optimum case, Goldstein solved analytically. The availability of a numerical solution also permits a more direct solution of the inverse problem wherein the geometry of the rotor is specified as opposed to the circulation distribution.
2. The wake geometry assumed in this version of the analysis differs from that for the Goldstein optimum wake in that the axial transport velocity oi each vortex element in the wake is constant with radius and is equal to the momentum value. Tangential transport velocities are ssumed to be zero. For the low helical vake pitch angles associated with helicopter rotor disc lodings, the outer portion of the wake used approximates the Goldstein wake.

A sample plot of the classicsl vake trajectory was presented in Figirn 7 ?

The operating conditions for which rotor performance was computed using the Prescribed Classical Wake Analysis are listed in Table III.

Rotor	Wist (deg)	Aspect Ratio	No. of Blades	Tp Speed (fps)	```Collective Pitch (deg)```
Model	-8	18.2	2	700	6,2,10
Mode 1	-8	18.2	4	700	6,8,10
Madel	-8	18.2	6	700	6,8,10
Model	-8	18.2	8	700	8,10
Mode 1	-8	18.2	2	525	6,8,10
Model	-8	18.2	6	525	6,8,10
Model	0	18.2	$?$	700	6,8,10
Model	0	18.2	4	700	6,8,10
Model	0	18.2	6	700	6,8,10,21
Model	0	18.2	8	700	8,10
Model	-10	18.2	2	700	6,8,10
Motel	-16	13.	6	700	6,8,10
Matel	-9	13."	2	700	6,8,10
Mule:	-	13.0	6	700	6,8,10
$3-2$	-1^{2}	17.:	$?$	713	7,0,11
C3-**	-*	$1 \times .7$	'	0.88	5, 1), 10

PRESCRIBED EXPERIMENTAL WAKE ANALYSIS

This analysis differs from the previcus analyses in that a wore realistic, contracted wake geometry based on experimental flow visualization data is used as input to the Prescribed Wake Program. Rather than input coordinates for each vortex element in the wake, equations (1) through (5) are used to define the wake and the individual cnordinates are computed in the program. In this manner it is only neces-ary to input the following wake constants aud certain wake azimuth angles:

$$
A, \lambda, k_{1}, k_{2}, K_{I_{\bar{r}}=0}, K_{2_{\bar{r}}=0}, K_{1_{\bar{r}}}=1, K_{2_{\bar{r}}=1}
$$

The required wake azimath angles are simply the junction angles that bound the k_{1} and k_{2} regions. Use of the wake equations and the above constants greatly simplifies the input recuirements while retainine sufficient accuracy for the computation of induced velocities at the rotcr blades.
figure 72 indicates how the computer transform: the input wake constants to coordinate form and plots the resulting wake pattern. On the 1.4 side of this figure are the top and side views of the computer representation of a typical experimental wake. For clarity, only the wakes from 1 blade and 12 vortex filaments are shown. For this test condition, 5 of the 16 vortex filaments over the outer 8% of the blade were used to represent the tip vortex. The spanwise division between the vortex sheet and tip vortex regiors is determined by tile requirement that the vortex filament: grouped in the tip vortex have the same circulation sense and one which is consistent with a negative derivative of the final computed bound circulation distribution ($-\mathrm{d} \Gamma / \mathrm{d} \mathbf{r}$) over the tip region of the blede. This results in the radial location of the peak bound circulation as the dividing pnint between the inboard sheet and tip vortex portions of the wake. An iteration is bilit into the computer proyram to insure this consistency. A progrear refinement, included under this contract, was a: improvement of the wake geometry representation through incorporation of a provision for approximating the roli-up of the tip vortex filament: into a single rilament. This was accomplished by truncatiry the inter tip vortex filaments at an input arimuth (30 degrees was used in this investigation) and assigning the experimental tip vortex ecometry and the combined circuiation strensth to the remainine rilament (Figure 7 ?). In addition, an improved representation of the vortex theet
was included which allows the vortex sheet to extend to the tip vortex boundaiy. Finally, a provision was included for irputting tip vortex coordinates rather than using the curve fit equations. if such a mode of operation is desired. The far wake model was assumed to be a smoothly contracting extension of the near wake as shown in figure 72. The inclusion of provisions accounting for the instability of the frar wake observed in this investigation was beyond the scope of this 3tudy. The exact natuie of this instabilit. \therefore, and whether the unstable region is sufficiently removed from the rotor so as not to affect rotor performance remains to be investigated.

The operating conditions for which rotor performance was computed using the Prescribed Experimental Wake Analysis are listed below.

TABIE IV. FRESCRIBED EXPERIMENTAL WAKE CONDITIONS					
Rotor	Twist (deg)	Aspect Raiio	No. of Blades	Tip Speed (fps)	```Collective Pitch (deg)```
Model	-8	18.2	2	700	6,8,10
Model	-8	18.2	6	700	6,8,10
Model	-8	18.2	2	525	6,8,10
Model	-8	18.2	6	525	6,8,10
Mode ${ }^{\text {l }}$	$1)$	18.2	2	700	8,10
Model	0	18.2	6	700	8,10
Model	-8	13.6	2	700	3,10
HU-1A	-12	17.3	2	713	7,9,11
CA-53A	-6	16.7	6	698	8,10,12

All conditions inves*isated correspond io cas operation.

General Approach

The final performance method evaluated was the so-called Prescribed Theoretica? Wake Analysis. In this method the wake is again prescribed as input to the Prescribed Weke Program in order to compiste the blade and wake circulation distributions and the associated integrated rotor performance. In this instarct, however, the input wake geometry is determined principally fror theoreticel considerations rather than from experiment. Conceptually, the computation of the theoretical wake geometry can be accomplished by the following steps:

1. Estimate the vorticity (circulation strength) in the wake from a previous solution of the bound circulation distribution on the blade.
2. Specify an initial wake geometry.
3. Apply the classical Biot-Savari relation to compute the velocities induced in the wake by the wake vorticity.
4. Integrate these velocities over a small increment in time to define new wake geometry.
5. Repeat Steps 3 and 4, alternately, until a converged wake geometry corresponding to the initial estimate of blade bound circulation is obtained.
6. Compute nev estimate of the blace bound circulation distritution using the Prescribed Wake Prozram and the wake geometry from Step 5.
7. Repeat Steps 2 through 6, iterating until a compatible geometrycirculation solution is obtained.

The process just described is illustrated schematically in Figure 73. In the top half of this figure, the fundamentai iteration between the blade circulation and wake geowetry is indicated, while the lower half of the figure indicates the second iteration required to ob*sin geometry consistent with the current estimate of the blade circulations. A computer procram teraed the Wake ceometry Program has been developed to perform
tuis :econd iteration. Iterations of the type described are necessary because the complexity of the rotor wake geometry precludes a closed-form solution to the problem.

Althoug: the process described above is conceptually straightforward, its actual numerical implementation represents a formidable task, even with modern computers, because of the great number of vortex elements that conceivably could be used to represent the wake. Approximations are, therefore, necessary to limit computing time requirements. The following sections describe the procedures and approximations employed in this study.

Berore proceeding to th: detailed discussion of the procedures and approximations used, a few general remarks are in order regarding the computer program developed. The core program available for this scudy was basically one which was capable of computing wake geonetries for forward flight conditions (see Reference 2). As a result, the program is not optimized for the hover cordition ard thus, for example, the symmetry features of the hover flight condition are not included. Incorporation of such features could significantly reduce computing time. Also, initial attempts to apply the program in hover disclosed an apparent instability of the wake at moderate distances from the rotor. This instability appeared to conflict with the more or less classical conception of the hovering rotor wake as being a stable, smoothly contracting wake. Considerable effort was expended in investigeting the possibility that the apparent instability was result of the numerical procedures used; in the process, several modes of operation of the program were developed tefore a conclusion was reached that the physical wake is apparently unctable. The differer* operating modes allow the user to check various assuptions made in the computation of the wake geometry. The resulting computer program should, therefore, be considered a research program rather than one which is optimisel for maximum efficiency in production ase.

Nueripal Pocetures and Approximations

The procefures ant approximations employed in developing a numerical aethat frempting rotor wake geometries for hovering flight are teserbet beluw. The refier is alao referred :o Reference a for more tacke: mi materin.

Discrete Vortex Representation

The continuous helical sheets of vorticity trailed by the various blades of the rotor are represented by a finite number of discrete trailing vortex filaments. This approach is fairly standard, being used by Westwater in Reference 19, for example, to compute the geometry of fixedwing wakes. Figure 74 shows a schematic represertation oi a continuous, sheet wake from one blade and the approximation to this sheet made u:ing discrete filaments. Because of the nature of rotor blade bourd circulation distributions, the discrete vortices naturally group into two parts: a stiong, rolled-up tip vortex filament and several weaker filament: representing the inboard portion of the vortex sheet. In addition, it is evident from figure 74 that the discretevcrtices are each represented by a series of straight-line segments zather than by continuous curves. The length of the segments is letermined by the time increment used in the integration of the distorting velocities acting on the filaments and the magnitude of he distorting velocities themselves. Each discrete vortex was assumed to have a finite core radius equal to 0.00 , Velocities within the core were arbitrarily set to zero. More elaborate representation of the velccities within the core are vailuble (e.g., Peference ? O) but were not used herein in view of other, more important assumptions made in this analysis.

Far Wake Representation

Theoretically, the helical wake under the rotor extends downstream to infinity. As indicated freviously, the basic computer program available for this study was a forward-flight program. In this program the wake is truncated after a specified number of revolutions as indicatei in fieure 75 (for a hover condition). Initial attempts to compute the diatortions of such a truncated wake in hover showed that it quickly tended to roll up as shown in figure 75. In Pisure 75 (a), the tiuncated wake the start of the computation is shown; while in figure $75(b)$, the early stages af roll-up are evident after la time steps. This phenomenon is similar to tha* observed in Reference ?l, where lytortions of ake representel by a Inite number of vortex rings were computed. The roli-up ooservei is resonable inasmuch as symetry consiteratione lictate that the selfinduced radial relocities ac*ing on the truncates helical rr*ex mast be
 *his problem (which was consifere? be a rictiticus problen cases mity

 wa: divided into near- and far-make cions as thou in sifire $\%$ the
near wake is allowed to distort freely under the influense of the wakeinduced velocities. The far wake, however, was ertificaily constrained so that its diametel D_{p}, was at each time step set eridal to twice the radius of the last vortex element in the immediately preceding near wake. The axial spacing was set equal to the last revolution of the initial wake (which for these calculations was basec on experimental data). As will be ciscusjed below, the partially constrained far wake moves away frow the rotor as the computation proceeds, so that its influence continuously diminishes.

Numerical Integration

The numerical computation of the distorted wake geometry involves two basic steps: (1) the use of the Biot-Savar': Lav to compute the wake distortion velocities ($v_{x_{p}}, v_{y_{p}}, v_{z_{p}}$) produced by a given wake gecmetry and vor*icity at any point (P) joining the straight-line vortex elements (see Figure 77), and (2) the integration of these velocities over a small time increment (or time step) to establish a new wake geometry. These basic steps are successively repeated until there is no change in the computed wake geometry. The expressions used to compute and integrate these velocities are given in Appendix I. As the wake distorts during the time increment, the blades are allowed to rotate to new positions. This rotation leads to the generation of new near-wake elements. As a result, the number of near-wake elements continually builds up while the partially constrained far wake muves axially away from the rotor. The process will be illustrated by a specific example in latev section. Other modes of operation are possible with the program but were not evaluated in this contract. These will be described in the report documenting the program itself.

Further Inboard Wake Approximations

As noted above, the inboard sheet has been approximated by a series of iiscrete, segmented vortex filaments. If ont vere to consider compu*ins the contribution of each vortex eiement in the wake to the velocities acting on all other elements in the wake, xe would find that the computing time quickly gets out of rand. signirimant reductions in computing time san be accomplished by (1) eliminating elements in the wake, (2) avoiaing the computation of the distorting velocities induced by certain elements at each and every time step, or (3) avoiding altoqether the computation of the distorting velocities induced by certain eleament on othe- elezents. A combination of all three aproaches vas used in this stuly (alth ugh it fhoult be notel that the prouram has optional modes of
operation which will allow a complete interaction computation if one so desires). Thus, the far wake was truncated after \mathbf{N}_{F} revolutions. Also, advantage was taken of the fact that the circulation strength of each inboard vortex filament is stgnificantly less than that of the tip vortex. The distorting velocities injuced by the inboard elements on the tip vortex are, therefore, generally small compared to those induced uy the tip vortex itself. Rather than neglect the inboard wake completely in the vake geometry computaticn a. was done in Reference 2 , it was decided to (1) specify a representative inboard wake-tip vortex geometry, (2) compute the velocities induced along the tip vortex by the inbourd wake for this geometry at the initial time step, and (3) kcep these velocities constant for all succeeding time steps during which the tip vortex distorts under both its own variable influence, which varies with time, and that of the inboard wake, which is constant with time. The representative wake geasetry used to compute the inboard wake effect on the tip vortex was estimated for each operating condition frow the exper'smental vake data given in Figures 53 through 65. A typical geowetry is shown in figure 78 . As shown in this figure, the cuter boundary of the inboard wake was terminated at a distance abont 0.04 R from the tip vortex trajectory, except in the immediate vicinity of the blade, where, of course, the radial location was determined from the nature of the bound circulation distribution. The resulting boundary appeared reasonable when compared with smoke picture observations and considering that the local trajectory of a v rex element should be doainated by the rotational velocity induced by the nearest element of the tip vortex. Finally, spectfication of the inboard sheet geometry eliminated the necessity of computing the effect of the tip vortex on the inboard sheet. Fy incorporating these approximations, the computing times required were reduced by about an order of magnitude to about $\frac{1}{2}$ minute per time step fre a typical tre-bladed rotor case and $2 \frac{1}{2}$ minutes per time step for a typical six-bladed rotor case (UNIVAC 1108 Computer).

Bound Vortex Effect

The velocities induced on the tip vortex by the blode bound vorticity vere neglected. This eliminated an artifieial nimesical probiem resuiting from the representation of the blade as a liftint line and frus the computation of velceities at discrete points in ime vake. As a result, unrealistically large fluctuations in induced veiceity occurred as the bound vortex pessed over points on the tiy vortex generated by the preVous blade. Removal of these basic restrictions to the prostram vas beyond the scope of this study. Because the generally antisymetric mature of the relocities induced by the jound vortex and their rapid decay
with increasing distance from the bound vortex, it is believed that the neglect of thesp velocities should have little effect on the computed average position of the tip vortex.

Operating Conditions and Program Parameter; Selected

The operating conditions for which rotor wake geometries and assuciated performance ciaracteristics were computed using the prescribed Theoretical Wake Analysis are given below.

TABLE V. PRESCRIBED THEORETICAL WAKE CONLITIONS					
Rotor	Aspect Ratio	Twist (deg)	No. of Blades	Tip Speed (rps)	```Collective Pitch (deg)```
Mode 1	18.2	-8	2	700	6,8,10
Mode 1	18.2	-8	2	525	8,10
Model	18.2	0	2	700	8,10
Mode 1	13.6	-8	2	700	8,10
Mnel	18.2	-8	σ	'700	8
HJ-1A	17.3	-12	2	713	9
$\mathrm{CH}-53 \mathrm{~A}$	16.7	-6	6	698	10

all conditions investigated correspond to ocE operation.

In computine the wake gemetries ard rotor performance for the contitions described above, the rollowing parmeters were selected at inpu* to the nake Ceometry Pream (input to the Prescribed Wake Program va: the same as that described in the section entitled "URL PRESCRIBD

1. Number of inboard wake filaments
2. Initial number of near wake revolutions (tip vortex)
3. Far-wake revolutions (tip vortex)
4. Number of time steps used in integration
5. Nondimensional time interval used in integration, $\Delta \psi=\Omega \Delta t$
6. Number of inboard wake revolutions
7. Initial wake geometry

3/blade for $b=$? ?/blade for $b=6$

8/olade for $b=2$, $3 /$ blade for $b=6$

49 for $b=2$, 29 for $b=6$,
0.524 (30 deg) for $b=2$, 0.349 (20 deg) for $b=6$

4 for $b=2$,
3 for $b=6$
4 to 5 (as required)
estimated from
Mrures 53 through 65.

Although the number of filaments per blade in tofe initial wake was less for the six-bladed rotor because of program storage limitations, the total number of filaments in the wake for the two- and six-bladed rotors were comparable.

Wake Stability Maracteristics

Evidence of wake Instability
Initial results for the two-bladed model rotor obtained from the Wake Geometry Program (as modified for this study) disclosed an apparent instability of the helical tip vortex. This instability, which occurred at axial distances from the rotor plane as low as 0.15 R , is illustrated in Figure 79. Here the computed axial and radial cocrdinates of tite tip vortex for several different time steps in the calculation are presente?. At the start of the computation (extreme left-hand parel of yigure 79), the wake is assumed to smoothly contract and to be composed of the nearand far-waie regions deseribed previously. That portion of the near wake in the imediate vicinity of the rotor plane vas obtinel from the generailzed experimental results of figures 53 throuph oy. The remainter of the initial vake vas obtained throwh extrapolation in mane= consistent with the classical conception of amoothly entracting rotor waxe in hover. As the calculation of the geometry procecta (i.e.. as the
number of time steps increases), the rotor rotates, new near-wake vortex elements are created, the far wakn moves downstreaiu, and the near wake di:itorts under both its own influence and thet of the far wake. The remaining panels of figure 79 illustrate the process by showing the wake as computed after 6, 12,10 , and 24 time steps. (For the nondimensional time used in this computation, $0.524,12$ time steps correspond to one revolution of the rotor.) The circles shown on the wake boundary cepresent the intercepts of the heiical tip vortices of both blades with the $\bar{r}-\bar{z}$ plane containing one of the blades as a reference. These circles would mark tice positions of the vortices that would be observed in photographs taken in a Now visualization experiment (such as conducted under this contract) where smoke was introduced into the rotor fiow field in the nonrotating system. It is evident from Figure 79 that the wake becomes unstable at soae distance below the rotor.

In view of the importance of the conclusion regarding the stability of the rotor wake, additional checks on the numerical procedures being used were made. In addition, available literature and data were reviewed in an att mpt to ottain supporting evidence. The numerical checks included the use of different nondimensional time interval; and other numerical integration techniciues such as the Runge-Kutta methat All results obtained were qualitatively the same.

The review of the iiterature disclosed an analysis by Levy and Forsdyke (Reference 22) which indicated that a a oubly-infinite, constantdiameter, helical vortex can te unstibie when the pitch angle of the helix is less than 0.3 radian. Keiix pich anglas for helicopter hover conditions lie in this critical arge. Although the ectial rotor wake in hover is a contracting wake, it is believed that the results from Reference 22 imply the possibility of a potential stability problem. Comparison of the unstable vake results obtained herein vith results of other analyses in which attexpt: "ere mide to cinfute whe geometry of rotor wakes in hover vas penerally inconclusive reca se of dirfering 3ssumptions and numerical techniques employed. For example, interpreta*ion of tine results of geference 21 (where vortex rings are used and the equations are integrated as in this study) are complicated by the general roll-up probiem of a incated vale noted earlier. However, a lack of convergence of certain areas of the wake was noted. In ieference 9 , an analysis empleying helini vortex cilaments but a fundame tally different numerical computation scheme is describet. Also, only two fully distoring revolutions of the vake are ansifered tofether vith a parinally constisined fai vake. Qualivative convergence tasts ure empoyed, and no me:ation of any oberve! wake instability is mede in connection vith the
limited results presented. In spite of apparent differences regurding wake stability, results of Reference 9 appear to agree well with results obtained in this study for the region of the wake near the rotor plane. This will be discussed further in a subsequent section.

Experimental flow vicualization data reviewed included that from References 1,10 , and 12 , as well as data obtained under this contract. The review led to the following observation :

1. The critical area of the wake where the instability was predicted was generally poorly defined.
2. In a large number of cases, evidence of a rolling of successive coils of the helical tip vortexes around one another (local roll-up) could be found. In those experiments where smoke was injected into the nonrotating system, such as the present study, this roll-up was inferred from an uneve: axial spacing of the tip vortexes and, more importantly, from the fact that downstream vortexes had radial coordinates greater than those for upstream vortexes.
3. Shortly after evidence of roll-up of the experimental wake was noted, further tracking or observation of the tip vortexes became exceedingly difficult. Thus, the roil-up may be the cause of the ponrly defined wake noted in Item I above.
4. In ro case was a swoothly contracting tip vortex observed over large enough axial distances below the rotor as to definitely preclude the possibility of an instability.

These observetions are substantiated by the sample photographs presented previous.y (Figure 30) and the additional photographs presented in Figures 80 through 82. A schematic interpretation of these photographs showing local roll-up of the tip vortex is shown in Figure 83. In sumary, then, the prediction of an unstable vake does not appear to be inconsistent with available evidence; further work should, however, be undertaken to derine the characteristics of experimental wakes in more detail in the critical areas. tandard flow visualization techiques appear to be of marginal usefulness of this purpose, and hot-vire and/or holograpile appronches should be considered.

Implications of Instability on Procedures Employed

The existence of a wake instability obviously complicates both the computation of wake geometries and the use of these geometries in the subsequent computation of rotor performance. Some aodificatior, of anticipated procedures was necessitated and those procedures that were ased are de:cribed in the follcwing paragraphs.

Close exarination of the geopetry results obtained indicated that altinoueh the computed wake did become unstable at moderate distances from the rotor, the portion of the wake in the immediate vicinity of the rotor plane (extreme near-wake) did converge to a reasonably stable answer, with the degree of convergence improving with increasing proximity to the retor. This presumably is due to the fect that one end of the wake is perfectly stable, being tied as it is to the blade itself. The convergence of the extreme near-wake, which was also obscrved in tise study of Feference 21 , is illustrated in the sample results presented in figures 4. and 8). In pigure 34 , the time histories of the radial and axial coordinates for two critical points in the wake of a two-bleded rotor are shown. These are the points of the wake lyins immediately below the blade ($\psi_{w}=180 \mathrm{deg}$ and 360 deg). In Figure 85 , on the other hand, the computed radial and axial coordinates at two different time steps are presented as a function of wake azimuth position. Experimental results are also shown in Figure 85 for reference purposes. Convergence of the extreme near-wake to a stable solution is sparent. ilso, results such as these led to the selecticio of 49 time steps in the wake geometry integration as being adequate fcs all *wo-bladed rotor computations. This corresponds to a computation of the wake for a time period corresponding to four rotor revolutions or eight blade passage cycles. for the six-bladed rotor, only 29 time step; (i.e., 1.61 rotor revclutions, 9.06 blade passage cycles) were $\mu \mathrm{ie}:$ because of machine storage liaitations. It was also necessury to reduce the time interval to 0.349 (20 dez) to avoid mathematical instability. In spite of the lower number cf time steps, reasonable nearwake converence was obtaines.

[^1]\[

\bar{z}_{T}=\left\{$$
\begin{array}{l}
k_{1} \psi_{w} \quad \text { for } 0 \leq \psi_{w} \leq \frac{2 \pi}{b} \\
k_{1} \frac{2 \pi}{b}+k_{2}\left(\psi_{w}-\frac{2 \pi}{b}\right) \text { for } \psi_{w} \geq \frac{2 \pi}{b} \\
\bar{i}=A+(1-A) e^{-\lambda \psi_{w}}
\end{array}
$$\right.
\]

Constants in the expressions were determined by emphasizing correct positioning of the vortices in the immediate vicinity of the blade (i.e., at $\psi_{W}=180$ deg and 350 deg for a two-bladed rotor). In an isolated case, where the above analytical expressions did not appear to represent a good fit to the computed geometry, the actual computed \bar{r}, \bar{z} values of the extreme near-wake were used and extrapolated in a reasonable manner to obtain the entire wake. By using these procedures, the necessity for employing computed wake coordinates for that portion of the wake which was predicted to te unstable was avoided.

Sample Wake Geometry-Blade Circulazin Computation

In view of the relative complexity of the procedures involved in computing the wake geometry and associated rotor performance, a specific example illustrating the various steps of the process is desirable and is presented below.

Fotor and Rotor Operating Condition

Number of Blades	2
Tist	-8 deg
Tip Speed	700 rps
Aspect Ratio	13.0
Nominal CT/G	0.095
Radius	2.23
Collective Piteh	10 dee

:roceldre:

1. $\because:$ imate the wake der \quad aing the experimental results of Ghare; '3 throurh is (see figure git).
\therefore Compute the tound circulation distribution using the experimental wake reometry from itep 1 as input to the Prescribed wake Program. the se result: are shown in firure 7 .

- Approximate the continuou: bound circulation distribution from Step 2 by :lve son:tant-circulation :egment: as shown in Figure 37. Note That the circula:ion peak (l'max) near the tip of the blade has been increasel in magnitude and decreased in radial extent in making the approximation. This is done in anticipation of the expected final circulation dictribution. The particular changes made were prompted by the ob:ervation that the theory generally predicted the vortex Irum the previcu: blade to lie closer to the rotor and farther outboarl than wa: ob:erved experimentally. The step changes in circulation, of course, imply the generation of trailing vortex Iflament: having sirculation strengths equal to the changes in bound circulation. The tip vortex is trailed from the $\bar{r}=1$ location, while the vortexes representing the inboard sheet trail from $\mathbf{r}=0.15$,). 5 , $2.4,1.75$, and 0.385 in this example.

4. 'faing the approximate bound sirculation distribution from Step 3 to specify the circulation strenths of the inboard and tip vortex rilaments and using the yeometry shown in figure 87 for the initial atartine whe, compute the corresponding distortions of the tip Vur*ex usint the nine ecmetry Program. Figure 29 shows the resultint listortions eomputel.
\because. Approximate the extreme nex-wake usime fquations (2) and (3) as hown in figure to.


```
ware =\\el.
```

6. Use the wake from Step 5 as input to the Prescribed Wake Proeram and compute a second estimate of the bound circulation. Compare the new circulation distribution with the approximation used in step l (see Figure 89). If differences are within the tolerances incicated in Appendix II to te acceptable (as is the case in Figure 89), then the wake geometry and circulation distribution solutions are considered compatible; if not, a further iteration is required starting with Step 3.

MODEL BLADE AIRFOLL DATA

The airfoil data used in the theoretical calculation were based on available two-dimensional, low-Reynolds-number data adjusted, through a cyntheisution procedure, to provide correlation between the test results for the untwisted two-bladed rotor and the results of the Blade-Element Momenium Aralysis. Ferformance results were first compared on $\mathrm{C}_{\mathrm{T}} / \sigma$ versus $C_{Q} /$ d plots for the three tif Mach numbers tested to determine the general quality of correlation between test and this particular theory. More detailed comparisons were then made on C_{T} / σ versus θ_{75} and C_{Q} / σ versus ${ }^{0} 75$ plot: : 0 estimate the relative magnitude of change required in the sirfoil lift curve slope, stall angle, and drag data to improve correlation. Approximately live iterations were required at each tip Mach number condition to achieve acceptable correlation in both the thrusttorque results and the thrust-torque-collective pitch results. The final synthesized airpoil data generated (Figure 90) were then used in all other theoretical calculations. In comparing these data with the original twodimensional duta, only small changes were noted. The synthesized data wave generally higher lift curve slopes, higher maximum lift cofficients, and lower profile drag coefficients. The differences are attributed to differences in Reynolds number and surface conditions for the blades te.ited.

PVALUAIICN FAKE CE METR: PROGRAM
"iftes 11 thrurh of compare the predicted radial and ex al courtintes of the ip vor*ex with those mesured experimentally. The expormenval sirve; show were obtained from the faired curves given in the encralize: wace charts of fisures 53 through 2 . The basic trends or *be experimer*al ta* have already been discussed in the section
 reteral atility of the theory to presict the observed results is considered mere.

Fxumation of the resulte in Fifures 91 throun 95 teats to the follvint sencral otservaxions refarting the accuracy of the theory:

```
2. Te sheory predic:s.oviue: or kp (the averace slope of the ET curve
    bexueen - \psi, - 位, efu{valen:ly, the nondimensional axibl
    re:wxy which re aiguticankly lower xhan those mensured. As a
```

result, the tip vortex from one blade is predicted to pass closer to the following blade than is observed experimentally. This is particularly true for the two-bladed zotor results, where the predicted vortex-following blade distance is generally about one-half of the measured value. For the six-bladed rotor condition shown in Figure 93, the predicted value of k_{1} is actually positive, with the result that the vortex passes above the following blade instead of below the blade as is observed. In this case, the predicted and measured vortex-to-following-blade distances are about the same.
2. The predicted rate of contraction of the tip vortex in the immediate vicinity of the rotor is somewhat less than that mea:ured. As a result, the predicted radial pusition of the tip vortex at the important wake azimuth angle of 360 deg/o (i.e., in tie vicinity of the following blade) is approximately 0.0 ? R farther outboerd.
3. The analysis predicted accurately the experimental valucs of k_{2}, the average slope of the $\overline{\bar{z}}_{T}$ curve for $\psi_{w}>360$ deg/b.
4. The analysis appears to be generally capable of predicting the changes observed in the wake geometry when various rotor or flifht condition parameters are altered; e.g., the greater k_{2} and increased contraction observed with increased thrust (Figures 91 and 93).

The results obtained from the Wake Geometry Program for the fullscale CH-53A rotor were also compared with analytical and experimental results presented by Clark in Reference 9. The comparisrn is shown in Figure 96 , where the tip vortex axial and radial coordinates are presented versus vake azimuth angie. Although some difference exists in the rotor thruet levels, the comparisons can be considered quite favorable, at least until evidence of wake instability is noted in the results of this study at the larger values of ψ_{w}.

In sum wry, the wake geometry analysis developed herein prediets many of the qualitative characteristics observed in rotor wakes. The quantitative accuracy of the analysis is liaited by one major shorweomin; namely, the inability to predict accurately the average axial transport velocity of tip rortex element, between the time vhen it is semerated and the time vhen the element passes the nex: blase. Althourt the exact reason for this discrepancy is no* known at this time, the neet ror replacement of the discrete rilamen* wake model by a continuous theet
model in the vicinity of the blade is probably implied. Consideration should also be given to reducing the computing time of the curreit Wake Geometry Prcgram so that a more thorough assessment of some of the other assumptions made in this study can be considered. A significant reduction in time could be achieved by incorporating tise symmetry features of the hover mode of operation.

EVALUALION OF RERFORMAKE METHODS

The theoretical performance methods were evaluated by comparing the predicted hover performance results of the model rotors and two fullscale rotors wi.th test results. The full-scale rotors selected were the six-bladed Sikorsky $\mathrm{CH}-53 \mathrm{~A}$ and the two-bladed Bell MU-1A. The discussion of the performance results follows.

Model Rotor:

Performance Predicted by Uncontracted Wake Methods

The performance results of the Mosentum Analysic, coldstein-Lock Analysis, and the Prescribed Classical Wake Analysis are presented in Figures 97 through 102. These methods do not account for vake contraction and will hereafter be termed uncontracted wake methods. They are considered soparately from the contracted wake methods (Prescribed Experimertal Wake Anslysis and Prescribed Theoretical Wake A.slysis) because (l) they represent the state-of-the-art prior to the consideration of contracted wake erfects, ind (2) due to their operational simplicity and minimal computer cost requirements, they vere applied to a greater number of test conditions. The experimental data points in these rigures represent the results of the fairings of the collec*ive pitch data presented in pigures 15. through 19. The performance tesults for varying numbers of blades are shown in figures 97 and 98 for the -8 -degree-twist, 18.2 -aspect-ratio rotor. The predicted performance of all methods is in good agreement with the experimental results at low thy us* levels but becomes increasingly op:tas*ic vith inc-easing thrust and number of blades. The results of the xaree unistortei vixe methods agree closely for sour, six, and eight blates. Fr two blates, some separation of the presicted results at the hich arts: ievels is evisen: The aforementioned results vere found to be senern:iy true for all the rotors sested, and the trerts with thrust sero! so: :umber of blates are she same as have been cited for ruil-scale - Not : in fectence 1. Correlation results for rotors of and -15

two and six bledes. It should be noted that, as discussed previously, the airfoil data used was synthesized by matching the results of the Momentum Analysis to the test results for the two-bladed, zero twist rotor. For six blades, the predicted performance is increasingly optimistic with decreasing blade twist (e.g., compare results from Figures 99 and 100 at $C_{T} / \sigma=0.075$). In Figure 101, the results for the low-aspect-ratio blades (AR $=13.6$) are presented. Slightly improved correlation between theoretical and experimental results compared to that of the high-aspectratio blades ($A R=18.2$) of figure 97 is indicated. Since for the same number of blades and rotor radius, rotor sclidity increases with decreasing aspect ratio, this indicates that the correlation imoroves with increased rotor solidity when such increases result from varying aspect ratio. This is oppoeite to the correlation trem established when solidity was increased by varying the number of blades. The dependence of the correlation on the manner in which solidity is varied (i.e., number of blades versus aspect ratio) also agrees with the conclusions of Reference 1 based on full-scale rotors. Finally, the smail improvement in correlation of the predicted and measured model performance results at a tip speed of 52c fps (Figure 102), noted for the two-bladed rotor, also parallels the full-scale results of Reference 1 , in which the correlation is shown to improve with decreasing tip Mach number.

It is thus concluded that the discrejancies between the experimental performance and the performance predicted by the uncontracted wake methods generally exhibit the same trends for the model rotor as they do for fullscale rotors: the deterioration in performance prediction with ir reasing number of blades, blade loading, and tip Mach number. In addition, a tendency for improved agreement with increased blade twist was noted with the molels. These discrepancies are believed to be primarily the result of the assumptions made in these methods regarding the rotor wake geonetry and the impact which such assumptions have on the proximity of the operating conditions of the tip sections to stall.

Integrated Performance Predicted by the Contracted Wake Analyses

The performance results from the contracted vake methods (i.e., the Prescribed Experimental hake Anniysis and the Prescribed Theoretical wake Analysis) are compared with the tes: reenl:s in Figures 103 through 106. Also included for comparison are the results from one of the uncontracted vake analyses (Goldstein-Lock Analysis) presented previously. The Coldstein-Lock Analysis mas seiected because it is a vitely used hover performance amalysis. The results for all conditions amalyed using the contracted vake methods are included in these Micures. Application of the

Proccribed Theoretical Wake Analysis to a six-bladed model rotor was iimited to one condition because of the computing time requirements of the program at this time. For consistency, the generalized experimental wake results of Flgures 53 through 65 were used to obtain all Prescribed Experimental Wake method results shown in this set of figures. The sensitivity of predicted performance to variations from the generalized wake courdinates was significant and will be discussed later in this section. The performance predicted by the prescribed contracted wake methois generelly correlates well with the experimental model rotor results, particulerly for the six-uladed rotors. Reasonable correlation with collective piten also exists except for the low-aspect-ratio blades (Figure 105), for which all of the theories predict higher thrust and torque than measured for a given pitch. Fxcept in one instance, the thrust based on the theoretical wake is consistently lower than that predicted using the experimental wake. This is due to the previously mentioned prediction of the tip vortex as being nearer the blade than was observed from experiment. The prescribed contracted wake methods appear to have one distinct advantage over the uncontractad wake methods: the ability to predict more accurately the performance trends with increased number of blades and biade loading ($\mathrm{C}_{\mathrm{T}} / \sigma$). As shown previously in Figures 97 through 102, the Momentum, Goldstein-Lock, and Prescribed Classical Hake methods all predict optimistic performance for high thrust - rels and high number of blades. For the six-bladed rotor operating at the high thrust condition; the results of the Prescribed Experimental Wake Analysis based on the generalized wake indicate reduced performance relative to the Goldstein-Lock results and improved correlation with the measured data.

Section Characteristics

Some insight into the reasons for the above-mertioned changes in predicted performance may be gained from Figure 107, where the theoretical sranvise distributions of axial induced velocity, section angle of attack, thrust, and torque are compared. The predicted distributions correspondinf to the six-bladed rotor of figures 97 and 103 operating at a lo-degree collective pitch setting were selected for this ecmparison. The influence of the experimental tip vortex geometry on the induced velocity distribution and the resulting effects on the angle of attack, thrust, and tcrque distributions are apparent in Figure 107. For low thrust levels, number of olades, and tip Mach numbers, the distributions of the uncontracted wake methods are generally compensative betveen tife inboard and tip regions of the blades as far as integrated performance is concerned. Hovever, at condition such as whot of this figure, the contracted wake
geometry considerations result in a decrease in integrated performance relative to that predicted by the uncontracted wake methods. In the real wake, the tip vortices are positioned much closer to the tip path plane than is assumed in the Goldstein-Lock and Prescribed Classical Wake analyses. As the number of blades increases, due to the reduced separation between blades, each blade is closer to the tip vortex generated by the blade ahead, and increased aerodynamic interfcrence results. The circuiation strength of the tip vortex also increases with the increased thrust level associated with high numbers of blades. This, coupled with the close proximity of the preceding blade's if vortex to the blade, results in increased local angle-of-attack values in the blede tip region due to the uppiow generated by the contracted vortex. It should be noted that the predicted performance deterioration is attributable to deterioration in integrated thrust rather than torque. In fact, the predicted torque based on the experimental wake for the subject test condition is slightly less than the torque predicted by the undistorted wake analyses. As shown in Figure 107c, this is caused by the reduction in induced torque.

Performance Sensitivity to Tip Vortex Geometry

As mentioned previously, the performance results were found to be sensitive to certain wake parameters. The sensitivity results are summarized in the following listing, in which the wake parameters and the their primary influence on the wake gecmetry ere presented in decreosing order of importance:
k_{1} and k_{2} (the axial position of the tip vortex)
A and λ (the radial position of the tip vortex)

$$
\begin{aligned}
& K_{1_{\bar{r}}=1} \text { and } K_{2_{\bar{r}}=1} \begin{array}{l}
\text { (the axial position of the outer region of } \\
\text { the vortex shect) }
\end{array} \\
& K_{1_{\bar{F}}=0} \text { and } K_{2_{\bar{r}}=0} \begin{array}{l}
\text { (the axial position of the inner region of } \\
\text { the vortex sheet) }
\end{array}
\end{aligned}
$$

The axial position of the tip vartex, defined by k_{1} and k_{2}, was found to have the doninant influence on the performance results. To illustrate the sensitivity to the tip vortex axial position, the effect of variations in k_{1} on hover performance is shown in Figure $1^{\text {n }}$. k_{1} was varied so as to aially displace the tip vortex froa the generalized vake position by
$\pm 1 \%$ of the rotor radius ($\pm 1 \% \mathrm{R}$) at and beyond the wake azimuth position equal to the blade spacing*. This effectively moved the tip vortex $1 \% \mathrm{R}$ closer to or farther from the following blade. The magnitude of the changes approximately represents the accuracy of the tip vortex generalization. The performance results show increasing sensitivity with number of blades (two versus six in Figure 108). To analyze these resuits in greater detail, distributions of the blade section characteristics were compared. For example, the blade airload distribution and tip vortex positions are shown in figure 109 for the lettered conditions indicated on Figure 108 . (Note that the nominal conditions $A-D$ are the ones for which tip vortex streamlines were presented in Figure 70.) The larger change in loading distribution for the six-bladed rotor conditions (C and $C^{\prime \prime}$; D and $\mathrm{D}^{\prime \prime}$) is due to the increased proximity of the tip vortex to the blade. Also evident in this figure is (1) the typical change in the characte: of the loading in the tip region with varying number of blades and thrust level, and (2) the radially outward movement of the peak loading with increased number of blades which corresponds to the movement in the radial position of the tip vortex.

Predicted performance was fairly insensitive to changes in A and λ providing they were changed in combination rather than independently so as to maintain the radial coordinates of the near-wake portion of the tip vortex within the experimental accuracy -- particularly beneath the following blade. As mentioned previously, $A=0.78$ was selected in the wake generalization to curve-fit the near-wake radial coordinates when used in combination with the specific λ values given in Figure 62 as a function of C_{T}. For a given test condition, there are other combinations of A and λ that would fit the near-wake data within the experimental accuracy. Howeve-, the performance was relatively insensitive to such changes even though the far-vake contraction varied considerably (0.78 to 0.72). Least senstivity resulted from variations of the inboard wake (vortex shieet). For example, a 10% change in the axial coordinates of the vortex sheet for a typieal condition resulted in less than a 1% change in thrust and torque for a two-bladed rotor and less than a change for

[^2]a six-bladed rotor. In summary, rotor performance becomes more sensilive to wake geometry variations as number of blades and/or thrust level is increased. Performance is particularly sensitive to the axial position of the tip vortices due to their close proximity to the blades. This sensitivity of blade loading to small changes in tip vortex position predicted by the Prescribed Wake Analysis confirms certain phenomena observed on full-scsle rotors. This will be discussed in the following section.

Full-Scale Rotors

The theoretical methods were applied to compute the hover performance of the six-bladed, Sikorsky CH-53A rotor. Twodimensional airfoil data, supplied by Sikorsky, were used in all calculations. In figure 110, the theoretical performance results are compared with test results from the Sikorsky whirl stand shown in Figure 7. The absolute accuracy of thrust at a given power level measured on this facility is estimated as $\pm 2 \%$. The test data presented in Figure 110 have been corrected for ground effect and whirl stand interference. As shown in this figure, the performence predicted by the Momentum, Golistein-Lock, and Prescribed Classical Wake analyses (uncontractei wake metinods) is increasingly optimistic with increasing thrust level, which is consistent with the previously recognized trend. On the other hand, the results of the Prescribed Experimental Wake and Prescribed Theoretical Wake analyses (contracted wake methods) are slightly pessimistic riative to the experimental data. The generalized wake coordinates from the model rotor test were used in the Prescribed Experimental Wake Analysis to obtain the full-scale CH-53A performance results. The performance corresponding to small deviations of the tip vortex geometry fram the generalized ecordinates, within the experimentai wake accurccy, is presented in Figure lil. It is shown that the performance veriations associated with small changes in wake geometry are significant. In ract, as indicated, it was possible to obtain correlation with the test data by displacing the tip vortex only $\frac{k}{2} \%$ farther away from the rotor inse.

The section angle of attack distributions predicted by the various theoretical methods for the 12-degree collective pitch condition of Figure 110 are presented in Figure 112. The prescribed experimental vake results again exhibit large angle-of-attack increase near the tip caused by the strong influence of the contracted tip vortex. The angle-of-attack distribution in the tip resion of the blate has been sibstantiated on the sikorsky wirl stard in a recent test in which pressure eeasurements vere recorded at three stations over the cuter 15% of the
blade. It was found that with minor adjustments to the generalized wake coordinates, the angle-of-attack distribution and total rotor performance could be predicted within the experimental limits of the test data. This emphasizes the inadequacy of the uncontracted wake methods for predicting the distribitions of the performance characteristics. Also, although this is encouriging insofar as the accuracy of the Prescribed Experimental Wake Analysis is concerned, additional pressure measurement data sufficient in extent to obtair the complete angle-of-attack distribution along the blade for various rotors and operating conditions would obviously be desirable to permit further evaluation of this method and refinement or the eeneralized wake model. Examination of the theoretical radial loading distributions associated with the operating conditions of Figure 112 revealed that the outer 10% of the blade generates approximately one-third of the blade lift according to this theory, compared to only one-quarter of the lift according to the Goldstein-Lock theory. This comparison implies an extreme sensitivity or rotor thrust to the aerodynamic characteristics over the blade tip region and the need for an accurate simalation of the airfoil characteristics and velocities induced by the wak. in this area. The assumption of two-dimensional flow over the blade span has been shown in Reference 24 to be questionable in the blade tip region. The magnitude of three-dimensional ccrrections and their influence on the results predicted by the prescribed wake analyses remain to be determined.

The theoretical methods were also applied to compute the hover performance of the two-bladed Bell KU-lA rotor. Again, the Blade ElementMomentum, Golistein-Lock, and Prescribed Wake methods were used. Twodimensional airfoil data, synthesized by the Bell Helicopter Company, were used for the NACA 0015 airfoil section in all calculations. In Figure 113, the theoretical performance results are compared with test data from a tethered aircraft test reported in Reference 25 (whirl-stand data for isolated rotor performance was not available for two-bladed rotors). For the test data shown, the engine shaft horsepower was reduced by 15% to account for tail rotor, transmission, and accessory power losses. the wake data used in the prescribed experimental wake calculations vere obtained by interpolating the generalized rotor wake data to the appropriate twist and thrust levels. The theoretical results, including contracted wake results, are all optimistic relative to the experimental results. It is somevhat uncertain, for this rotor, as to whether the performance discrepancies are attributable colimitations of the theoretical methods, so inaccuracies in the estimstion of the power lossas, and or to the synthesis of the airfoil data. It is thus sucgested that the results presentet in Figure 11? be considered preliminary intil other troblates rotors are analyied.

The sensitivity of blade loading to small changes in the tip vortex position tends to confirm vortex interierencr as the source of certein phenomena observed on full-scale rotors. As explained in Reference 1 , the presence of a small amount of ambient wind can produce changer in the tip vortex position which, at certain conditions, are reflected in the rotor characteristics as vibratory flapping and tip stall. Since the publication of that reference, blade tracking problems at high thrunt levels (greater than normal operating levels) have been related to vortex interference effects. The Prescribed Wake Program appears io be of potential value for analyzing these phenomena. However, for increasing number of blades, the problem associated with the sensitivity of the predicted resuits to minor wake geometry variations is recogni ?d. With further experience with the method, and through small: sy:tematically developed adjustments to the generalized wake model presented herein and/or further refinements in the Wake Geometry Program, it may become possible tc consistently predict hover periormance to a high degree of accuracy with the method in its present form. However, until this is accomplished, further investigation of three-dimensional tip effects and unsteady wake effects asscciated with both ambient wind variations ard the apparent instability of tise far wake appears warranted.

1. Model rotors of the scale tested can be successfully used to obtain performance and wake geometry data which are both systematic and, more importantly, indicative of those characteristics observed for fullscale rotors. The use of an indoor, small-scale facility greatly reduces the cost of acquiring such information.
2. The model rotor wake geometry for the region directly beneath the rotor (i.e., within approximately one-fourth of the rctor radius) can be represented by simple generalized equations which faci:itate the rapid estimation of rotor wake coordinates for wide range or rotor designs and operating conditions. The generalization was based on the folloring observations:
a. The rate of descent of an element of the tip fortex from a blade is substantially constant prior to its passage beneath the following blade. This axial velocity increases approximately linearly with increasing blade loading and decreases slighty with increasing blade twist. Within the experimental accuracy of the data, the axial velxity is insensitive to variations in number of blades.
b. The axiai velocity of a tip vortex element after the passage of the following blade is increased to new, relatively constant value. This velocity increases vith increasing disc loading in a manner proportional to the monentum inflow velocity. The constant of proportionality is approximately 1.4 for rotors with untwisted bledes and decreases with increasing twist.
c. The radial position of tip vortex element decreases in a decaying exponential maner. The rate of decrease (or contraction) appears to be primarily determined by rotor disc loading and is greater with increasing disc loding.
A. The inboard vortex sheet from each blade is fairly linear with railal position at a specific vake azimuth location. The axial velocity of the sheet increages with increasing disc loading and, to z lesser extent, vith blaie twist. The rate of descent of the vuter portion of the rortex shett $i s$ approximately twice *hat stserve: for the :ip rortex following the passage of the next blate.
e. Wake geometry is insensitive to inciependent variations in arpent ratio and tip speed. The infiuence of number of blades is limited to the establishment of the wake azimuth angle at which the wake axial descent velocities are observed to increase significantly.
3. The stabillty of the experimental wake decreases with increasing distance from the rotor, indicating that the ciassical concept of n smoothly contracting wake may be incorrect.
4. Attempts to develop an analytical method for predicting the contracted tip vortex geomet:y based upon the interaction of dis:crete vortex fllaments were partially successful. The method prejicts the general features of the tip vortex and the qualitative variation of these features with changes in rotcr or flizht condition parameters. ifowever, the position of the tip vortex shed by one blade relative to the rollowing blade was not accurately predicted by the analysis. Compared to the experimental observations, the predicted vortex was generally cloner to the blade and farther outboard. In addition, the contracting tip vortex was predicted to become unstable at moderate dis. nces below the rotor plane, thus complicating the problem of predicting the wake pometry beyond the near-wake region. Available experimental evilence appeara *o substantiate this prediction.
5. Rotor hover performance methods which assume that the blades are lifting lines and that the rotor wake is uncontracted give generally comparable performance predictions. As was noted for full-scale rotors, the accuracy of these methods in precictirs model zotor performance decreased as the number of blades, blade loading, and tip Mach number increased. In adition, the model rotor correlations indicated a decrease in accuracy when the twiet of the rotor blades under consideration was reduced. The partial success achieved with these methods in the past results from compensating errors in the blade loading distributions.
6. The elimination of the uncontracted vake assumption through the use of generalized experimental wake data significantly improves the accuracy of performance characteristics predicted for model rotor conditions for which the uncontracted wake methods exhibit mor shortcomines (i.e., for conditions vith increasing number of blades and thrust levels). Application of the experimertal vake methad to full-scale rotors, usine model rotor vake data, yielded similar ifaprovements for the limitet number of conditions examined. In addition, the method preticta blade sparnise angle-of-attack distributions which are creaty firferent and more realistic than those predicted using uncontracted vake atilyses.
7. The use of predicted contracted wake geometries in computing rotcr performance led generally to reasonable but more conservative (lower thrust for same pwer) estimates relative to those obtained using the generalized experimental wake results. This was mainly due to the prediction of a smaller axial distance between the tip vortex and the following tlade than was observed experimentally.
8. The performance predicted on the basis of lifting line theory using a realistic contracted wake is very sensitive to small changes in wake geometry, particularly for rotors for which the tip vortex is positioned very close to the following blade. While the generalized wake peometry results presented herein are believed to be based cn reascnable farings of the data available, in view of this sensitivity, small systematic refinements to the fairings may be required if consistentiy accurate performance predictions are to be achieved.

RLCOMERDATIONS

1. Because of the more accurate definition of the radial dietributions of blade section angles of attack which they provide, contracted wake analyses should be used to predict hover performance. They should be particularly useful in evaluating and developing improved blade tip designs.
2. In lieu of an accurate wethod for predic ...b the geometry of a contracted wake, the Prescribed Wake Analysis, together with the generalized experimental wake geometry charts, should be employed.
3. Eeforts to obtain accurate wake geometry data from full-scale rotors should continue to substantiate further the applicability of generalized model rotor wake geometry data to full-scale rotors.
4. Neasurements of blade pressure distributions should be outained to provide experimental data for detailed comparisons with predicted distributions based on the generalized wake information.
5. An experimental investigation, employing model rotor flow visualization techniques, shuild be conducted to obtain systematic rotor performance and wake geometry data for blade designs with taper, nonlinear twist, and promising iip shapes.
6. Investigations should be undertaken to examine in detail the stability characteristics of the wake of hovering rotor.
7. Further work should be undertaken to reduce the computing time required by the analysis developed herein for predicting the geometry of the rotor wake. This will greatly facilitate further studies designei to improve the quantitative aceuracy of the analysis.

Figure 2. Rotor Test Rig.

Sigure 3. Schematic Crosa Section of notor Test Rig.

Pigure 4. Rotor Hub.

\therefore
Figure 5. Schematic of Model Rotor Blade Construction.
'

Figure 6. Flow Visualization Grid.

Figure 3. Schematic of Rotor bise Stricture.

Figure 9. Jample Flow Visualization Photograph.
comes,
TIP VORTEX (BLADE 2)
$\leq=$

$$
\theta_{1} 0^{\circ} \text { AR } 18.2 \text { UR } 700 \mathrm{FPS} \quad C_{T}: \ldots 0.08 \quad z_{C} R \quad 3.5
$$

(3) $\%=0^{\circ}$ to 60°

Figure 11. Sequence of Photographs Showing
Time Mistory of Wake -- $b=2$.

$$
\begin{array}{lllllllll}
0_{1} & \infty & A R & 18.2 & \text { QR } 700 \mathrm{FPS} \quad C_{T}{ }^{\prime \prime} & 0.08 & Z_{C} \cdot \mathrm{R} & 3.5
\end{array}
$$

($\quad 90^{\circ}$

(1) 120°

$4-150^{\circ}$

(b) $\psi=29^{\circ}$ to 150°

Figu: 11. Conclude:.

Figure 13. Inboard Vortex Sheet Coordinates Measured From Photos of Figure 11.

(a) $\Omega \mathrm{R}=700 \mathrm{FPS}$

Figure 15. Experimental model Rotor Rerformance -- $\theta_{1}=0^{\circ}$, $A R=18.2$.
Z_{G} 'R-3.5

(b) $\Omega R=600 \mathrm{PPS}$

Figure 15. Continued.
$Z_{G}{ }^{\prime} \quad 3.5$

(e) $\Omega \Omega \equiv 525 \mathrm{FPS}$

Figure 15. Concluded.
$Z_{C} /$ R 35

(a) $\mathrm{nR}=700 \mathrm{PFS}$

Figure 16. Experimental Model Rotor Performance --$\theta_{1}=-8^{\theta}, A R=18.2$.

(b) $A R=525 \mathrm{PPS}$

Figure 16. Concluded.

$$
Z_{G} / R \quad 35
$$

(a) $\cap \mathrm{R}=700 \mathrm{FPS}$

Pisure 17. Experimental Nodel Rotor Performance --
$\theta_{i}=-16^{3}, A 9=18.2$
$Z_{G}{ }^{\prime} \mathbf{R} \quad 3.5$

(b) $\Omega A=600 \mathrm{PPS}$

Pigure 17. Continued.

(c) $\Omega R=525 \mathrm{FPS}$

Figure 17. Coneluded.

$$
Z_{C} / R \quad 35
$$

(a) $\Omega \mathrm{R}=700 \mathrm{FPS}$

Figure 18. Experimental Model Rotor Ferformance --
$\theta_{1}=-8^{\circ}, A R=13.6$.
$z_{6} / R-3.5$

(b) $\Omega R=525 \mathrm{FPS}$

Figure 18. Concluded.

Figure 19. Typical Erfect of Collec*ive Pitch ofi Model Rotor Performance.

Fizure 20. Typical Experimental Mudel Rotor Perioran-ce Expressed in Terms of Thrust and Torque Coefficients.

$$
\theta_{1}-8 \text { DEG } \quad Z_{G} / R \quad 35
$$

Figure 21. Effect of nspect Retio on Expericental Performance of Model Retcrs Having a Solidity of 0.140.

AR 18.2 $\quad \Omega R=700 \mathrm{FPS} \quad Z_{G^{\prime}} R=3.5$

Fieure 2?. Effect of Blade Tuist on Experimental Model Rotor Ferformance.

Figure 23. Effect of Tip Speed on Experimental Model Rotor Performance $\theta_{1}=0^{\circ}, A R=18.2$.

$$
z_{G} / R-3.5
$$

Figure 24. Effect of Tip Speed on Experimental Model Rotor Performance --$\theta_{1}=-16^{\circ}, A R=18.2$.

Yirure P. Rrfect of Rotor Height Above the Croum on Rotor Thrust Alegmen*a*ion.

$$
0_{1} 0^{\circ} \text { AR } 18.2 \quad \Omega R \quad 700 \mathrm{fPS} 0_{7 S} 8^{\circ} \mathrm{C}_{\mathrm{T}} O \sim 0.06 \quad z_{G} \text { R } 3.5
$$

$$
\therefore 0^{\circ}
$$

A -30°

Figure ?7. Sequence of Photographs showing time history of wake -- b $=4$.

$$
{ }^{\prime \prime} \delta^{\circ} \text { AR } 18.2 \text { IIR } 700 \mathrm{FPS} \theta_{7 S} 8^{\circ} \mathrm{C}_{\mathrm{T}}{ }^{\prime \prime}-0.05 \mathrm{Z}_{G} \text { R } 3.5
$$

$$
\theta_{1} 0^{\circ} \text { AR } 18.2 \text { IRR } 700 \mathrm{FPS} \quad \theta_{1 S} 8^{\circ} C_{T} i \sim 0.043 \quad Z_{G} \quad 3.5
$$

$\therefore 0^{\circ}$
(1) 15°

$\therefore-30^{2}$

Pieure 29. Sequence of Photographs thowing time Mistory or äke --t \equiv.

$\therefore 0^{\circ}$

(i) 30°

$\therefore-60^{\circ}$

(a) $\psi=0^{\circ}: 060^{\circ}$

Figure 30 . Sequerise of Phtugraphs Showing hake Irstability.
(1) 90°

4 120°

(b) $\psi=90^{\circ}$ to 120°

Figure 30 . Concluded.

Figure 31. Photographs Showing Effect of Thrust on Wake Geometry -- $b=2$.

Figure 32. Typical Wake Flow Time Exposure Photograph.

Figure 33. Photographs Showing Effect of 'fwist on Wake Geometry -- b $=2$.

$\begin{array}{ll}b=6 \\ \frac{c_{T}}{c} & 0.0690 \\ c_{T} & 0.00725\end{array}$

$b=8$
$\frac{C_{T}}{T}=0.0597$
$c_{T}=0.00836$

Figure 34. Pnotographs Showing Effect of Number of Blades and Thrust Level on Wake Geometry.

${ }_{1}$	-8	SIR	700 FPS	$C_{T} \sim 0.0084$	$C_{T} / 0 \sim 0.06$	$Z_{G}{ }^{\prime}$	3.5	ψ

$A R=13.6$
$b=6$

Figure 35. Photographs Showing Effect of Number of Blades on Wake Geometry for Rotor Solidity of 0.140 .

Figure 36. Effect of Tip Speed on Waxe Geometry -- b $=2$.

$$
\theta_{1}-8^{\circ} \quad A R-18.2 \quad \frac{Z_{G}}{R}-3.5 \text { \& } 0
$$

Figure 37. Photographs Showing Effect of Tip Speed on Wake Ceometry $-\mathrm{b}=6$.

111
$H_{1}-8^{\circ} \quad A R \quad 18.2 \quad!R \quad 700$ FPS $\quad H_{7} 5^{\circ} 10^{\circ} \quad Z_{G} R \quad 1.67 \quad \theta^{\prime \prime} \quad 0^{\circ}$

6
1
0
i
ヘ17200020

Figure 40. Photngraph Showing Effect of Ground on Waxe Geometry.

(a) $\psi_{\mathrm{w}}<360^{\circ}$
Figure 41. Effect of Thrust on Tip Vortex Coordinates -- $b=2$.

Figure 42. Effect of Thrust on Tif Vortex Coordinates -- b $=6$.
$A R=18.2 \quad \Omega R=700 \mathrm{FPS} \quad C_{T^{\prime} r} \sim 0.051 \quad Z_{G} / R=3.5$

Figure 43. Effect of Number of Blades on Tip Vortex Coordinates
Figure 43. Effect of Number of Blades on Tip Vortex Coordinates
for Constant Blade Loading $\left(C_{\mathrm{T}} / \sigma\right)--\theta_{1}=0^{\circ}$.
$\sin \cdot$

Figure 44. Effect of Number of Blades on Tip Vortex Coordinates
for Constant Blade Loading $\left(C_{T} / \sigma\right)-\theta_{1}=-8^{\circ}$.
$H_{1} \quad 0 \quad A R-18.2 \quad \Omega R \quad 700 \mathrm{FP}: \quad C_{T} \sim 0.0034 \quad Z_{G} \mathbf{R} 3.5$

Figure 45. Effect of Number of Blades on Tip Vortex Coordinates for Constant Disc Loading (C_{T}).

Figure 46. Effect of Twist on Tip Vortex Coordinates -- $b=2$.

Figure 46. Concluded.

Figure 47. Effect of Twist on Tip Vortex Coordinates -- $b=6$.

Figure L\& Effect of Aspect Ratio on Tip Vortex Coordinates for Roior Solidity of $0.1^{1}+0$.

Pigure 49. Effect of Tip speed on Tip Vortex Cocrdinates -- $b=2$.

124

Figire 49. Conciuded.

Fミgure 50. Effect of Tip Speed on Tip Vortex Coordinates -- b $=6$.

Tigure 51. Effect of Whirl Stand Conditions on Tip Vortex Coordinates $-\mathrm{D}_{\mathrm{b}}=2$.
$A_{1}-8^{\circ} \quad$ AR $18.2 \quad \Omega R \quad 700 \mathrm{FPS} \quad \mathrm{C}_{\mathrm{T}} \mathrm{O}^{\prime} \sim 0.10 \quad \mathrm{C}_{\mathrm{T}} \sim 0.0035$

Figure 5l. Concluded.

Figure 52 . Effect of Whirl Stand Conditions on Tip Vortex Coordinates $-b^{-}=6$.

OATA	7_{G} 'R•3.5
NO. OF 3LADES	
0	2
\square	4
Δ	6
0	8

UNFLAGGED SYMBOLS:	SIR - 700 FPS
SINGLEFLAGGEDSYMBOLS:	$\Omega R=600$ FPS
DOUBLE FLAGGED SYMBOLS:	$\Omega R-525$ FPS

¥iftre \quad, 7. Fixperimental ky inke Parameter for Model potors.

$$
Z_{G}^{\prime} R-3.5
$$

UNFLAGGED SYMBOLS:
SINGLE FLAGGED SYMBOLS:
$S \Omega R=700 \mathrm{rPS}$
$\Omega R-600$ FPS

Figure Elt. Experimental k, niake Pmometer for Madel Rotors $-\theta_{1} \equiv U^{3}, A R \equiv 18.2$.

$$
z_{C} R-3.5
$$

UNFLAGGED SYMBOLS
SINGLE FLAGGED SYMBOLS
DOUBLE FLACGED SYMBOLS:

18R . 700 FPS
IIR = 600 FPS
IIR S25 FPS

*íure ${ }^{2}$ a. hiaperimental k, inake parameter far Motel Rotors $\cdots \theta_{1}=-\theta^{\theta}$, NE $=2_{3} \rightarrow$.
Z_{G} 'R 3.5

Pigire 50. Experimental k_{2} mike Parameter for
Model Rotors $-A_{1}=-16^{\circ}$, AR $=19.3$.

$$
z_{G} R=3.5
$$

UNFLAGGED SYMBOLS:
SINGLE FLACGED SYMBOLS:
DOUBLE FLAGGED SYMBOLS:
$\Omega R=700 \mathrm{FPS}$
$\int 18=600$ FPS
IR = S2S FPS

Ficire :. Inperimen' l ka make Farame*er for

$Z_{C} \cdot R=3.5$

DATA	NO. OF BLADES
0	2
0	4
Δ	6
0	1

UNFLAGGED SYMBOLS: IVR 700 FPS
SWCLEFLAGCED SYMBOLS: IR 600 FPS DOUBLEFLAGCEDSYMBOLS: ITR 325 FPS

(a) $\phi_{i 0}=0^{\circ}, 45^{\circ}, 40^{\circ}, 90^{\circ}$.

Figure 53. Experimenta: inake Retinl Coortintier sor

(b) $\psi_{i=}=190^{3}, 270^{\circ}, 360^{\circ}, 540^{\circ}$.

Figure 59. Concluded.

$Z_{G} ' R=3.5$	
DATA POINT	NO. OF BLADES
0	2
0	4
0	6
0	8

UNFLAGGED SYMBOLS:	QR	700 FPS
SINGLEFLAGGED SYMBOLS:	IR	690 FPS
DOUBLEFLAGGED SYMBOLS:	תK	525 FPS

(a) $\psi_{i}=0^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$.

Figure 59. Experimental Hake Radial Coordinates : ir
Model Roters $-\theta_{1}=-8^{\circ}, A R=18.2$.

$Z_{G} / R=3.5$
DATA
NO. GF BLADES
0

UNFLAGGFD SYMBOLS:
SINGLE FLAGGED SYMBOLS: DOUBLE FLAGGED SYMBOLS:
$S L R=700 \mathrm{FPS}$
$\Omega R=600 \mathrm{FPS}$
$\Omega R=525 \mathrm{FPS}$

TIP VORTEX RADIAL COORDINATE, \bar{i}

(b) $\psi_{W}=180^{\circ}, 270^{\circ}, 360^{\circ}, 540^{\circ}$.

Figure 59. Concluded.
$Z_{G} / R=3.5$

DATA	NO. OF BLADES
0	2
Δ	6
0	8

UNFLAGGED SYMBOLS: $\quad \Omega R=700$ FPS
SINGLE FLAGGED SYMBOLS: $\quad \Omega$ R - 600 FPS
DOUBLE FLAGGED SYMBOLS: $\Omega R=525$ FPS

(a) $\psi_{W}=0^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$.

Figure 60. Experimental Wake Radial Coordinates for Model Rotors -- $\theta_{1}=-16^{\circ}$, AR $=18.2$.

$\chi_{G}{ }^{\prime} R \cdots 3.5$	
DATA	NO. OF BLADES
0	2
Δ	6

UNFLAGGEDSYMBOLS: \quad QR 700 FPS
SINGLEFLAGGED SYMBOLS: $\quad \Omega R$ - 600 EPS
DOUBLE FLAGGED SYMBOLS: $\quad \Omega R$ S25 FPS

Im

(b) $\psi_{W^{\prime}}=180^{\circ}, 270^{\circ}, 360^{\circ}, 541^{\circ}$.

Figure 60. Concluded.

$Z_{G}{ }^{\prime} R-3.5$	
DATA	NO. OF BLADES
0	2
0	4
Δ	6
0	8

UNFLAGGED SYMBOLS:
SINGLE FLAGGFD SYMBOLS:
SR 700 FPS QR 600 FPS DOUBLE FLAGGED SYMBOLS: SIR 525FPS

TIP VORTEX RADIAL COORDINATE, \bar{r}

thrust COEFFICIENT, C_{t}
(a) $\psi_{W}=0^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$.

Figure 61. Experimental Wake Radial Coordinates for Model Rotors $-\theta_{1}=-8^{\circ}, A R \equiv 23.6$.

$Z_{G}{ }^{\prime} R-3.5$
DATA
NO. OF BLADES
0

UNFLAGGED SYMBOLS: SR 700 FPS
SINGLEFLAGCED SYMBOLS: ΩR 600FPS DOUBLEFLAGCEDSYMBOLS: GR S25FPS

tip vortex radial coordinate, í

(b) $\psi_{i=1}=190^{\circ}, 270^{\circ}, 360^{\circ}, 540^{\circ}$.

Figure 01 . Concluded.

Figure 62. Experimental Wake Contraction Rate Parameter, A, for Mcdel Rotors.

I!R $700 \mathrm{FPS} \quad \mathbf{Z}_{\mathrm{C}} R \quad 3.5$
UNFLAGGED SYMBOLS: $11,-8^{\circ}$
SINGLE FLAGGEDSYMBOLS: $H_{1} 0^{\circ}$
DOUBLEFLAGGED SYMBOLS: $H_{1}-16^{\circ}$

Figure O. 2. Experimental $K_{l_{\bar{r}}=1}$ Taboard Wake Parameter.

Figure 64. Experimertal $K_{2_{\bar{r}}=1}$ Inboard Wake Parameter.

QR $700 \mathrm{FPS} \quad Z_{C} \cap \quad 3.5$
UNFLACGED SYMBOLS: $\theta_{1}-8^{\circ}$
Sincle flagged symbols: ", 0° DOUBLE FLACGEDSYMBOLS: $n_{1}-16^{\circ}$

Figure 65. Experimental $\hat{2}_{\bar{r}}=0$ Tnboard Wake Parameter.

TIP VORTEX

[^3]

Mgure 68. Comparison of Generalized Wake Results With Those of References $1,1 \%$, ard 11 -- Radial Coortinates.

Figure 69. Comparis on of Generalized Wake Results with Those of Reference 12.

— — - ACTUATOR DISC THEORY (REFERENCE 14)

GENERIALIZED EXPERIMENTAL WAKE BOUNDARIES

$$
\theta_{1}=-8^{\circ}, A R=18.2, S \Omega R=700 \mathrm{FPS}
$$

CONDITION NO.	b	C_{T} / σ	C_{T}
1	2	0.062	0.0022
2	2	0.105	0.0037
3	6	0.034	0.0036
4	6	0.071	0.0075

Figure 70. Comparison of Generalized Wake Boundaries With Results of Reference 14.

Figure 71. U4RI Prescribed Wake Hover Performance Program.

Figure 72. Computer Wake Trajectories for One Blade.

ITERATION TO ACHIEVE WAKE GEOMETRY COMPATIBLE WITH SPECIFIED CIRCULATION

Wake ge ometry compatible with input circulations

Figure 73. Iteration Procedures for Computing Wake Gecmetries.

Figure 74. Segmented Discrete Vortex Representation of the Wake.
$\begin{array}{llll}C_{\mathrm{T}} \prime & 0.07 & \mathrm{~b} & \mathrm{l}\end{array}$

IP vortex -blade
1

Figure 75. Typical Truncated Wake Results.

Figure 76. Far-Wake Representation.

Figure 77. Coordinate Systems and Nomenclature for Thenretical Wake Geometry Computations.

Figure 78. Intersection of Wake With $\bar{r}-\bar{z}$ Plane Showing Typical Inboard Vortex Sheet Representation.

Figure 80. Model Rotor Photographs Showing Typical Local inill Up of Tip Vortex.

(b)

Figure 8u. Continued.

(c)

Figure 80. Concluded.

Figure 81. Photograph of Wake for a Full-Scale Rotor Showing Local Roll-Up of the Tip Vortex.

Figure 82. Photograph of Wake of Model Rotor Taken in a Water Tunnel Showing Local Roll-Up of the Tip Vortex.

UNSTABLE TIP VORTEX
Figure 83. Schematic of Stable and Unstable Tip Vortices.

$$
\theta_{1}-8^{\circ} \quad A R \quad 13.6 \text { b } \quad 2 \quad \Omega R \quad 703 \mathrm{FPS} \quad C_{T} / 0 \sim 0.095
$$

$$
4 / w \quad 180^{\circ}
$$

Figure 84. Typical Time Histories of Computed Tip Vortex Coordinates Showing Convergence of Extreme Near-Wake.

Figure 85. Computed Radial and Axial Coordiretes of
Tif Vortex for Two Time Steps.

Figure 85. Initial hake Geometry Used in Sample Computation.

Figure 88. Approximation to Extreme Near-Nake in Sample Computation.

Fieure 90. Sythesized Modei Rotor mo-Dimensional Airroil Date.

$$
\theta_{1}=-80 \quad A R=13.6 \quad b=2 \quad S L R=700 \mathrm{FPS}
$$

FAIRED CURVE	C_{T} / σ	C_{T}
-	0.070	0.0 .033
-	0.091	0.0043

Figure 91. Predicted Effect of Rotor Thrust on Wake Geometry.

FAIRED CURVE	θ_{1}	C_{T} / σ	C_{T}
	-8°	0.10	0.0035
-	0	0.10	0.0035

Figure 92. Predicted Effect of Blade Twist on Wake Geometry.

$0_{1}=-8^{\circ} \quad \mathrm{AR}-18.2$		$\Omega \mathrm{~K}=700 \mathrm{FPS}$	
FAIRED CURVE b $\mathrm{C}_{\mathrm{T}} / \sigma$ C_{T} 2 0.12 0.0042 6 0.0053 0.0056			

Figure 93. Predicted Effect of Number of Blades and Thrust Level on Wake Geometry.

$$
\theta_{1}=-8^{\circ} \quad b=2 \quad \Omega R=700 \mathrm{FPS}
$$

FAIRED CURVE	AR	C $_{\mathrm{T}}$ (σ	C $_{\mathrm{T}}$
-	18.2	0.09%	0.0034
--	13.6	0.073	0.0034

Figure 94. Predicted Effect of Blade Aspect Ratio on Wake Ceometry.
$\theta_{1}=-8^{\circ} \quad A R=18.2 \quad h-2 \quad C_{F} / \sigma=0.10 C_{T}=0.0035$

Figure 95. Predicted Effect of Tip Speed on Wake Geometry.

Figure 96. Comparison of Predicted Wake Geometry Results With Results of Reference 9.

Figure 98. Comparison of Results of Uncontracted Wake Analyses with Experimental Ferformance Results for Four-and Eight-Bladed Model rotors $-\theta_{1}=-8^{\circ}, A R=.2, \Omega R=700 \mathrm{fps}$.

Figure 101. Comparison of Results of Uncontracted Wake Analyses With Experimental Performance Results for Two- and Six-Bladed Model Rotors -- $\theta_{1}=-8^{\circ}, A R=13.6, \Omega R=700 \mathrm{fps}$.

Figure 103. Comparison of Results of Contracted Weke Analyses Nith Goldstein-Lock Results and Experimential Performance Results. for Model Rotors -- $\theta_{1}=-8^{\circ}, \mathrm{AR}=18.2, \Omega \mathrm{R}=700 \mathrm{fps}$.

Figure 104. Comparison of Results of Contracted Wake Analyses With Goldstein-Lock Results and Experimental Performance Results for Model Rotors $-\theta_{1}=0^{\circ}$, $A R=18.2, \Omega R=700 \mathrm{fps}$.

Figure 105. Comparison of Results of Contracted Wake Analyses With Goldstein-Lock Results and Experimental Performance Results for Model Rotors -- $\theta_{1}=-8^{\circ}, A R=13.6, \Omega R=700 \mathrm{fps}$.

Figure 106. Comparison cf Results of Contracted Wake Analyses With Goldstein-Lock Results and Experimental Results for Model Rotors - $\theta_{1}=-8^{\circ}, A R=18.2, \Omega R=525 \mathrm{fPs}$.

(a)
\because :nre : 7. Vomparis of Yotel Ro:or Blade Section Characteristics n: Mellctet ty iarious inalyses.

(b)

Figure 107. Continuet.

EXPERIMENT
0 ———mer
PRESCRIBED EXPERIMENTAL WAKE ANALYSIS
$\mathrm{Q} \sim$ - EXPERIMENTAL WAKE
\triangle TIP VORTEX MOVED 1% R TOWARD ROTOR OISC
O—— TIP VORTEX MOVED I\% R FURTHER FROM ROTOR DISC
REFER TO TEXT AND FIGURE 109 FOR EXPLANATION OF LETTERED CONDITIONS A THROUGH D
SYMBOLS FOR THEORETICAL RESULTS ARE INCLUDED TO INDICATE
COLLECTIVE PITCH $\left(\theta_{7 j}\right)$ RESULTS AND DO NOT INDICATE EXPERIMENTAL POINTS

Figure 108. Sensitivity of Predicted Model gotor ierrammece to Changes in Tip rortex lock:ion.

Figure 109. Sensitivity of Model Rotor Blede Section Characteristics to Changes in Itp Yortex Location.

Figure 110. Comparison of Resilts of Various Anaiyses inith
Experimental Performance Results for CH-53A Rotor.

Figure 111. Sensitivity of Predicted CH-53A Rotor Performance to Crange in Tip Vor uex Location.

- - - - GOLDSTEIN-LOCK ANALYSIS
- - PRESCRIBED CL.ASSICAL WAKE ANALYSIS
— $=$ - PRESCRIBED EXPERIMENTAL WAKE ANALYSIS (GENERALIZED WAKE)

Figure 112. Comparison of $\mathrm{CH}-53 \mathrm{~A}$ Blade Angle of Attack Distribution Predicted by Various Analyses.

Figure 113. Comparison of Results of Various Analyses With Experimental Perfosmence Results for HU-IA Rotor,

Figure 114. Variation of Computed k_{1} and k_{2} Wake Parameters With Maximum Blade Circulation.

1. Jenney, David S., Olson, John R., and Landgrebe, Anton J., A REASSESSMENT OF ROTOR HOVERING PERFORMANCE PREDICTION METHODS, Journal of the American Helicopter Society, Vol. 13, No. 2, April 1968, pp. 1-26.
2. Landgrebe, Anton J., AN ANALYMICAL METHOD FOR PREDICTING ROTOR WAKE GEOMETRY, Journal of the American Helicopter Society, Vol. 14, No. 4, October 1969, pp. 20-32.
3. Gray, Robin B., AN AERODYNAMIC ANALYSIS OF A SINGLE-BiADED ROTOR IN HOVERING AND LOW SFEED FORNARD FLIGHT AS DETERMINED FROM SMOKE STUDIES OF THE VORTICITY DISTRIBUTION IN THE WAKE, Princeton University Aeronautical Engineering Department, Report No. 35́, Princeton University, Princeton, New Jersey, September 1956.
4. Hoel, Paul G., INTRODUCTION TO MATHEMATICAL STATISTICS, Second Edition, New York, John Wiley \& Sons, Inc., 1958, p. 241.
5. Arcidiacono, P. J., Carta, F. O., Casellini, L. M., and Elman, H. L., INVESTIGATION OF HELICOPTER CONTROL LOADS INDUCED BY STALL FLUTTER, United Aircraft Corporation; USAAVLABS Technical Report 70-2, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, March 1970, AD 869823.
6. Gilmore, David C., AN EVALUATION OF METHODS FOR PREDICTING THE FERFORMANCE OF PROPELLERS OPERATING AT ZERO ADVANCE RATIO, McGill University Mechanical Engineering Research Laboratories Technical Note 67-2, McGill University, Montreal, Canada, April 1967.
7. SYMPCSIUM ON AIRCRAFT WAKE TURBULENCE, BOeing Scientific Research Laioratories Document Dl-82-0993, Boeing Scientific Research Laboratories, Seattle, Washington, September 1970.
8. Forke, James B., and riells, Clifford D., THE PRESCRIBED WAKEMONENTUM ANALYSIS, United Aircraft Corporation, Sikorsky Aircraft Division; Proceedings of the Third CAL/AVIABS Symposium an AeroJymaics of Rotary Wing and V/STOL Aircraft, Vol. 1, Cornell deronautical Laboratory, Inc., Buffalo, New York, June 1969.
9. Clark, David R., and Albert C. Leiper, THE FREE WAKE ANALYSIS - A METHOD FOR THE PREDICTION OF HELICOPIER ROTOR HOVERING FERFORMANCE, United Aircraft Corporation, Sihorsky Aircraft Division; Proceedings of the 25 th Annual National Forum of the American uelicopter Society, Paper No. 321, May 1969.
10. Gray, Robin B., ON THE MOTION OF THE HELICAL VORTEX SHED FROM A SINGLE-BLADED HOVERING MODEL HELICOPIER ROTOR AND ITS APPLICATION TO THE CALCULATION OF THE SPANWISE AERODYNAMIC LOADING, Princeton University Aeronautical Engineering Department, Report No. 313, Princeton University, September 1955.
11. Swavely, Craig E., A SMOKE STUDY OF THE MOITON OF THE VORTICES FROM THE TIPS OF A TWO-BLADED MODEL HELICOPIER ROTOR IN HOVERING FLIGHT, Masters Thesis, Georgia Institute of Technology, Atlanta, Georgia, December 1958.
12. Lehman, August F., MODEL STUDIES OF HELICOPTER ROTOR FLOW PATTERNS, Oceanics, Inc.; USAAVIABS Technical Report 68-17, U. S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, April 1968, AD 671670.
13. Cassarino, Sebastian J., EFFECT OF ROOT CUTOUT ON HOVER PERFORMANCE, United Aircraft Corporation, Sikorsky Aircraft Division; AFFDL Technical Report AFrDL-TR-70-70, Air Force Flight Dynamics Laboratory, Wright-Fatterson Air Force Base, Ohio, June 1970.
14. Greenberg, Michael D., and Kaskel, Alvin L., INVISCID FLOW FiFLD INDUCED BY A ROTOR IN GRDIND EFFECT, Therm Advanced Research. Inc., NASA CR-1027, National Aeronautics and Space Administration, Nashington, D.C., May 1968.
15. Heyson, Harry h., A NOTE ON THE MEAN VALUE OF INDUCED VELOCITY FOR A HELICOPTER ROTOR, NASA Langley Restarch Center; NASA TN n-240, National Aeronautics and Space Administration, Washington, D.C., May 1960.
16. Goldstein, S., ON THE VORTEX TMEORY OF SCHEW FROFELLERS, Proseedings Royal Society of London, Vol. A 123, Ho. A $792,1929$.
17. Betz, A., HARDBUCH DER PHYSIK, Vol. 7, Berlín, J. Springer, 1907, Pp. 256-259.
18. Lock, C. N. H., THE AFPLICATION OF GOLDSTEIN'S THEORY TO THE PRACTICAL DESIGN OF AIRSCIEWS, ARC R\&M No. 1377, Aeronautical Research Comittee, Great Britain, 1931.
19. Westwater, F. L., ROLLING UP OF THE SURFACE OF DISCONTINUITY BEHLND AN AEROFOIL OF FINITE SPAN, Aeronautical Research Comittee; R\&M No. 1692, Air-Minisiry, Great Britain, August 1935.
20. Squire, H. B., THE GROWTH OF A VORIEX IN TURBULENT FLOW, The Aeronautical Quarteriy, August 1955.
21. Brady, W. G., and Crimi, P., REPRESENTATION OF PROPELLER WAKES BY SYSTEMS OF FINITE CORE VORTICES, CAL Report No. BB-1665-S-2, Corne 11 Aeronautical Laboratory, Inc.: Buffalo, New York, February 1965.
22. Lery, M. A., and Forsdyke, A. G., THE STEADY MOTION AND STABILITY OF A HELICAL VORTEX, Royal Society - Proceedings, Vol. 120, No. A786, October 1, 1928, pp. 670-690.
23. Rauscher, Manfred, INTRODUCTION TO AERONAUMICAL DYNAMICS, New York, John wiley \& Sons, 1953.
24. Sopher, Robert, THREE-DIMENSIONAL FLOW PAST THE SURFACE OF A ROTOR BLADE, United Aircraft Corporation, Sikorsky Aircraft Division; Proceedings of the 25 tr Annual National Forum of the Aserican Helicopter Society, Paper No. 324, May 1969.
25. Macpherson, D. F., and Hodgson, W. J., YH-40 PERFORMANCE EVALUATION, Air Force Flight Test Center, Report AFFIC-TR-59-33, Edwards Air Force Base, California, Jinuary 1960.

The velocities induced at an arbitrary point P by a siraight vortex element of strength Γ and bounded by end points A and B (see Figure 77) can be computed using the classical Biot-Savart Law (see Reference 23, p. 373) and are given by the following equations:

$$
\begin{aligned}
& v_{x_{P}}=\left(\frac{\Gamma}{4 \pi}\right) \bar{k}\left[\left(y_{P}-y_{A}\right)\left(z_{P}-z_{B}\right)-\left(z_{P}-z_{A}\right)\left(y_{P}-y_{B}\right) \mid\right. \\
& \left.\left.v_{y_{P}}=\left(\frac{\Gamma}{4 \pi}\right) \bar{k} \right\rvert\,\left(z_{P}-z_{A}\right)\left(x_{P}-x_{B}\right)-\left(x_{P}-x_{A}\right)\left(z_{P}-z_{B}\right)\right] \\
& v_{z_{P}}=\left(\frac{\Gamma}{4 \pi}\right) \bar{k}\left[\left(x_{P}-x_{A}\right)\left(y_{P}-y_{B}\right)-\left(y_{P}-y_{A}\right)\left(x_{P}-x_{B}\right) \mid\right.
\end{aligned}
$$

where

$$
\begin{gathered}
\bar{k}=\frac{1}{R} \frac{(A P+B P) /(A P)(B P)}{(A P)(B P)+I+J+K} \\
I=\left(x_{P}-x_{A}\right)\left(x_{P}-x_{B}\right) \\
J=\left(y_{P}-y_{A}\right)\left(y_{P}-y_{B}\right) \\
K=\left(z_{P}-z_{A}\right)\left(z_{P}-z_{B}\right)
\end{gathered}
$$

$$
A P=\sqrt{\left(x_{P}-x_{A}\right)^{2}+\left(y_{P}-y_{A}\right)^{2}+\left(z_{P}-z_{A}\right)^{2}} \quad B P=\sqrt{\left(x_{P}-x_{B}\right)^{2}+\left(y_{P}-y_{B}\right)^{2}+\left(z_{P}-z_{B}\right)^{2}}
$$

The velocities K_{p}, Y_{p}, and v_{p} are numerically integrated using the equations below to determin the displacements of the wake which occur during a small time interval, 1 :

$$
\begin{aligned}
& \Delta x_{p}=\sum v_{x_{p}} \Delta^{t} \\
& \Delta y_{p}=\sum v_{y_{p}} \Delta t^{t} \\
& \Delta x_{p}=\sum v_{z_{p}} \Delta t^{t}
\end{aligned}
$$

The summation signs in the immediately preceding equations denote summations of the induced velocities induced at point P by all vortex elements in the wake. The partirular integration schem deseribed atove is based on the assumption that the induced velocities remain essentially constant during the time interval, Δt. Also, the length of any vortex element is allowed to vary as its end points move.

Examination of the velocity equations given above discloses that the velocity induced at point P by the straight vortex segments of which P toms an end point is always zero. Actually the vortex filament is curved rather than straight. Some error is thus intraiuced by the use of straight segments, with the size of the error depending upon the length of the segment and the curvature of the filament involved. To avoid this error, the calculation of the curved vortex element immediately adjacent to the point in question was approximated by a circular segment, and the influence of this circular segment was included in the computational program.

Abstract

As mentioned previously, an iteration is required using the Prescribed Wake Program and Wake Geometry Programs to insure reasonably conpatible wake geometifes and bound circulation distributions. Because of the computing time required by the Wake Ceometry Program, it is obviously desirable to minimize the number of passes through this proryam. This can be accomplished by (1) adjusting the circulation distributions used as input to the liake Ceometry Program so as to anticipate the rinal circulation distribution answer as much as possible (using past experience as a guide) and (2) being aware of the sensitivity of the final answer of interest, namely, rotor performance, to possible departures from the ideal, completely compatible, geometry-circulation solution. Both approaches were employed in this study. The paragraphs below preseat some results which can te used to evaluate the expected sensitivity of rotor performance to departures from the ideally converged solution.

Rotor performance is, of course, given in terms of integrated rotor thrust ($\mathrm{C}_{\mathrm{T}} / \sigma$) and torque ($\mathrm{C}_{\mathrm{Q}} / \sigma$). of these, rotor thrust exhibits the most sensitivity to the \mathbf{k}_{1} and \mathbf{k}_{2} wake geometry parameters for the tip vortex. Partial derivatives ralating C_{T} / σ to k_{1} and k_{2} for two-bladed rotors were estimated by using the Prescribed Wake Program and varying k_{1} and k_{2} independently. The results indicated the following approximate reiation for two-bladed rotors:

$$
\begin{equation*}
\Delta C_{T} / \sigma=-0.44 \Delta k_{1}-0.5 \Delta k_{2} \tag{6}
\end{equation*}
$$

Now, if k_{1} and k_{2} couid be related to the bound circulation distribution, one would be able to assess the probable impact of further refinements to the eireulation by usin. Equation (6) to compute an equivalent error in $\mathrm{C}_{\mathrm{T}} / \sigma$ and comparing this with the level of accuracy to which $\mathrm{C}_{\mathrm{T}} / \sigma$ is desired. Assuming that the peax circulation $r_{\text {max }}$ on the blade is the characteristic quantity determining the flow field and hence k_{1} and k_{2}, one can use the computed wake geometry results that have been obtained
under this contract for the various operating conditions to essess the rates of change of k_{1} and k_{2} with respect to $\Gamma_{\text {max }}$. Such results are shown in Figure 114 for the -8 -degree twist rotor cases. Values are plotted both as functions of the specific $\Gamma_{\max }$ values computed for the model rotor and a nondimensional $\Gamma_{\text {max }}$ to increase the utility of the chart.

If $\mathrm{C}_{\mathrm{T}} / \boldsymbol{\sigma}$ is desired to an accuracy of ± 0.001 (typically $\mathrm{t}_{1} \%$), then from Equation (4) this 11 inits k_{1} and k_{2} errors to t0.0023 and to.002, respectively. From Figure 114 the corresponding tolerances on $\Gamma_{\max }$ for the molel rotor are 129 and $t 1.8 \mathrm{ft}^{2} / \mathrm{sec}$, respectively. The large tolerance in $r_{\max }$ associated with the error in k_{1} simply reflects the relative insensitivity of k_{1} to $\Gamma_{\max }$ (or thrust) as predicted by the Wake Gecmetry Program. This insensitivity appears to be due to the fact that the general dowmash induced by the wake on the tip vortex trailed by a given tiade tends to be cancelled by an upwash induced by the contracted vortex trailed by the immediately preceding blade.

All of the geometry-circulation results presented herein have converged to within the smallest tolerance in $\Gamma_{\max }$ quoted above. Thus, the cirresponding computed $\mathrm{C}_{\mathrm{T}} / \sigma$ should be accurate to to.001.
DISTRIBUTION
Director of Defense Research ε Engineering 2
Assistant Secretary of the Army (RED) 1
Assistant Chief of Staff for Force Development, DA 1
Deputy Chief of Staff for Lagistics, DA 1
Third United States Army 2
United States Army, Pacific 1
Chief of Research 6 Development, DA 2
Army Research Office 1
Army Materiel Command 4
Army Rviation Systr-a Command 3
Hq, Army Air Mobility Research ε Development Laboratory 2
Anes Directorate, Army Air Mobility RED Laboratory 2
Eustis Directorate, Army Air Mobility RED Laboratory 20
Langley Directorate, Army Air Mobility RED Laboratory 2
Lewis Directorate, Army Air Mobility RED Laboratory 2
Army Aviation Systems Test Activity 2
Army RED Group (Europe) 2
Army Scientific E Technical Information Team (Lurope) 1
Army Advanced Materiel Concepts Agency 1
Army Aeromedical Research Laboratory 2
Harry Diamond Laboratories 1
Arny Land Warfare Laboratory 1
Army Human Engineering Laboratories 2
Army Natick Laboratories 1
Army Ballistic Research Laboratory Anm Dallistic Research Laboratory 1
Army ruels ε Lubricants Leboratory 1
Army Research Office - Durham 1
Army Materials 6 Mechanics Research Center 5
Army Dlastics Technical Evaiuation Center 1
Army Engineer Watervays Experiment Station 1
Army Test E Evaluatios Command 1
Army Materiel Sistems Arialysis Agancy 1
Army Electronics Comand 3
Army Missile Command 1
USACDC Aviation Agency 2
USACDC Transportation Agenzy 1
Aray Medical RGD Command 1
Edgewood Arsenal i
Army Command 6 Gerteral Staff College 1
Army Aviation School 1
Army Aviation Test Board 2
Army Arctic Test Center 1
Army Board for Aviation Accident Researct: ilst Cavalry Division (Aimobile)
Air Force Office of Scientific Research 1
Hq, usar 1
Air Force Rlight Test Center 2

[^0]: -In som of the photographs showis the tim history of the whe (t.e.e Figures 27 and 28), aip rortex crost section appears to be mbve the blade. This is ettributec to the vievint angle of the comern which mes placed beneeth the rotor plane. Since the bledes in thett photograghs wove out of the plase of the swole, their poaition is distorted relative to the wake cross sections in shat piant.

[^1]: In usine the predictel *ip vortex geometies to eumpte new blate
 onveret near-wake resul:s were in ace: ins:ances appronazed ty the

[^2]: *inesults for a 18 R displacement of the wip vortex of the sir-bladed rotor tovar-1 the rotor dise are not included in Figure 108. This displacement. resulted in the vortex passing within 0.56 R of the following blade. Theoretical applications itionltina passage of the vortex uithin this Aistance of the blinde are questionable due to the limitations of lifting line theory and liaited inform.tion or vortex core sixe.

[^3]: Figure \quad 万7. Comparison of veneralized Wake Resulvs With Those of References 1,10 , and 11 -- Axial Coordinates.

