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S U M M A R Y
A novel analytical approach to the SH-waves scattering problem of a single deep symmetrical
V-shaped canyon is presented. The adopted strategy of domain decomposition prevents the
auxiliary boundary from being pierced by the lowest part of the canyon, and inherently
encompasses the singular behaviour of the stress field around the bottom of the canyon.
Appropriate wavefunctions and Graf’s addition formulas are well utilized. The introduction of
the method of images fulfills the stress-free condition at the ground level. In the deep V-shaped
cases, comparisons with previously published data show good agreement. In the degenerate
cases where the width of the canyon approaches zero, the presented results coincide with
those obtained from the exact series solution of a single zero-thickness vertical edge crack.
Both frequency- and time-domain results are given. Effects of the parameters on steady-state
surface motions are illustrated and discussed. Transient changes in surface and subsurface
displacement fields are included. The proposed series solution not only provides reliable
results sufficiently under high-frequency excitations, but also fills the gap in the preceding
cases of shallow canyons.

Key words: Earthquake ground motions; Theoretical seismology; Wave scattering and
diffraction; Wave propagation.

1 I N T RO D U C T I O N

Surficial topography has been known for years as one of the leading
factors affecting the characteristics of earthquake-induced ground
motions. This is usually called as ‘topographic effect’. Such term
is closely related to the near-surface local geometrical properties,
that is, the presence of canyons, hills, mountains, slopes, cliffs,
etc. As a result, the sufficient evaluation on potential risks for the
amplification of ground motions at a given site with discontinuities
in elevation has been of great interests to researchers in seismology,
geophysics, tectonics and natural hazards.

Canyons are one common type of natural landforms on the Earth’s
surface. The canyon shape depends on the characteristic of the
current flowing through. In the mountainous region, steep gradient
makes streams and rivers flow quickly downhill, and therefore rapid
downcutting removes more sediments from the channel bottom than
those from the sides. Such a geological process produces precipitous
lateral walls and a narrow bottom, resembling the letter ‘V ’ in cross-
section. Examples of V-shaped canyons are the Feitsui Canyon in
Taiwan (see fig. 5 of Huang & Chiu 1995) and the San Fernando
Valley in southern California (see fig. 2 of Boore 1973).

In a broad sense, simplified models may help one understand the
phenomena of seismic wave propagation around real canyons. In

fact, symmetrical V-shaped models have been one kind of most con-
cerned geometries for fundamental studying. Since the early 1970s,
a great deal of numerical approximate methods has been devised
to cope with the problems of scattering and diffraction induced
by a single symmetrical V-shaped canyon. Simply take the SH-
waves cases for example: the Aki-Larner method (Bouchon 1973),
the method of matched asymptotic expansions (Sabina & Willis
1975), the integral equation method (Sills 1978; Sánchez-Sesma &
Rosenblueth 1979), the combined finite element and analytical tech-
nique (Shah et al. 1982), the hybrid method joining the finite and
infinite elements together (Zhang & Zhao 1988), the complex func-
tion method (Liu & Han 1991), and the boundary element method
(Hirai 1988; Takemiya & Fujiwara 1994) have been employed to
solve related problems and to simulate possible ground surface mo-
tions. No doubt, most of the above approaches are more flexible for
arbitrary terrains. However, the validity of their computed results
must be tested strictly via exact solutions. It is well known that exact
solutions derived by the method of separation of variables (MSV)
are only limited to a few simple geometric shapes (e.g. Varadan
et al. 1991). For a long time, since the V-shaped model does not be-
long to any separable coordinate system, the possibility of applying
the MSV to such a case has been precluded, albeit a very simple
case. Quite recently, Tsaur & Chang (2008) made a breakthrough
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on the usage of the region-matching technique for the ‘shallow’
symmetrical V-shaped case. This promising technique not only de-
feated the intrinsic difficulty in utilizing the MSV, but also gave a
rigorous series solution, which may be a best candidate for the exact
solution.

As mentioned in the work of Tsaur & Chang (2008), the criterion
of classification for the terms ‘shallow’ and ‘deep’ canyons is based
on the depth-to-half-width ratio of the canyon. In doing the domain
decomposition for the cases of ‘shallow’ canyons (whose depths
are smaller than half-widths), the half-width of the canyon is taken
as the radius of the semi-circular auxiliary boundary to enclose
the whole canyon surface. Nevertheless, this trick does not work
anymore for the cases of ‘deep’ canyons (whose depths are larger
than half-widths) because the canyon bottom (i.e. the apex of the
V) will pierce the auxiliary boundary. Thus, how to vanquish this
predicament motivates this work.

In this paper, the authors come up with an ingenious strategy of
domain decomposition to derive a series solution to the scattering
problem induced by a single ‘deep’ symmetrical V-shaped canyon
under plane SH-wave incidence. The proposed domain decomposi-
tion takes the canyon flanks as the radius of a circular-arc auxiliary
boundary to encircle the faces of the canyon and to avoid the pene-
tration in the auxiliary boundary. Incorporating the stress singularity
condition (at the canyon bottom) into the wavefield expression of
the enclosed subregion is the most pleasing trait in this adopted
tactic. In addition, since the centre of the presented fictitious in-
terface is below the ground level, the method of images is utilized
to satisfy the requirement for zero stress normal to the horizontal
ground surface.

Herein, the success of the solution procedure hinges on two key
steps: (1) the appropriate selection of auxiliary boundaries and (2)
the suitable usage of Graf’s addition formulas. The first step de-
composes the entire analysed region into several subregions, and
facilitates the application of the MSV to every subregion. In other
words, this step ensures that the construction of eigensolutions is
well defined and well behaved in each individual subregion because
those eigen-wavefields have automatically satisfied the governing
Helmholtz equation and all boundary conditions except those on
the auxiliary boundary. As to the second step, it accomplishes the
necessary coordinate transformations.

The primary contributions of the present work are fourfold. First,
the series solution proposed herein is novel since, to the authors’
knowledge, the series solution to the problem under consideration
is likely to be non-existent in the literature; moreover, it bridges the
gap in the work of Tsaur & Chang (2008), which is only feasible for
the cases of ‘shallow’ symmetrical V-shaped canyons. Second, the
presented region-matching technique makes the usage of the MSV
become possible for geometric shapes not fitting the corresponding
coordinate systems. Three, the evaluation of steady-state responses
up to a high-frequency range fulfils the calculation of transient
responses easily. Four, the snapshots of time-domain underground
motions enhance the understanding of this topic.

2 T H E O R E T I C A L F O R M U L AT I O N

Consider a deep, symmetrical, V-shaped canyon embedded in a ho-
mogeneous, isotropic, linearly elastic half-plane (with shear modu-
lus μ and shear wave velocity cs). An infinite train of unit-amplitude
plane SH waves (with angular frequency ω) is incident upon this
canyon at an angle α to the y-axis. The geometric layout of the prob-
lem is illustrated in Fig. 1. The horizontal ground surface coincides

Figure 1. Geometric layout of the problem.

with the y = 0 plane. The canyon is supposed to be infinitely long
along the z-direction, which is parallel to the canyon axis, so that the
present problem is reduced to a 2-D form. The half-width and depth
of the canyon is a and d, respectively. Both flanks of the canyon
have the length of b. The angle measured from the positive y1-axis
to the canyon surface is β. The requirement for a ‘deep’ canyon
studied herein is a/d ≤ 1. Three Cartesian and three cylindrical
coordinate systems will be employed; see Fig. 1. The origins of
global coordinate systems (x, y) and (r, θ ) are placed at the inter-
section of the horizontal ground surface and the symmetry axis of
the canyon. The canyon bottom and its corresponding image point
are, respectively, taken as the origins of two sets of local coordinate
systems (i.e. (x j , y j ) and (r j , θ j ); j = 1, 2). For local coordinate
systems (x2, y2) and (r2, θ2), the vertical axis is defined as positive
going upwards, and the positive angle is measured clockwise from
positive y2-axis.

In order to enclose the canyon bottom completely, the canyon
flank is taken as the radius of the circular-arc auxiliary boundary.
As seen in Fig. 1, a circular-arc auxiliary boundary SI (with radius
b and central angle 2β) splits the half-plane into two regions, an
open region (1) and an enclosed region (2). In these two regions,
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the steady-state out-of-plane motions are required to satisfy the
governing Helmholtz equations, namely

∇2u j + k2u j = 0, j = 1, 2, (1)

where ∇2 is the cylindrical Laplacian, k = ω/cs is the shear
wavenumber and the subscripts, 1 and 2, designate the total displace-
ment fields in regions (1) and (2), respectively. The harmonic time
dependence is given by factor exp(i ωt) and suppressed throughout
this paper.

In region (1), the zero-stress boundary conditions on the left- and
right-hand horizontal ground surfaces are

τ
(1)
θ z = μ

r

∂u1

∂θ
(r, θ ) = 0, for r ≥ a and θ = ±π

2
. (2)

In region (2), the traction-free boundary conditions on the canyon
faces are

τ
(2)
θ1z = μ

r1

∂u2

∂θ1
(r1, θ1) = 0, for r1 < b and θ1 = ±β. (3)

On the auxiliary boundary SI , two matching conditions, assuring
the continuity of normal components of the displacement and stress
fields between regions (1) and (2), are given by

u1(r1, θ1) = u2(r1, θ1), for r1 = b and |θ1| ≤ β, (4)

τ (1)
r1z(r1, θ1) = τ (2)

r1z(r1, θ1), for r1 = b and |θ1| ≤ β. (5)

For the problem under consideration, the application of the method
of images is effective. By treating the horizontal ground surface as
an ideal mirror, an image of the incident plane wave and an image
of the fictitious interface SI are both introduced. This step profits on
the later construction of appropriate wavefunctions satisfying the
boundary conditions on the horizontal ground surface. At present,
the original problem to be solved is converted into an equivalent
two-scatterer problem.

In open region (1), adding the incident and reflected fields to-
gether (the latter is a mirror image of the former), the free wavefield
uF in terms of the local coordinate system (r1, θ1) is of the form

uF (r1, θ1) = exp [ikr1 cos(θ1 + α)]

+ ξ · exp [−ikr1 cos(θ1 − α)] , (6)

where ξ = exp(−2ikd cos α) is the phase factor. Then, eq. (6) can
be expanded as (see Watson 1958; Abramowitz & Stegun 1972)

uF (r1, θ1) =
∞∑

n=0

εn [i n + ξ (−i)n] Jn(kr1) cos nα cos nθ1

+
∞∑

n=1

εn [−i n + ξ (−i)n] Jn(kr1) sin nα sin nθ1,

(7)

where εn is the Neumann factor (which is equal to 1 if n = 0 and
to 2 if n ≥ 1) and Jn(·) denotes the nth order Bessel function of the
first kind.

When the incident wave and its mirror reflection impinge, respec-
tively, upon the auxiliary boundary SI and its image, two scattered
waves generate. The resultant scattered field uS is the sum of the
two scattering components propagating radially outward from the
canyon bottom and its image, respectively. The proper wavefunction
of uS , satisfying the Helmholtz equation (eq. 1) and Sommerfeld

radiation condition at infinity, can be written as

uS =
∞∑

n=0

An

[
H (2)

n (kr1) cos nθ1 + H (2)
n (kr2) cos nθ2

]

+
∞∑

n=1

Bn

[
H (2)

n (kr1) sin nθ1 + H (2)
n (kr2) sin nθ2

]
, (8)

where H (2)
n (·) are the nth order Hankel functions of the second kind,

and the complex expansion coefficients An and Bn are unknown.
As can be seen in eqs (7) and (8), the zero-stress condition on

the horizontal ground surface (eq. 2) is satisfied automatically as a
natural consequence of the symmetry of the equivalent two-object
scattering system.

The union of the free wavefield uF and the resultant scattered
wavefield uS gives the total wavefield u1 in region (1), that is,

u1 = uF + uS . (9)

In enclosed region (2), the wavefield u2, satisfying the Helmholtz
equation (eq. 1) and the traction-free boundary conditions on canyon
surfaces (eq. 3), can be expressed as

u2(r1, θ1) =
∞∑

n=0

Cn J2nν(kr1) cos(2n)νθ1

+
∞∑

n=0

Dn J(2n+1)ν(kr1) sin(2n + 1)νθ1 (10)

in which ν = π/(2β) and the coefficients Cn and Dn are to be
determined. Notice that eq. (10) suffices the requirement for the
stress singularity existing near the canyon bottom. This feature
underlines the fact that the wavefield solution in region (2) is well
behaved everywhere.

Next, in order to match the boundary conditions across the aux-
iliary interface between regions (1) and (2), the required coordinate
translations for Hankel functions are carried out via the Graf’s ad-
dition formula (see Watson 1958), which are rewritten in a suitable
form for our purpose, that is,

H (2)
n (kr2)

{
cos nθ2

sin nθ2

}

=
∞∑

m=0

(−1)m Jm(kr1)

{
U+

m,n(2kd) cos mθ1

U−
m,n(2kd) sin mθ1

}
(11)

in which

U±
m,n(·) = εm

2

[
(−1)n H (2)

m+n(·) ± H (2)
m−n(·)

]
. (12)

Concerning the scattered wave generated from the image of the
auxiliary boundary SI , making use of eq. (11) shifts its coordinate
system from (r2, θ2) to (r1, θ1). So, the total scattered wavefield uS

given in eq. (8) is re-expressed as

uS(r1, θ1) =
∞∑

n=0

An

[
H (2)

n (kr1) cos nθ1

+
∞∑

m=0

(−1)m Jm(kr1)U+
m,n(2kd) cos mθ1

]

+
∞∑

n=1

Bn

[
H (2)

n (kr1) sin nθ1

+
∞∑

m=1

(−1)m Jm(kr1)U−
m,n(2kd) sin mθ1

]
. (13)
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Multiplying the matching conditions (eqs 4 and 5) by cosine func-
tions, integrating over the range [−β, β], re-arranging, and truncat-
ing the infinite series to a finite number of terms yield the following
coupled systems of linear algebraic equations,

N−1∑
n=0

An

[
H (2)

n (kb)I C1
n,q (β)

+
M−1∑
m=0

(−1)m Jm(kb)U+
m,n(2kd)I C1

m,q (β)

]

−
N−1∑
n=0

Cn J2nν(kb)I C2
2n,q (β)

= −
N−1∑
n=0

εn [i n + ξ (−i)n] Jn(kb)I C1
n,q (β) cos nα,

q = 0, 1, 2, · · · , N − 1 (14)

Figure 2. Displacement amplitudes on the crack face for comparison with
the exact solution of Tsaur (2010).

N−1∑
n=0

An

[
H (2)′

n (kb)I C2
2q,n(β)

+
M−1∑
m=0

(−1)m J ′
m(kb)U+

m,n(2kd)I C2
2q,m(β)

]

− Cq J ′
2qν(kb)

[
2β

εq
+ sin(4qβν)

4qν − εq + 2

]

= −
N−1∑
n=0

εn [i n + ξ (−i)n] J ′
n(kb)I C2

2q,n(β) cos nα,

q = 0, 1, 2, · · · , N − 1, (15)

where the expressions of I C1
n,q(β) and I C2

n,q(β) are given in Appendix A
(see eqs A1 and A2), and the prime notation means differentiation
with respect to the argument. The summation indexes n and m
are, respectively, truncated to N − 1 and M − 1 terms, while the
indexes q are selected to be N − 1. Apparently, eqs (14) and (15)
constitute a system of 2N equations with 2N unknowns. Expansion
coefficients An and Cn can be solved simultaneously by standard
matrix techniques.

Similarly, multiplying the continuity conditions (eqs 4 and 5) by
sine functions, integrating over the range [−β, β], rearranging, and
truncating the infinite series result in another coupled systems of
2N equations for the unknown coefficients Bn and Dn,

N∑
n=1

Bn

[
H (2)

n (kb)I S1
n,q (β)

+
M∑

m=1

(−1)m Jm(kb)U−
m,n(2kd)I S1

m,q (β)

]

−
N−1∑
n=0

Dn J(2n+1)ν(kb)I S2
2n+1,q (β)

= −
N∑

n=1

εn [−i n + ξ (−i)n] Jn(kb)I S1
n,q (β) sin nα,

q = 1, 2, 3, · · · , N (16)

Figure 3. Dimensionless DSIF versus kd for comparison with the results
of Tsaur (2010) and Stone et al. (1980).
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N∑
n=1

Bn

[
H (2)′

n (kb)I S2
2q+1,n(β)

+
M∑

m=1

(−1)m J ′
m(kb)U−

m,n(2kd)I S2
2q+1,m(β)

]

− Dq J ′
(2q+1)ν(kb)

{
β − sin [2(2q + 1)βν]

2(2q + 1)ν

}

= −
N∑

n=1

εn [−i n + ξ (−i)n] J ′
n(kb)I S2

2q+1,n(β) sin nα,

q = 0, 1, 2, · · · , N − 1, (17)

where the expressions of I S1
n,q(β) and I S2

n,q(β) are given in Appendix A
(see eqs A3 and A4).

When β = π , the V-shaped case will turn into the case of a
vertical edge crack with length d and zero thickness. For such a
limiting case, the authors’ computed results coincide with those of
existing works. Detailed comparisons will be shown in Section 3.

For a specified location in the corresponding region, the displace-
ment amplitude |u| is calculated from the expressions of wavefields

(see eqs 9 and 10), that is,

|u| =

⎧⎪⎨
⎪⎩

|u1| =
√

[Re(u1)]2 + [Im(u1)]2, for region (1)

|u2| =
√

[Re(u2)]2 + [Im(u2)]2, for region (2),
(18)

where Re(·) and Im(·) are, respectively, the real and imaginary
part of a complex expression. Notice that in Section 3, the free
wavefield uF is directly evaluated by eq. (6) when computing the
total displacement amplitude in region (1).

3 N U M E R I C A L R E S U LT S
A N D D I S C U S S I O N S

3.1 Frequency-domain responses

Convergence tests are carried out first to determine the truncation
values (i.e. N and M) of the infinite series in eqs (14)–(17). It
is worth emphasizing that the M terms of summation should be
accurately computed by numerically testing for their convergence,
thereby leaving only one parameter (i.e. N terms of summation)
to eliminate the phenomenon of relative convergence. Based on a
sequence of numerical experiments, M = 200 terms are adequate to
plot all charts hereafter. Generally, more terms of N are required as

Figure 4. Surface motions versus x/a for comparison with the results of Sánchez-Sesma & Rosenblueth (1979).
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the dimensionless wavenumber kd increases. For example, the con-
vergence is achieved at N = 22 for kd = 3π and at N = 46 for kd =
10π . For a relatively high value of kd = 50π , N = 178 is sufficient.
This clearly shows that the derived series solution is still efficient
in much higher frequency range. Even though the canyon bottom is
a stress singular point, the convergence of displacement amplitudes
is good. This is as expected since the present solution naturally in-
corporates the stress singularity into the eigen-expression of region
(2) (see eq. 10).

3.1.1 Validation for the limiting case

A limiting case exists as the width of the canyon approaches zero.
In this circumstance, the V-shaped case changes into the crack case
with infinitesimal thickness. Since recently Tsaur (2010) has derived
an exact series solution to the scattering and diffraction problems
of a vertical edge crack under antiplane shear wave incidence, the
cases for displacement amplitudes on the crack faces shown in his
figs 3(b), 4(b), 5(b) and 6(b) are taken as validation examples. For
brevity, only the case at kd = 4π and α = 45◦ is illustrated in Fig. 2.

Figure 5. Surface motions versus x/d and y/d at kd = 8π and α = 0◦.
(a) Motions on the horizontal ground surface, (b) motions on the canyon
surface.

The plotted range of the dimensionless vertical distance is from
the crack mouth (y/d = 0) to the crack tip (y/d = 1). As seen in
Fig. 2(a), the present results are in good agreement with those of
Tsaur (2010). Even take closer looks at the crack tip, both results
match quite well with each other (see Fig. 2b).

In order to exhibit the better performance of derived series solu-
tion on the behaviour of singular stress field in the vicinity of the
crack tip, the dimensionless dynamic stress intensity factor (DSIF)
KIII is approximately computed through the crack opening displace-
ment (COD). A simple formula given by Datta & Shah (1982) is
adopted and rewritten, that is,

KIII = 1

4k
√

2dh
[4(u6 − u4) − (u3 − u2)] , (19)

where h is the distance measured from the crack tip, and the sub-
scripts (2, 3, 4 and 6) denote the displacements on the crack faces
at specified positions (see fig. 2 of Tsaur 2010). Here, the suggested
value of h/d is 0.01.

Fig. 3 displays the dimensionless DSIF against the frequency
kd at α = 45◦. As observed in Fig. 3, the results obtained by
eq. (19) coincide with those shown in fig. 8(b) of Tsaur (2010) and

Figure 6. Surface motions versus x/d and y/d at kd = 8π and α = 45◦.
(a) Motions on the horizontal ground surface, (b) motions on the canyon
surface.
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An analytical approach to SH-waves scattering 1507

in fig. 3 of Stone et al. (1980). The credit for these good results
of extremely near-field stress goes to the inclusion of the near-tip
stress singularity in the present derived series solution.

3.1.2 Validation for the deep V-shaped case

In order to confirm the correctness of series formulations derived in
eqs (14)–(17) for deep V-shaped cases, the displacement amplitudes
on the horizontal ground surface and canyon surface shown in figs
5, 6 and 9 of Sánchez-Sesma & Rosenblueth (1979) are calculated
in Fig. 4. Figs 4(a) and (b) are for d/a = 1 at vertical incidence (α =
0◦) with kd = 0.25π and 0.5π , respectively. Fig. 4(c) is for d/a =
1 at oblique incidence (α = 45◦) with kd = 0.5π . Fig. 4(d) is for
d/a = 2 at vertical incidence (α = 0◦) with kd = 0.4π . The plotted
range of the dimensionless horizontal distance is from x/a = −4
to 4. The corresponding position of the canyon surface is within
the range from x/a = −1 to 1 (bold line). From Fig. 4, one can
find that comparisons between our results and those of Sánchez-
Sesma & Rosenblueth (1979) are good. This ensures that there are
no mistakes in deriving eqs (14)–(17).

Figure 7. Surface displacements against a/d at kd = 8π and α = 0◦. (a)
Displacements on the horizontal ground surface, (b) displacements on the
canyon surface.

3.1.3 Surface motion for different parameters

In order to demonstrate the effect of the steepness of canyon sides on
the displacement amplitude |u|, the surface responses for a/d = 0.2,
0.5 and 1 at kd = 8π are calculated. Figs 5 and 6 are, respectively, the
vertically and obliquely incident cases (i.e. α = 0◦ and 45◦). The
case of a/d = 1 corresponds to that of an isosceles right-angled
triangular canyon. Also, note that the V-shaped canyon is steeper
when the value of a/d is smaller. In addition, Figs 7 and 8 further
display the variations in surface ground motion as the steepness of
canyon sides changes. The former is for vertical incidence (α = 0◦),
while the latter is for oblique incidence (α = 45◦).

As seen in Figs 5 and 7, the displacement amplitudes under
vertical incidence (α = 0◦) are symmetrical about the y-axis due to
the canyon symmetry. In the range of about 0.1 ≤ a/d ≤ 0.5, one can
find that the maximum response amplitude mainly occurs near the
intersection of the horizontal ground surface and canyon surface.
This may imply that there is a phenomenon of wave focusing. In
Fig. 7(a), the amplified region becomes wider in the range of about
0.6 ≤ a/d ≤ 0.9. Besides, when the value of a/d goes from 1 to 0
(meaning that the canyon gets steeper), the response of horizontal
ground surface tends to be equal to 2 (see Figs 5a and 7a). This

Figure 8. Surface displacements against a/d at kd = 8π and α = 45◦. (a)
Displacements on the horizontal ground surface, (b) displacements on the
canyon surface.
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is because the vertical incident wave cannot feel the null-thickness
canyon anymore so that no scattered waves are generated.

In Figs 6(a) and 8(a), motions on the left-hand horizontal ground
surface seem to be sensitive to the change in canyon steepness,
especially for those varying intensely in the region of 0.25 ≤ a/d ≤
0.4. On the right-hand horizontal ground surface, the displacement
amplitudes change gradually due to the shielding effect provided
by the canyon. As it is observed from Fig. 6(a), the maximum
peak value for a/d = 0.5 reaches about 3, while that for a/d = 0.2
exceeds 4. From Figs 6(b) and 8(b), the values of surface amplitudes
on the illuminated side are, for the most part, higher than those on
the shaded side. On the left-hand canyon face, the oscillatory trend
of ground motions is similar (i.e. the peak and dip values occur
at nearly the same places). Furthermore, the largest amplification
values for the cases of 0.8 ≤ a/d ≤ 1 are about 1.5, while those for
0 ≤ a/d ≤ 0.5 can be greater than 2. On the right-hand canyon face,
the de-amplification behaviour of the ground shaking gets stronger
when the canyon becomes steeper.

For the shake of revealing the influence of the dimensionless fre-
quency on surface motions, Figs 9 and 10 gives the spectral variation
in displacement amplitudes for a/d = 0.25 at vertical and oblique
incidence (α = 0◦ and 45◦), respectively. In Fig. 9, the symmetrical
patterns can be observed, as expected under symmetrical excitation.

Figure 9. Spectral variation in surface displacements for a/d = 0.25 at α =
0◦. (a) Displacements on the horizontal ground surface, (b) displacements
on the canyon surface.

Figure 10. Spectral variation in surface displacements for a/d = 0.25 at
α = 45◦. (a) Displacements on the horizontal ground surface, (b) displace-
ments on the canyon surface.

Also, the concentration of wave energy can be found near the left
and right upper corners of the canyon (whose locations are at x/d =
±0.25 in Fig. 9(a) and y/d = 0 in Fig. 9b), especially for the cases
of high-frequency incident waves. From Fig. 10, one can see that
the difference in surface motions between illuminated and shaded
zones is conspicuous. The surface motions to the left of the canyon
are more complex and oscillatory than those to the right.

3.2 Time-domain responses

In this subsection, the model response in the time domain is eas-
ily obtained from the frequency-domain solutions using the fast
Fourier transform algorithm. The incident signal, a symmetric
Ricker wavelet (e.g. Kawase 1988), is defined as

u(t) = (
2π2 f 2

c t2 − 1
)

exp
(−π2 f 2

c t2
)
, (20)

where f c is the characteristic frequency of a wavelet, which is
selected here to be 1.5 Hz. The calculated frequencies are 96 in
total, ranging from 0 to 6 Hz with an interval of 0.0625 Hz. The
time window is chosen as 16 s. The canyon depth d and shear
wave velocity of the half-space cs are, respectively, set to be 1 km
and 1 km s−1. The reference point taken for t = 0 s is specified at
the position (0, 4) for vertical incidence and at (−4, 0) for grazing
incidence.
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Figure 11. Synthetic seismogram for a/d = 0.25 at α = 30◦.

In order to obtain a clear idea of transient motions on the hori-
zontal ground surface and canyon surface, a synthetic seismogram
under oblique incidence (α = 30◦) is plotted in Fig. 11, which con-
tains 101 time series received from equally spaced stations located
along the horizontal ground surface between x = −4 and 6 km. Fur-
thermore, 12 snapshots for the transient variation in underground
motion at oblique incidence (α = 30◦) are illustrated in Fig. 12.
In each frame, the computational region within the rectangle of
[−4, 4] × [0, 4] is discretized into 320 × 160 meshes with uniform
spacing. For discriminating the patterns of scattered wavefields eas-
ily, the greyscale values are set to range between − 0.2 and 0.2.

From Fig. 11, one can find that at stations near the left- and
right-hand upper corners of the canyon (x = ±0.25 km), there has
been a substantial change in the recorded waveforms at about t =
4.0 s. At this moment, the surface motion near the left-hand upper
corner (LUC) of the canyon is amplified due to the constructive
interference between the reflected wave from the horizontal ground
surface and scattered wave from the LUC of the canyon. Near the
right-hand upper corner (RUC) of the canyon, the surface motion is

Figure 12. Snapshots for a/d = 0.25 and α = 30◦ at 12 specified times.
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Figure 12. (Continued.)

de-amplified due to the destructive interference between the incident
and scattered waves from the RUC of the canyon.

As seen at the top of Fig. 11, three wave signals received after the
signal of direct wave are labelled, in turn, by arrows L1, L2 and L3.
The arrows L1 and L2 denote, respectively, the reflected wave from
the left-hand canyon surface (see Fig. 12d) and the scattered waves
from the canyon bottom (see Fig. 12b). The arrow L3 denotes the
scattered waves originated from the LUC and bottom of the canyon
(see Figs 12f–h). Similarly, as observed at the foot of Fig. 11, there
are three wave signals received one by one after the signal of direct
wave. They are tagged by arrows R1, R2 and R3. The arrows R1
and R2 denote, respectively, the scattered waves originated from
the canyon bottom (see Figs 12f–h) and the RUC of the canyon (see
Figs 12d–h). The arrow R3 also denotes the scattered waves from
the canyon bottom and the RUC of the canyon (see Figs 12f–h). In
addition, the amplitudes of scattered waves R1 and R2 are smaller
than that of R3.

In Fig. 12, one can perceive how the incident SH pulse reaches the
canyon and how a chain of scattered waves propagates. As seen in

Fig. 12(a), the incoming pulse and its corresponding reflected pulse
from the horizontal ground surface arrive at the position (−2, 0)
at t = 3.0 s, and the former impinges on the canyon bottom. In
Fig. 12(b), the scattered wave (i.e. L2 and R1 in Fig. 11) radiating
from the canyon bottom can be found. In Fig. 12(c), the incident
pulse and its reflected pulse reach both upper corners of the canyon.
From Fig. 12(d), one can observe that the reflected wave from the
horizontal ground surface bumps into the left-hand canyon surface
so that a new reflected wave (i.e. L1 in Fig. 11) is produced. Fur-
thermore, the scattered wave (i.e. R2 in Fig. 11) arises from the
RUC of the canyon. Subsequently, at the canyon base (see Fig. 12e),
this scattered wave meets two reflected waves from the horizontal
ground surface and from the left-hand canyon surface. In Fig. 12(f),
a new scattered wave (i.e. L3 and R3 in Fig. 11) is generated from
the canyon base and hits both upper corners of the canyon later (see
Fig. 12g). As can be found in Figs 12(b)–(l), the bottom and both
upper corners of the canyon behave as new wave sources. Several
scattered waves radiated from the canyon bottom are antisymmetric
to the y-axis and those shown in Figs 12(i)–(l) are of very small
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amplitude (not easily detected in Fig. 11). Besides, the diffraction
around the V-shaped canyon can be directly visualized. The charac-
teristic feature of the diffraction is that a part of the reflected wave
front from the horizontal ground surface is cut off by the V-shaped
canyon and then continuously regenerates itself.

4 C O N C LU S I O N

The scattering problem of SH waves triggered by a deep symmet-
rical V-shaped canyon has been solved successfully via a novel
analytical approach. An ingenious employment of domain decom-
position has guaranteed the full encirclement of deep canyons so
that the stress singularity condition at the bottom of the canyon
could be satisfied automatically. Through making good use of the
region-matching technique, the method of images, and Graf’s ad-
dition formulas, a rigorous series solution has been derived. For
the deep V-shaped cases, there has been good consistency between
the calculated results of derived series solution and those in the
literature. For the limiting cases, the computed results for surface
amplitudes and DSIF have agreed well with those from the exact
series solution of a single vertical edge crack. These evidences have
reinforced the validity and reliability of the whole framework of
present formulations. Both steady-state and transient variations in
surface ground motions have been evaluated and analysed. Since the
series solution to the shallow cases had been derived (see Tsaur &
Chang 2008), and that to the deep cases has been proposed herein,
the construction of series solutions to the SH-waves scattering prob-
lem of a single symmetrical V-shaped canyon has been complete.
Indeed, these proposed series solutions not only enrich the records
of known geometrical shapes of canyons, but also provide useful
benchmark examples for validating other numerical methods. In
addition, the adopted solution scheme can be applied to attack the
scattering problems of SH waves induced by other surficial concave
topography with corners.

A C K N OW L E D G M E N T S

We would like to thank the Editor, Prof. Xiaofei Chen for processing
our manuscript and his encouragement, and two referees for their
comments and suggestions on this work.

R E F E R E N C E S

Abramowitz, M. & Stegun, I.A., 1972. Handbook of Mathematical Func-
tions, with Formulas, Graphs, and Mathematical Tables, Dover, New
York.

Boore, D.M., 1973. The effect of simple topography on seismic waves:
implications for the accelerations recorded at Pacoima Dam, San Fernando
Valley, California, Bull. seism. Soc. Am., 63, 1603–1609.

Bouchon, M., 1973. Effect of topography on surface motion, Bull. seism.
Soc. Am., 63, 615–632.

Datta, S.K. & Shah, A.H., 1982. Scattering of SH waves by embedded
cavities, Wave Motion, 4, 265–283.

Hirai, H., 1988. Analysis if transient response of SH wave scattering in a
half space by the boundary element method, Eng. Anal., 5, 189–194.

Huang, H.C. & Chiu, H.C., 1995. The effect of canyon topography on strong
ground motion at Feitsui damsite: quantitative results, Earthq. Eng. Struct.
Dyn., 24, 977–990.

Kawase, H., 1988. Time-domain response of a semi-circular canyon for
incident SV, P and Rayleigh waves calculated by the discrete wavenumber
boundary element method, Bull. seism. Soc. Am., 78, 1415–1437.

Liu, D.K. & Han, F., 1991. Scattering of plane SH wave by cylindrical
canyon of arbitrary shapes, Soil Dyn. Earthq. Eng., 10, 249–255.

Sabina, F.J. & Willis, J.R., 1975. Scattering of SH waves by a rough half-
space of arbitrary slope, Geophys. J. R. astr. Soc., 42, 685–703.

Sánchez-Sesma, F.J. & Rosenblueth, E., 1979. Ground motion at canyons
of arbitrary shape under incident SH waves, Earthq. Eng. Struct. Dyn., 7,
441–450.

Shah, A.H., Wong, K.C. & Datta, S.K., 1982. Diffraction of plane SH waves
in a half-space, Earthq. Eng. Struct. Dyn., 10, 519–528.

Sills, L.B., 1978. Scattering of horizontally-polarized shear waves by surface
irregularities, Geophys. J. R. astr. Soc., 54, 319–348.

Stone, S.F., Ghosh, M.L. & Mal, A.K., 1980. Diffraction of antiplane shear
waves by an edge crack, J. Appl. Mech. ASME, 47, 359–362.

Takemiya, H. & Fujiwara, A., 1994. SH-wave scattering and propagation
analysis at irregular sites by time domain BEM, Bull. seism. Soc. Am., 84,
1443–1455.

Tsaur, D.H., 2010. Exact scattering and diffraction of antiplane shear waves
by a vertical edge crack, Geophys. J. Int., 181, 1655–1664.

Tsaur, D.H. & Chang, K.H., 2008. An analytical approach for the scattering
of SH waves by a symmetrical V-shaped canyon: shallow case, Geophys.
J. Int., 174, 255–264.

Varadan, V.V., Ma, Y., Varadan, V.K. & Lakhtakia, A., 1991. Scattering of
waves by spheres and cylinders, in Field Representations and Introduction
to Scattering, pp. 211–324, eds Varadan, V.V., Lakhtakia, A. & Varadan,
V.K., North-Holland, Amsterdam.

Watson, G.N., 1958. A Treatise on the Theory of Bessel Functions, 2nd edn,
Cambridge University Press, Cambridge.

Zhang, C. & Zhao, C., 1988. Effects of canyon topography and geological
conditions on strong ground motion, Earthq. Eng. Struct. Dyn., 16, 81–97.

A P P E N D I X A : E X P R E S S I O N S O F IC1
n,q( β) ,

IC2
n,q( β) , IS1

n,q( β) A N D IS2
n,q( β)

In eqs (14) and (15), the functions I C1
n,q(β) and I C2

n,q(β) are defined
by

I C1
n,q (β) =

⎧⎪⎪⎨
⎪⎪⎩

2β, n = q = 0

β + sin 2qβ

2q , n = q

sin[(n−q)β]
n−q + sin[(n+q)β]

n+q , n 
= q

(A1)

I C2
n,q (β) =

⎧⎪⎪⎨
⎪⎪⎩

2β, n = q = 0

β + sin 2qβ

2q , nν = q

sin[(nν−q)β]
nν−q + sin[(nν+q)β]

nν+q , nν 
= q

. (A2)

In eqs (16) and (17), the functions I S1
n,q(β) and I S2

n,q(β) are defined
by

I S1
n,q (β) =

⎧⎨
⎩

β − sin 2qβ

2q , n = q

sin[(n−q)β]
n−q − sin[(n+q)β]

n+q , n 
= q
(A3)

I S2
n,q (β) =

⎧⎨
⎩

β − sin 2qβ

2q , nν = q

sin[(nν−q)β]
nν−q − sin[(nν+q)β]

nν+q , nν 
= q
. (A4)
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