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Abstract—This paper considers the problem of synthesizing space digital filters [9]. Effective methods for synthesizing 2-D
the finite-word-length (FWL) two-dimensional (2-D) state-space filter structures with minimum coefficient sensitivity have been
filter structures with minimum weighted sensitivity. Two kinds of investigated [10], [13]. In [10], all the frequency regions are
frequency-weighted sensitivity measures, one based on a mixture . ’ ) ’ . .
of Li/L> norms and the other a pure L, norm, are defined treat(_aq_umformly_. The method reporte_:d in _[1_3] studles_ _the
in place of the usual sensitivity measure and an upper bound Sensitivity behavior of a transfer function within a specified
expressed in terms of 2-D weighted Gramians is used to evaluatefrequency range. Based on the Fornasini-Marchesini second
:Ee V‘éeighlted 5lf/L2 bTi)'(e'd Se”SiEVi:‘y];_ltA Sitmp'te tec“ﬁiﬂue IS LSS model [17], similar techniques have been explored [11],

en developed for obtaining a set of filter structures with very : .
low weighted L, /L.-sensitivity. In this connection, the optimal _[14]‘ The frgquency-welghted senS|t|V|ty.measures haye been
coordinate transformation is characterized in a closed form. introduced in [13], [14], where a constraint on the weights of
Next, an iterative procedure is proposed to obtain the opti- the various terms of the measure is imposed. More recently,
mal coordinate transformation that minimizes the weightedL,-  the frequency-weighted,-sensitivity problem has been con-
sensitivity measure. Once the initial value is given, the estimate sidered by [15] via a 2-D gradient-flow-based optimization
at each iteration can be calculated analytically. Finally, two . o . ) .
numerical examples are given to illustrate the utility of the t€ChNique that was initiated in [7] for the one-dimensional
proposed technique. (1-D) case. It was argued in [7] and [15] that the sensitivity

| . . _— minimization, although technically more challenging, is more
ndex Terms—Finite word length, optimal realization, Roesser . .

model, two-dimensional IR digital filter, weighted coefficient Natural and reasonable than the conventiobglZ, mixed
sensitivity. sensitivity minimization.

This paper treats the problem of reducing the coefficient
sensitivity of 2-D state-space digital filters within a specified
frequency range. Here, the Roesser LSS model is employed

NDESIRABLE finite-word-length (FWL) effects ariseto describe 2-D state-space digital filters. From a practical

in the fixed-point implementation of recursive digitaljiewpoint, we are interested in the sensitivity performance of
filters. One of them is the deviation of the actual transfgfe transfer function within a specified frequency range. This is
function from the ideal transfer function, which is causegchieved by defining a weighted sensitivity function. One con-
by the truncation or rounding of the filter coefficients. As igipution of our paper is to address the case of general uncon-
well known, the state-space approach allows such an effeciipained frequency weights for 2-D state-space digital filters.
be minimized by appropriately choosing a filter structure thatyother, is to solve the corresponding problem of synthesizing
minimizes a well-defined FWL effect. Several techniques hayge fjlter structures with minimum weighted sensitivity. First,
been reported to synthesize linear state-space systems that @@ sensitivities of a 2-D transfer function with respect to state-
imize the coefficient sensitivity [1]-[7]. A similar techniquegn,ce parameters are analyzed in conjunction with frequency
for multi-input-multi-output continuous-time systems has al§gejghted functions. The overall frequency-weighted sensitivity

been presented [8]. In addition, the problem of minimizing1easure is then evaluated, using a mixtureLof L, norms,
the coefficient sensitivity of two-dimensional (2-D) state-spaces \ ol as a purel, norm. Second, a simple technique
digital filters has been studied [9]-[15]. Based on the Roesii : ’

r .. . .
: . developed for synthesizing the 2-D filter structures with
local state-space (LSS) model [16], Zilouchian and Carr ry low frequency-weighted., /L,-sensitivity. A closed-

have investigated a coefficient sensitivity bound in 2-D St@5m solution that is optimal in a certain sense is obtained.
" ) ed October 15. 1997 revised May 26. 1998, Thi The 1-D version of this closed-form solution turns out to be
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procedure is advantageous since the estimate is calculatewith these notations, it can easily be shown that

analytically at each iteration. Finally, two numerical examples OH (241, 72)
are presented to demonstrate the validity of the proposed a—A’ =G (21, 2)F (21, 72)
technique. _ _ _ _ _ o OH (71, 22) .
Throughout this paper, the-dimensional identity matrix is — = =G (21, 22)
denoted byl,,. The transpose (conjugate transpose) of any 9 H(?b )
matrix A is indicated byA* (A*) and trA and & are used to % =F(z1, z2). (6)

denote the trace of a square matrxand the direct sum of
matrices, respectively. The termd and the sensitivity with respect to it are coordinate

independent and therefore they are neglected here.
To consider the sensitivity behavior of the transfer function
in a specified frequency band, or even at some discrete

Consider the following LSS modéW, b, ¢, d),,,. for 2-D  frequency points, the weighted sensitivity functions are defined
digital filters which was originally proposed by Roesser [16kg

II. WEIGHTED L, /Ly MIXED SENSITIVITY ANALYSIS

()] _[A b][=(,5) SH(z1,2) _ o OH(z1,22)
o R @ o4 A0
6H(21,ZQ) —W aH(Zl,ZQ)
where - B(21, 22)4(%
[+ o [= ) S z) gy ) )28 22) )
-""11(L7J) - [xb(L71 + 1) i I(L,‘]) - -,”.L(L71) (5Ct act
A Ay b, where W (21, 22), Wg(zl,zg), aqd We(z1, 22) are thre.e
A= As Ay = b, | c=la o] stable, causal scalar rational functions of the complex variables

z; and z. It should be noted that in (7) is not meant to be
Here =" (i, ) is anm x 1 horizontal state vectoes¥(4,j) is @ derivative operator, but rather a notation for defining the
ann x 1 vertical state vectoru(s, j) is a scalar inputy(é,7) Weighted parameter sensitivity as seen in (7). Let
is a scalar output, andl;, As, Az, Ay, b1, bs, €1, 2, d
are real constar?t matricels7 of 2a7ppr:z)7pri::11t’e éi’me2r71$icl>’rls.271'he LSS Walz1, 22) = Wiz, 2)Wa(21, 22) (8)
model (1) is assumed to be BIBO stable, separately localig a factorization of¥ 4(z1, 2,). Note that, unlike the system
controllable, and separately locally observable [18]. Define considered in [13], there is no assumption such that

F(Zl,ZQ) ( ) G(71,22) = C(S — A)_l Wl(Zl,ZQ) = WB(Zl,ZQ), WQ(Zl, ZQ) = Wc(zl, ZQ)

H(z1,22) = C(S 4)” 1b+d S=zlm®z2ln (2) for the system considered here.

where F(z, z,) consists of the transfer functions from the Definition 2: Let X(z1,z) be anm x n complex matrix
. . valued function of the complex variables and z;. The L,
filter input to the filter states(7(z1, »2) is defined as the set norm of X is then defined as

of transfer functions from the input of each of delay operators (21, 22)
to the output, andd(z1, z2) is the transfer function from the o dz1 dzs
filter input to the output. |1X 1] { j{j{ || X (21, z2)| e }

Let the coordinate transformation be specified as

(9)

Z1R2

wherel? = {(zl,zg): |z1] = 1, |22| = 1} and || X (21, 22)|| ¢

T(i,j) = T x4, j) (3) is the Frobenius norm of the matri¥(z;, z,) defined by
whereT =T, & Ty andT; (T4) is anm x m (n X n) non- m.n ) 1/2
singular matrix. Then an algebraically equivalent realization || X (21, 22)||F = ZZ |Zpq (21, 22)| .
(A, b, €, d)mn given by =1g=1

The overall weighted.; /L, mixed sensitivity measure is

= _ 1 7 _mp—13 -
A=T"AT,b=T""bc=crl (4) now defined as

is obtained. From (2) and (4) it is clear that the transfer §H(z1,2) |7 §H(z1,2) |7
function H (21, z2) is invariant under such a transformation. Mij2 = Hi + H—

Definition 1: Let X be anm x n real matrix and letf(X) 2 2
be a scalar complex function &, differentiable with respect + HM ) (10)
to all the entries ofX. The sensitivity function off with 2
respect toX is then defined as From (6)—(8), we can write (10) as

Sy = g_;; with (S )iy = aaf (5) Mz =|[Wiler, 2)G (21, 22)Wala, 22) F (21, )|}
! + Wi (21, 22)G (21, 22)][3

wherez;; denotes théi, j)th entry of the matrixX. + ||[Wez1, 20)F (21, 2)| |3 (11)
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By the Cauchy-—Schwartz inequality, we have Ill. FILTER SYNTHESIS WITH VERY Low

WEIGHTED L; /Ly MIXED SENSITIVITY
W1 (o1, )G (21, 20)Wa (o1, 22)F (21, 20)| /L2

In this section, we consider the problem of obtaining the
< Wiz, 22)G (21, 22)| 3 Walz1, 22)F (1, 2213 b J

matrix P = TT" that minimizes (17), subject to the mini-

(128) mjzation of J(P), whereT is block diagonal. An analytical
method will be developed for obtaining such a matxThe
problem of iteratively minimizing (17) with respect tB =

|W1(21, 22)|°G(21, 22)G* (21, 22) TT" for any nonsingularT” that is not block diagonal has
= P2\ Wa(z1, 22) |2 F* (21, 20) F (21, 22) (12b) been solved in [5]. However, apart from whether Hienatrix

is block diagonal or not, the two problems mentioned above
for some nonzero real numbgerTo facilitate the mathematical are similar, yet different.

where the equality sign holds if and only if

treatment, an upper bound of, ,, is employed as follows: According to the partition
My)» = [[Wi(21, 22)G" (21, 22) |13 [Wa(21, 22) F (21, 22) |13 P= |:P1 0 } P =TT i=1.4 (18)
+[[Wp (21, 2)G (21, 22)| 13 0 Py '
+ [|We(z1, 22)F (21, 22)||3 (13) the weighted Gramiank,,, K., K,5, and K.c can now

. . be represented as
wherem;,, < My ,. This upper bound can be viewed as a P

2-D extension of the upper bound, » < M, , for the 1-D [k K@ Ko kY K
case introduced by Thiele [2]. From (9) it is easy to show that AT KD KW <27 kY KO
B KD 1) )
Ml/g—tI‘KoltI‘ch—i-tI‘KoB +tr K ¢ (14) K.p= (()?3 &5 K. = &% E‘LC) )
KOB KOB KcC KCC
where K,;, K., K,p, and K. are often referred to as (19a)

weighted observability (for those with subindex and con-
trollability (for those with subindex) Gramians, and can belf we introduce
obtained by the following general expression: . |:K(11) 0 } R [K(é) 0 }

X * 0 KW
K= W 7{ r2 Y (21, 22)Y " (21, 22) 3

1 1
K%Y o } . [Kgg 0 }
with Y(Zl, 22) = Wf(zl, ZQ)G* (Zl, 22), WQ(Zl, ZQ)F(Z;L, 22),

le dZQ

(15)

Z122 IA( . |:
7l o kY o K%
WE(Zl,ZQ)G*(Zl,ZQ), and Wc(zl,ZQ)F(Zl,ZQ), respec- (19b)

tively. :
. : ' J(P) and L(P) in (17) can be expressed as
The coordinate transformation defined by (3) transforms the( ) (P)in (17) R R P
weighted Gramian$K 1, K2, Kop, K.c) into (K1, K2, J(P) = t1[K o1 P] tr[K oo P,
K,5, K.c). Then (14) is changed to L(P) = tr[K 5P| + tr[K.c P7Y]. (20)

Myjz=tr Koy tr Koy + 11 Kop + tr Koo (18)  Hence it suffices to deal with the matricés instead ofK.
where To make the exposition simple, we omit the hat and wkie

_ _ for K in the following.
_ 7t _ p—1 —t
Ko =T'KaT, Keo=T KT First, we minimizeJ(P) and then minimize (17) subject to

K.p=T'K,pT, K.c=T 'K.T " the minimization ofJ(P). Using the formula for evaluating
Moreover, (16) is written as the matrix gradient [19, p. 275]
— altr(MX
-1
where Itr(MX )] C(XMXLY (21)
. T, 0 0X
P=TT', T-= : ,
0 Ty we obtain the equation for extrema gf P)
J(P) =tr[K 1 P]tr[K .o P,
(P) = ta[K 1 P a] o L B—
L(P) =t1[K,gP] + tr[K.c P™]. apP

-1 -1 _
The problem being considered here is to obtain the symmet- — WK PIPT Ko P =0. (22)

ric and pOSitive-dEfinite matri® that minimizes (17), SUbjeCt All the solutions of this equation take the form
to the minimization ofJ(P).

Remark 1: In order to effectively control the upper bound P =pP, (23)
of the L;-norm term in (11), while minimizing (17), we See‘\mherePb
to find a 2-D coordinate transformatidhi (3) that minimizes
(17) subject to the minimization of (P). PK, P=K,,

is the unique solution of the equation
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and p is an arbitrary positive number. Moreovef{P) has
the single extremum

J° = J(pPy) = (K1 Py))?

which is independent of.> Noting that PW P = M has the
unique solution [5]

= (tr[K2 P, t)? (29)

P= W7(1/2)[W1/2MW1/2]1/2W7(1/2) (25)

whereW >0 and M > 0 are symmetric, the?, matrix is
given by

Py = (Ko) ™ [(Ko1) K ea(K 1)) (K1) =2
(26)

and J° is described by
J? = (1[K 2K o1]Y?)2. 27)
Theorem 1:1f K,; = K9 & K'Y and K., = K

@ KS) are (m + n) x (m + n) real symmetric positive-

definite matrices, then the extremu in (27) is really the

minimum of J(P). Furthermore,J° can be expressed in terms

of the square roots of the eigenvalugs?, o3, -+, 02,,,,}
of KK, as follows:
m+n 2
JO = Jmin = <Z Ji) . (28)
=1

Proof: The proof relies on the following inequality [20

1175

where

Ty = (Ko1) Y2 [(K )Y K o (K
U=U,9U,

01)1/2]1/4U

andlU(Uy) is an arbitraryn x m (n x n) orthogonal matrix.

Substituting (33) into (31) gives
QQt = plrn—l—n- (34)

This implies that equality in (32) holds, that is, the extremum

Join (27) is actuaIIy the minimum o¥ (P).

Let o7, 03, -+, 02,4, be the eigenvalues oK K.
Then there exists a nonsmgular matfksuch thatK .. K,
= R ! diag(s?, 02, ---, 02,,,) R. Hence

m+n

JO = Jmin
= (tI‘[KCQKol]l/Q)Q

= (tr[diag(al, T2, 7anl+N)])2

m-+tn 2
= <Z ai> . (35)
=0
This completes the proof of Theorem 1.
From (16), (19), and (33) we obtain
PRy =Ky, =14 (36)

p. 556]. If D is a real symmetric positive-definite matrix and

if @ is any nonsingular real matrix, then

2[QDQ'| (@' DQ™'] = (tr D)? (29)
where the equality sign holds if and only if
pQQ" = (30)
for some positive real number.
Choosing the abové? and Q matrices as
D_[(KOI)I/QKCQ( )1/2]1/2
Q=T 01)1/2[(K01)1/2Kc2( DAY (3
inequality (29) can be written as
tr[K 1 Pltr[K 0P > (tr[K 2K ]Y%)?  (32)

where P = TT". On the other hand, taking® = T'T" and

P, = T,T! into account and using (26), it is clear that (23

is equivalent to

T = \/pT, (33)

1SupposeP is a solution of (22). Sincer[K .o P~'] andtr[K,1 P] are

positive, we can take >0 such thatp? = tr[K,1 P]/tr[K.oP~t]. Then
Py = (1/p)P satisfiesP, K o1 P, = K 2. Indeed,P, ' = pP~" and

0=tr[KeyP 'Ky —tr][Ko  PIP 'K P!

=t[K2P (Ko — p? P K P71

=tr[K o P |(Ko1 — Py Koo Py ).

Thus, the solutions of (22) are exhausted by the solution of the form (23).

This shows that the weighted Gramiah,; and K., are
block balanced [21] whep = 1 .

Remark 2: If (12b) can be derived from (36), then (12a)
becomes an equality. However, unlike the 1-D case [2], the
derivation is impossible in the 2-D case.

It turns out that the minimization of (P) forms a family
of a matrix P parameterized by >0 . We now proceed to
determinep that minimizesM >(P) in (17).

Theorem 2: The optimal solutionP = P; ¢ P4 that
minimizes the weighted sensitivity measuTél/Q(P) in (17)
subject to the minimization of (P) is given by

tr[K.c Py

P =
tI‘[KOBPb]

P, (37a)
?r equivalently

14~ 1/4
M) T,U (37Db)

T — tr
— \tr[K, 5Py

whereU = U; & U, andU; (Uy) is an arbitrarym x m

(n x n) orthogonal matrix. The minimum ofZ, /»(P) is

m—4tn

My)(P) = <Z

=1

2
a> +2\/tr[K0,;Pb]tr[chPb_l].

(38)



1176 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 10, OCTOBER 1999

Proof: Substituting (23) into (17) gives (Necessity) Assume that the equality in (41) holds. Then,
Ml/Q(pr) = T + ptr[KoBPb] +p—1 tr[KcCPb_l]- for a positive numberp
(39) pPy, = P. (47a)
Here, the arithmetic-geometric inequality says that
pti[K, 5Py 1ot tr[chPb_l] must hold whereP, and P, satisfy
> 2\ /u[K,pPy] ulK . Py (40a) AP, K, P, =K., P.K,pP.—K..  (47b)

where the equality is valid if and only if
ptr[K,pPy] = p L tr[K.cP,
or equivalently

and « is any positive real number. Using (47a) enables one
to change (47b) to

1
1 aP. K, P. = ap’K.o, P,K,zP, = —K.c (48)
o= tI‘[ch.Pb ] ) (40b) p2
tr[K 5P ) . . .
Substituting (40b) into (23) yields (37a). Substituting (28) int§',”|:ep » and ITc are trf:e unique solutions, comparing (47b)
(39) with (40a) produces (38). with (48) concludes that

This completes the proof of Theorem 2.

The next theorem describes the relation between the second
term in (38) and the minin(’nlt;m oL((l;). " where 8 = ap?

('l;?eorem 31t Kop = K,y @ K,p andKec = Ko & (Sufficiency) Assume that (42) holds. Substituting (42) into
ch_are(ern) x (m +n) real symmetric positive-definite (26), we obtain
matrices, then

K.,p = OéKol, K. = /3K62 (49)

m+n (8%
P,=,/-P, 50
\/tr[K(,,;Pb]tr[chPb_l] >3\ (41) ’ \//: ‘ (50)
=1
where A1, Ao, -+, Amin are the square roots of the eigenl(/ﬂ?rigasls given by (44). It is obvious that the equality in

values of K.« K,g. The equality in (41) holds if and only if

the system satisfies This completes the proof of Theorem 3.

It should be noted that
KOF)' = aKola KCC = ﬁKCQ (42) N
. min M /5(P) > min J(P) + min L(P)
where« and 3 are some positive real numbei,; = Kf)l) r B ]P. I r 51
& KD andK., = KU @ K. = Jnin & Lusin (51)
Proof: To minimize L(P) in (20), we carry out compu-
tations similar to those done in (22)—(27). The result is that

L(P) has the extremum

Corollary 1: The relation (42) holds provided

Wa (21, 22)] = Va|Wi(z1, 7))
L = L(P.) = 2t[K,pP.] = 2tr[K cP."] (43) W21, 22)| = /B Walz1, 22)]. (52)

at the matrixP., which is the unigue solution of the equation Corollary 2: If (42) holds, then (37) is changed to

PK,zP=K..

3
Since P. is solved as P = \/;Pb (53a)
_ —(1/2) 1/2 1/211/2
P.=(Kon) [(Kop) " "Kec(Kop)™"] or equivalently
(K,p)~/? (44)
3 1/4
we obtain T= <—) U (53b)
67
L° = 2tr[K .o K, p]>. (45)

and the equality sign in (41) holds. Moreover, (38) becomes
By an argument similar to those in Theorem 1, it can be

shown that the extremurh® in (45) is really the minimum of _ m4n mtn
L(P) and is expressed in the form MipPy=|{> o || Y oi+2V/aB]|. (54)
i =1 =1
L? = Luin = 2(2 Ai)' (46)  The optimal filter structures that minimiz&/ , />(P) (17)
=1

subject to the minimization of (P) can readily be synthesized
Hence, the inequality (41) is proved. by substituting (37b) into (4).
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Remark 3: Notice that (53) can be considered to be awhere P is as defined in (17). According to the partition of
extension of the 1-D closed-form solution reported in [5] t¢18), M 4(¢, j) can be represented as

the 2-D case. In Corollary 2 it is mentioned that (53) can be

derived from (37) as a special case for the system such that M,(i,5) = &y, &y, 0 (58)
(42) is satisfied. In other words, unlike the solution given by M7 5) My ()
(53), (37) can be applied to the general systems where (42)riging (21) into account, it follows from (57) that
not always satisfied. It should be pointed out that neither the i (P
1-D version of the closed-form solution (37) stated in Theorem m2(P) =F,(P)— p;1F2(p)p;1
2 nor the 1-D counterpart of arguments stated in Theorem 3 aﬁleP)
. mo — —
has been reported in [5]. 0P, — F5(P) — P{ F.(P)P]! (59)
IV. FILTER SYNTHESIS WITH where
MINIMUM WEIGHTED L2-SENSITIVITY o oo
In this section, we synthesize the 2-D filter structures that =3 NP HPTMP G )
minimize a weightedL,-sensitivity measure defined by i=0 j=0
S [ e T MM 1
T ’ Fo(P) = 373 ML) PLM ()
+|[ 2 (5)
C .. ..
, , 2 , +M<3><z PNPMP )] + KL
instead of (10). Referring to (11) and (14), we can write (55) as
_ (3) 1ag(3)
ma = te[K 4] + Ko 5] + te[K o] F3(P) = ZZ (6, )P M (0, 5)"
1=0 =0
- [ZZMAa,j)Mz(i,ﬂ] + t1[K ] + M@ HPT MY (6 5)] + K
i=0 j=0 " e 2) . - 2)/ . -
+ tr[K o] (56) Fy(P) = 222)[M54)('L,J)tP1M54)('L,J)
1=0 g=
where K 4 is obtained by the g;neral exp:essmn of (15) with + Mff)(i,j)tP4Mff) (i, )] +K£40)-
Y21, 2) = Waler, )G (21, 22) (21, 2) Letting the two equations in (59) be null yields
and M 4(z,7) is derived from
‘ §<L’J> - P F\(P)P, = Fy(P)
MaGii)= 337 walh MG~k =) PuFy(P)P, = F(P) (50)
(0,00 (k7)< (i) _ .
M(i,j) = ZZ gk, ) fH (i — K, — 7). ;Sggf)ctlve(:yj)(i%m (55) gnd (60) it follows that the values
(0,0)< (k1) <(i4) L and.fy satisfying
n Piz+l)F3(P(z))Piz+l) :F4(P(z)) (61)
(i, ) =ea@ 1) [Im O pqas(0 0 _ ,
g\ = 0 0 0o I, respectively, are given by
A0 _ [16" 3},4, P = B (PN (PO (PO (PO
—(1/2 i
A1) 0 0 A i+1 'F11(2/ )(P( ) 1/2/ pli N 1 /2 (i
= {0 I,,} PS ) :Fg( / )(P(Z))[Fg/ (P(Z))F4(P(Z))F3/ (P(Z))]1/2
. o —(1/2) s pli
ACO =g o AT = AGD —0, (4,5 > 1) FyY2(PO) (62)
AGD) = AT AT 4 AOD G- whereP is the solution of the previous iteration. The initial

M3, ) MP3,5)

— AG=LD A0 4 AGI=D AOD: (5 55 (0,0) estimateP® in the above iteration is given by (37a). This

with w4 (k,r) being the unit-sample responsel®dt;(z;, z2).
Applying the coordinate transformation defined by (3) to the
original filter, (56) becomes

iteration process continues until

[ (PUY) — i (PY)| < (63)

wheres >0 is a prescribed tolerance.

Mo (P) =1tr [ZZMA i,5)P M, (i, 5)P

2=0 j=0

While the convergence of the iterative algorithm described
in (62) remains to be proved, the algorithm was applied to quite
a number of simulation examples and fast convergence was

+ t1[K, g P] + tr[K .c P (57) observed in all the cases. A sample of these examples will be
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illustrated in the next section. As a remark on this convergenfm®lowing 2-D lowpass filters:
issue, we note that an interesting iterative algorithm, based on

the concept of gradient flow for frequency weighted sensitivity 20 20 :
minimization of 1-D discrete-time systems, was proposed Wa(z,22) Zzwa i,0)71 72
in [7] and extended to 2-D Fornasini-Marchesini model in =0 j=0
[15]. Although the nonlinear setting in (62) differs from that 20 20
of [7] and [15], the technique employed there to show the Wa(z1,22) ZZW i0)a 2y
convergence of the algorithms appears worthwhile to analyze =0 j=0
in order to show the convergence of (62) or similar algorithms. Wen, ) = N(z1, 72)

Given the Ly-optimal matrix P = P; ¢ P, which is ’ D1 (z1)Da(z2)
positive-definite and symmetric, the correspondingoptimal
transformation matrix can be constructed as where

T = [PV & PYU, & U] (64)  ali:f) =0.256322exp[~0.103203{(i - 42+ (5 -4

wy (4, 7) = 0.256322 exp[—0.103203{ (¢ — 5)2 + (5 — )%}
wherelU; andU 4 are arbitraryn x m andn xr» orthogonal ma-
trices, respectively. It is possible to synthesize ftheoptimal  N(z1, z2) E E bijz " 72

filter structures such that (57) is minimum by substituting (64) i=0 j=0
into (4). D(z) =1.0 — 1.114252; 1 + 0.757452;, > — 0.34255z;,°
Remark 4: As was shown in [22], the orthogonal matrices
[22] g 01017127, k=1,2

U; and U, in (64) can be used to obtain a state-space
realization with more zero or one entries, which further reduces

the L, sensitivity. An alternative approach to accomplish this b b
is to use singular value decomposition (SVD) [23], [24] as boo b01 b04
10 11 e 14
follows. i i
Let us denote
~ ~ b40 b41 T b44
A=T "AT = [{11 {12} T=PaP/? (65 0.12814 0.64232 0.74979 0.64232 0.12814
As Ay 0.64232 0.33077 0.68889 0.33077 0.64232
~ = [0.74979 0.68889 1.34339 0.68889 0.74979
and apply SVD toA, 0.64232 0.33077 0.68889 0.33077 0.64232
. 0.12814 0.64232 0.74979 0.64232 0.12814
A, = RSQ" (66) % 10-2.

where R and @ arem x m andn x n orthogonal matrices, a factorization of (8) is now assumed to be
respectively, and

Wl(zl, 22) =1

a1
Wz, 20) =Wa(z,22)
g, - 0
? o'’ Example 1: (2, 2)th-Order Filter
0 0 Consider the LSS model (1) specified by

with 7> being the rank ofd,. Evidently, if we letU; = R, 1.88899 —0.91219 —1.0 0.0
U, = Q, then4 = T~ AT has the form A=| 1O 0.0 0.0 0.0
0.02771 —0.02580 1.88899 1.0
1[4 5 67) —0.02580  0.02431 —0.91219 0.0
4 Ay b=[0.219089 0.0 —0.0288389 0.091219]"

. . c= [0.28889 —0.091219 —0.219089 0.0]
whereS; has(mn — r3) zero entries. Alternatively, SVD may

be applied to the matrix; to yield (mn — r3) zero entries
wherers is the rank ofAs;.

wherem = n = 2.
Applying Parseval’s relation to (14) and (15), it follows that

V. [LLUSTRATIVE EXAMPLES K, = Z Zgil(ivj)gol(ivj)
The frequency weighting functions W (2, 22), i=0 j=0
Wg(z1,22), and We(z1,22) can be either of 2-D finite
impulse response (FIR) or infinite impulse response (IIR) Koy =Y foolis i) fl(i,5) (68)

digital filters. For simplicity, let these be given by the =0 j=0
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where The suboptimaP. = Py & P4 matrix that minimized.(P)
in (17) is calculated from (44) as

9ar(i:d) = DY wilk,r)gli—k,j—7)

2 3 p. _[7:84351089  8.18028539
0.0 k) <(59) L= [8.18028539  8.86708460
Folti) = D %, walk)fli=kj=7) p. _ [ 001483796 —0.01394208
0.0)=(k,r)<(i.5) 71001394208 0.01349485
Wi(z1,22) = Y Y wn(i )z 237, k=12 or equivalently
i=0 j=0

B [2.06433731 1.89262314}
Here, f(i,5) and g(i,j) are as defined in (56). From (56) ' [1.76150446  2.40087206

and (68), the 2-D weighted Gramia#s)’, K k), K, T [ 0.08854411 —0.08365345}
and K2, i = 1,4 can be calculated by truncatiah < i * 7 |-0.06955674  0.09304145 |

< <j< 2 .
< 100and0 < j < 100% as In this case, from (17) and (57) we have

KD [ 460405.02074980 —406380.17548504} MI/Q =J + Lyin = 8057.9652
A mARE seE
K® — 390597141.53364521  383598953.44964486 _
A4 7 |383598953.44964486  390423379.40672630 respectively, where/ = 7998.2396 and L, = 59.7256 .
K _ 11.33639752 —10.35083304 t 'E{'rt]we Ll_/_LQ_-opt'qmalgr;atrlx Wtr)uch m|n|n:|zde? a7 ;;iject
of = | 10.35083304 9 66068618 o the minimization of/(P) can be computed from (37a) as
KY = (638.95921778  622.90731381 P = 5.14975986  5.30489866
ol ™ 1622.90731381  638.94448493 17 15.30489866 5.62128787

Kg) _ 2869.13457721 2822.98023270} P, = [

2822.98523270  2869.02675750

0.01884643 —0.01733058
—0.01733058 0.01662501

K@ _ [ 492296703 —4.33804824 or equivalentl
2 7| -4.33804824  3.94010274 q y
O _ [ 2329761522 —20.35185194 g _ 141877744 177110995
oB T |_-20.35185194  18.37114758 L7 11.15269142  2.07185674
K _ [21436.38888158  21164.41125664 p. _ [ 012303452 —0.06090101
°B = [21164.41125664 21436.07017164 * 7 1-0.10149961  0.07951626 |
1y _ [50.99062638 50.04288786 A it thelor / Lo-optimal fi : hesi
K= 150.04288786  50.98841828 s a result, thel; / Lo-optimal filter structure is synthesized

K9 — [ 0.12967208 —0.11585595 from (17) and (57) that
eC | —0.11585595 0.10657265 |
M5 = Joim + L = 6459.9130

Then, the original weighted sensitivities (14) and (56) become
me =163012.2215

M2 =J + L =7507830.8616 respectively, wherd,i, = 6391.6953 andL = 68.2177.
mo = 781888507.4065 Applying the iterative procedure (62) produces
respectively, where/ — 7464814.5185 and, — 43016.3431. P = Bgmgg;gg ﬁ'?‘?éjgggg}
919 AD

2This region was chosen according to the memory capacity of computers P, =
in the laboratory as well as the approximation accuracy in the truncation.

0.00869668 —0.00794560
—0.00794560 0.00751555

0.95926221 —0.13460051 —0.28387657 0.14051640
0.15109352 0.92972779 0.15793663 —0.07817724
0.06626498 —0.01761805 0.99244647 0.15503995
—0.02334944 0.03626901 —0.14459846 0.89654353

b =1[0.50550229 —0.28123959 0.90459477 2.30185664]"
¢ =[0.30472326 0.32266325 —0.02695551 0.01334274]

N
Il

from (4) as shown at the bottom of this page and it follows
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after 20 iterations or equivalently Applying (44), the suboptimal filter structures are realized
from
2.21652433 2.80609916}

Tl = |: FEOor " _
1.85565665  3.36377799 1994.65983573  1090.47959350 349.84385826

T, = 0.07803397 —0.05106247 P; =11090.47959350  810.29935629 464.59809968
—0.06253108 0.06004513 | | 349.84385826  464.59809968 447.86957497

[6.11907288  3.09433408 0.66823909
Py =13.09433408 2.08175279 0.97490842
10.66823909  0.97490842 0.93506167

where truncatiord < ¢ < 100 and0 < j < 100 was used
to compute F.(P), k = 1,2,3,4. Substituting the above
coordinate transformation into (4) provides ttig-optimal
filter structure as shown at the bottom of this page and (17)

and (57) were used to calculate or equivalently,

M, =J+ L =11546.8608 -

12 + © 13.82537475 30.61643239  29.43047598
my = 84193.9719 T, = |16.78176757 22.16623497  6.10980039
18.56399712  8.45750822 —5.63188606

[0.59412325  1.56120892 1.82447723
T, =10.72216789 1.15695186 0.47083831
1079947389 0.46108297 —0.28862721

respectively, where/ = 11481.6550 and L = 65.2058.
Example 2: (3, 3)th Order Filter
Let the LSS model (1) be given by

[0.0 1.0 0.0

A =0.0 0.0 1.0 From (17) and (57), this gives
10.38315 —1.38605 1.90670

—0.06280 0.06190 0.00654 Ml/g = J 4 Lo = 364.6126
Ay = | —0.02810 0.03956 —0.02248 -
| 1.24452 —0.57092  2.05865 | My =2186.2190
[—0.00003 0.00038 —0.00053 ]
Az = | —0.00001 0.00018 —0.00026 respectively, where/ = 351.6035 and L,,;,, = 13.0091 .
| —0.00008  0.00023 —0.00017 | Making use of (37a), thel,/Lo-optimal filter structures
0.0 1.0 0.0 that minimize (17) subject to the minimization dfP) are
A, = 0.0 0.0 1.0 constructed from

10.38238 —1.38178 1.90253

. ) [695.06511011 443.59300157 226.86622553
bi=b,=[0.0 0.0 10|
~ 00050 0.01056 P, = |443.59300157 382.35826949 282.87830911
e =[0.01141 ~0.00540  0.01956] |226.86622553  282.87830911  287.77432092
¢; =[0.01164  —0.00545 0.01960] [2.71258003 1.73686609 0.89019654
wherem — n — 3 P, = |1.73686609 1.50929838 1.12229674
moe=n= 2 0.89019654  1.12229674  1.14720037

Using (56) and (68), the submatrices of the 2-D weighted
Gramiansk'?, K%, K% K andK'., i =1, 4 can be
calculated by truncatio® < i < 100 and0 < j < 100 as Or equivalently
shown at the bottom of the next page. Then (14) and (56)

becomes [13.73007262  19.38689360  11.43233915
T, = |15.36067722 12.09880780  —0.16344619
16.16489972 279936292  —4.31670073

[0.86378782  1.21374840 0.70232925
T, = [0.96989606 0.75372228 —0.02242183

respectively, wherd = 296773.3396 and L = 2900.3916 . [1.02128137  0.16658800 —0.27646548

M, o =J + L = 299673.7313
mo = 10441330.7603

0.96517195 —0.16243289 —0.11672716 0.07638182
0.12649366 0.92381805 0.06439353 —0.04213668
0.13175457 —0.04244315 0.97923151 0.12870234
—0.06389460 0.11195028 —0.16569878 0.90975849

b=1[0.32772442 —0.18079196 1.95851839 3.55877769]"
¢=[0.47106057 0.50381352 —0.01709638 0.01118722]

A=
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Then, making use of (4), we get

1181

Applying the iterative procedure (62) provides

[ 083377989 —0.21625751 —0.01783948 |
A= g'f;‘éj?ggg g'iiggg% _g'i‘zggggzg 2402.69261014 132643635801  446.26772332
Yo% AR < : P; = |1326.43635801 927.17620872  512.42934385
_ 0.30544369  0.16449039  0.03618117 446.26772332  512.42934385  480.37920997
A, = | —0.38465345 —0.20745137 —0.04669960 -
0.98655056  0.15175330  0.03160229 5.13089004 2.66738136 0.67461188
ooo0ncl 00010065 oonossast]  Tr [2OTIBIS0 L7E20200 056201079
Az = |—0.00168438  0.00016443  0.00204681 L+ : :
| —0.00114298  0.00183361 —0.00013724 |
[ 083476698 —0.21581510 —0.01797649 | after 20 iterations or equivalently
A, =| 0.27709299  0.51222077 —0.32714155
—0.12456645  0.45339646  0.55554225 17 55074796 34.34813573 309584047
e RN A 1ARARE . 5 . 5 25 5
fl—[0'11°8942° 0.14568253  0.10786033] T = |19.02504678 22.70962425  7.03539409
by =[1.81737136 —2.28750015 1.71803526]" 19.82782611  7.62476990  —5.39438650
¢ =[0.38989791 0.21062649 0.04689093] [0.65589244 1.51045141  1.55538795
€ =[0.02478567 0.01328537 0.00287859] T, = |0.73604761 1.04267141 0.39199789
and from (17) and (57) it follows that 1078027301  0.37396246 —0.25846633

Ml/2 = Jmin + L =290.7477
mo = 2806.3110

respectively, where/,,;, = 276.0360 and . = 14.7116.

where truncation0 <

1 < 100 and 0 < 57 < 100 was
used to computéy,(P), k =

1,2, 3, 4. Substituting the above

1251.75449772
—2979.86329982
| 2999.81755684

845585.48203204
—1993349.60116238
2015318.08545784

—2979.86329982

—7133.50326166

2999.81755684
—7133.50326166
7299.95917720

—1993349.60116238 2015318.08545784
4714069.08436384 —4744374.88497449
—4744374.88497449  4863101.78275287

7122.30587652

0.00356937 ]
—0.00905795
0.00933207 |

0.37922176 |

0.00149858 —0.00364930
—0.00364930 0.00956165
0.00356937 —0.00905795

0.15953189 —0.38560521
—0.38560521 1.00770155 —0.95804046
| 0.37922176 —0.95804046  0.99147667 |

[45322.52827960 43822.10189449  39634.12075737
43822.10189449  45307.52406750 43818.67539592
[ 39634.12075737  43818.67539592  45327.66655788

[77.13949821  74.86433871 67.80484994
74.86433871 77.73814927 75.31371509
[67.80484994  75.31371509 78.03763354

[ 0.00657555 —0.01610628 0.01597188
—0.01610628 0.04000610 —0.03922995
0.01597188 —0.03922995 0.04019986

4.24697220 —10.09219961 10.16484848
—10.09219961 24.09804943 —24.12544059
| 10.16484848 —24.12544059 24.73648669

[947.12826344  900.34470992 772.59639177
900.34470992 946.91813917 900.22072602
| 772.59639177  900.22072602 947.21153262

[1.97861983  1.88693064 1.62312130
1.88693064 1.99044115 1.89578584

11.62312130 1.89578584 1.99633146
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TABLE |

WEIGHTED SENSITIVITY ANALYSIS

Realization Example 1 Example 2
Original My, = 75078 x 10¢ My = 2.9967 x 10°
my = 7.8189 x 108 my = 1.0441 x 107
Suboptimal M]/Q = 8.0580 x 10° Ml/g = 3.6461 x 10?2

7, = 9.8023 x 10

m, = 2.1862 x 10®

L,/ Ly-Optimal

M, = 6.4599 x 10°

i, = 1.6301 x 10°

My, = 2.9075 x 107

m, = 2.8063 x 10°

L,-Optimal Mg =1.1547 x 10% M, = 3.8044 x 10?
T, = 8.4194 x 10* iy = 2.1519 x 10°
(Jmin + Lin) 6.4514 x 10° 2.8905 x 102

coordinate transformation into (4) results in
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analytical method can be viewed as an alternative to the
weighted sensitivity minimization algorithm reported in [4]
and is much simpler than the algorithm which relies on the
Lagrange multiplier method. In addition, the 1-D version
of this closed-form solution has not been reported in [5].
An iterative procedure has been proposed to find the opti-
mal coordinate transformation that minimizes the weighted
Ly-sensitivity measure. The merit of this procedure is that
the estimate at each iteration can be derived analytically. Our
first contribution in this paper has been the introduction of
general unconstrained frequency weights for 2-D state-space
digital filters. The second is to present a novel closed-form
solution for obtaining the 2-D filter structures that minimize
M /5(P), subject to the minimization of/(P). The third
is to develop a procedure for iteratively finding the optimal
coordinate transformation that yields the filter structures with
minimum weighted L,-sensitivity. We have illustrated the
utility of the proposed technique with two numerical examples.
It should be noted that the approach presented here can
be extended to thé/-dimensional case wher&/ >2 in a
straightforward manner, provided the multidimensional LSS

_ 0.79612923 —0.21332680 —0.06943544]
A =| 023792156  0.37583635 —0.40698693
| —0.10257831  0.44748310  0.73473442 |
0.22375543  0.22818147  0.13019843]
Ay = | —0.22779964 —0.23189051 —0.13252835
| 012026548 0.13011081  0.07252603 |
~ [-0.00038721  0.00272144 —0.00071499 ] [1]
Az = | —0.00109674 —0.00103953  0.00243030
| —0.00121810  0.00214948  0.00091477 | 2l
- 0.79627366 —0.23797139 —0.10339016 ] -
A, =| 021193424  0.37311787 —0.45053023
| —0.06836792  0.40837312  0.73313847 |
by =[0.11118275 —0.11288667 0.06372873] [4]
by =[2.85345887 —2.46012520 1.18577329]"
¢ =[0.48512286 0.41842076 0.20174307] (5]

¢; =[0.01891648 0.01922876 0.01090239]
which is L, optimal and from (17) and (57) we have (6]
My =J+ L = 380.4402

my = 2151.9307

(7]

respectively, where/ = 367.3009 and L = 13.1394 . 8]
The simulation results of the above examples are summa-

rized in terms of the weighted sensitivitidd,,» andm, in  [g]

Table I. It is observed that the weighted sensitiwngll/Q of

the L, / Lo-optimal filter structures is very close to the value ofyq

Jmin + Lmin- Also, s of the L, / Lo-optimal filter structures

is not far away fromm, of the L,-optimal filter structures. [11]

VI. CONCLUSION

Two frequency-weighted sensitivity measures have beé&?l
defined as a generalization of those reported in [10] and
[13]. To construct the 2-D coordinate transformation matriga)
such that the weighted; /L» mixed sensitivity is optimal
in a certain sense, an analytical method has been develo
to obtain the closed-form solution. The 1-D version of the

model reported in [25] is employed. In addition, similar
arguments can be applied to the Fornasini-Marchesini second
LSS model [17], [15].
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