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Abstract—This paper considers the problem of synthesizing
the finite-word-length (FWL) two-dimensional (2-D) state-space
filter structures with minimum weighted sensitivity. Two kinds of
frequency-weighted sensitivity measures, one based on a mixture
of L1=L2 norms and the other a pure L2 norm, are defined
in place of the usual sensitivity measure and an upper bound
expressed in terms of 2-D weighted Gramians is used to evaluate
the weighted L1=L2 mixed sensitivity. A simple technique is
then developed for obtaining a set of filter structures with very
low weighted L1=L2-sensitivity. In this connection, the optimal
coordinate transformation is characterized in a closed form.
Next, an iterative procedure is proposed to obtain the opti-
mal coordinate transformation that minimizes the weightedL2-
sensitivity measure. Once the initial value is given, the estimate
at each iteration can be calculated analytically. Finally, two
numerical examples are given to illustrate the utility of the
proposed technique.

Index Terms—Finite word length, optimal realization, Roesser
model, two-dimensional IIR digital filter, weighted coefficient
sensitivity.

I. INTRODUCTION

UNDESIRABLE finite-word-length (FWL) effects arise
in the fixed-point implementation of recursive digital

filters. One of them is the deviation of the actual transfer
function from the ideal transfer function, which is caused
by the truncation or rounding of the filter coefficients. As is
well known, the state-space approach allows such an effect to
be minimized by appropriately choosing a filter structure that
minimizes a well-defined FWL effect. Several techniques have
been reported to synthesize linear state-space systems that min-
imize the coefficient sensitivity [1]–[7]. A similar technique
for multi-input–multi-output continuous-time systems has also
been presented [8]. In addition, the problem of minimizing
the coefficient sensitivity of two-dimensional (2-D) state-space
digital filters has been studied [9]–[15]. Based on the Roesser
local state-space (LSS) model [16], Zilouchian and Carroll
have investigated a coefficient sensitivity bound in 2-D state-
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space digital filters [9]. Effective methods for synthesizing 2-D
filter structures with minimum coefficient sensitivity have been
investigated [10], [13]. In [10], all the frequency regions are
treated uniformly. The method reported in [13] studies the
sensitivity behavior of a transfer function within a specified
frequency range. Based on the Fornasini-Marchesini second
LSS model [17], similar techniques have been explored [11],
[14]. The frequency-weighted sensitivity measures have been
introduced in [13], [14], where a constraint on the weights of
the various terms of the measure is imposed. More recently,
the frequency-weighted -sensitivity problem has been con-
sidered by [15] via a 2-D gradient-flow-based optimization
technique that was initiated in [7] for the one-dimensional
(1-D) case. It was argued in [7] and [15] that thesensitivity
minimization, although technically more challenging, is more
natural and reasonable than the conventional mixed
sensitivity minimization.

This paper treats the problem of reducing the coefficient
sensitivity of 2-D state-space digital filters within a specified
frequency range. Here, the Roesser LSS model is employed
to describe 2-D state-space digital filters. From a practical
viewpoint, we are interested in the sensitivity performance of
the transfer function within a specified frequency range. This is
achieved by defining a weighted sensitivity function. One con-
tribution of our paper is to address the case of general uncon-
strained frequency weights for 2-D state-space digital filters.
Another, is to solve the corresponding problem of synthesizing
the filter structures with minimum weighted sensitivity. First,
the sensitivities of a 2-D transfer function with respect to state-
space parameters are analyzed in conjunction with frequency
weighted functions. The overall frequency-weighted sensitivity
measure is then evaluated, using a mixture of norms,
as well as a pure norm. Second, a simple technique
is developed for synthesizing the 2-D filter structures with
very low frequency-weighted -sensitivity. A closed-
form solution that is optimal in a certain sense is obtained.
The 1-D version of this closed-form solution turns out to be
more efficient than the one proposed in [5]. Notice that the
closed-form solution reported in [5] is restrictive and only
exists under a certain constraint. Third, an iterative procedure
is presented to find the optimal coordinate transformation
that minimizes the weighted -sensitivity measure. This
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procedure is advantageous since the estimate is calculated
analytically at each iteration. Finally, two numerical examples
are presented to demonstrate the validity of the proposed
technique.

Throughout this paper, the-dimensional identity matrix is
denoted by The transpose (conjugate transpose) of any
matrix is indicated by and tr and are used to
denote the trace of a square matrixand the direct sum of
matrices, respectively.

II. WEIGHTED MIXED SENSITIVITY ANALYSIS

Consider the following LSS model for 2-D
digital filters which was originally proposed by Roesser [16]:

(1)

where

Here is an horizontal state vector, is
an vertical state vector, is a scalar input,
is a scalar output, and
are real constant matrices of appropriate dimensions. The LSS
model (1) is assumed to be BIBO stable, separately locally
controllable, and separately locally observable [18]. Define

(2)

where consists of the transfer functions from the
filter input to the filter states, is defined as the set
of transfer functions from the input of each of delay operators
to the output, and is the transfer function from the
filter input to the output.

Let the coordinate transformation be specified as

(3)

where and is an non-
singular matrix. Then an algebraically equivalent realization

given by

(4)

is obtained. From (2) and (4) it is clear that the transfer
function is invariant under such a transformation.

Definition 1: Let be an real matrix and let
be a scalar complex function of differentiable with respect
to all the entries of . The sensitivity function of with
respect to is then defined as

with (5)

where denotes the th entry of the matrix .

With these notations, it can easily be shown that

(6)

The term and the sensitivity with respect to it are coordinate
independent and therefore they are neglected here.

To consider the sensitivity behavior of the transfer function
in a specified frequency band, or even at some discrete
frequency points, the weighted sensitivity functions are defined
as

(7)

where and are three
stable, causal scalar rational functions of the complex variables

and . It should be noted that in (7) is not meant to be
a derivative operator, but rather a notation for defining the
weighted parameter sensitivity as seen in (7). Let

(8)

be a factorization of Note that, unlike the system
considered in [13], there is no assumption such that

for the system considered here.
Definition 2: Let be an complex matrix

valued function of the complex variables and . The
norm of is then defined as

(9)

where 1, 1 and
is the Frobenius norm of the matrix defined by

The overall weighted mixed sensitivity measure is
now defined as

(10)

From (6)—(8), we can write (10) as

(11)
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By the Cauchy–Schwartz inequality, we have

(12a)

where the equality sign holds if and only if

(12b)

for some nonzero real number. To facilitate the mathematical
treatment, an upper bound of is employed as follows:

(13)

where . This upper bound can be viewed as a
2-D extension of the upper bound for the 1-D
case introduced by Thiele [2]. From (9) it is easy to show that

(14)

where and are often referred to as
weighted observability (for those with subindex) and con-
trollability (for those with subindex) Gramians, and can be
obtained by the following general expression:

(15)

with
and respec-

tively.
The coordinate transformation defined by (3) transforms the

weighted Gramians into
Then (14) is changed to

(16)

where

Moreover, (16) is written as

(17)

where

The problem being considered here is to obtain the symmet-
ric and positive-definite matrix that minimizes (17), subject
to the minimization of .

Remark 1: In order to effectively control the upper bound
of the -norm term in (11), while minimizing (17), we seek
to find a 2-D coordinate transformation (3) that minimizes
(17) subject to the minimization of .

III. FILTER SYNTHESIS WITH VERY LOW

WEIGHTED MIXED SENSITIVITY

In this section, we consider the problem of obtaining the
matrix that minimizes (17), subject to the mini-
mization of , where is block diagonal. An analytical
method will be developed for obtaining such a matrix. The
problem of iteratively minimizing (17) with respect to

for any nonsingular that is not block diagonal has
been solved in [5]. However, apart from whether thematrix
is block diagonal or not, the two problems mentioned above
are similar, yet different.

According to the partition

(18)

the weighted Gramians and can now
be represented as

(19a)

If we introduce

(19b)

and in (17) can be expressed as

(20)

Hence it suffices to deal with the matrices instead of .
To make the exposition simple, we omit the hat and write
for in the following.

First, we minimize and then minimize (17) subject to
the minimization of Using the formula for evaluating
the matrix gradient [19, p. 275]

(21)

we obtain the equation for extrema of

(22)

All the solutions of this equation take the form

(23)

where is the unique solution of the equation
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and is an arbitrary positive number. Moreover, has
the single extremum

(24)

which is independent of.1 Noting that has the
unique solution [5]

(25)

where and are symmetric, the matrix is
given by

(26)

and is described by

(27)

Theorem 1: If and
are real symmetric positive-

definite matrices, then the extremum in (27) is really the
minimum of . Furthermore, can be expressed in terms
of the square roots of the eigenvalues
of as follows:

(28)

Proof: The proof relies on the following inequality [20,
p. 556]. If is a real symmetric positive-definite matrix and
if is any nonsingular real matrix, then

(29)

where the equality sign holds if and only if

(30)

for some positive real number.
Choosing the above and matrices as

(31)

inequality (29) can be written as

(32)

where . On the other hand, taking and
into account and using (26), it is clear that (23)

is equivalent to

(33)

1SupposePPP is a solution of (22). Sincetr[KKKc2PPP
�1] and tr[KKKo1PPP ] are

positive, we can take� >0 such that�2 = tr[KKKo1PPP ]=tr[KKKc2PPP
�1]. Then

PPP b = (1=�)PPP satisfiesPPP bKKKo1PPP b = KKKc2. Indeed,PPP�1
b

= �PPP�1 and

0 =tr[KKKc2PPP
�1]KKKo1 � tr[KKKo1PPP ]PPP�1KKKc2PPP

�1

=tr[KKKc2PPP
�1](KKKo1 � �2PPP�1KKKc2PPP

�1)

= tr[KKKc2PPP
�1](KKKo1 � PPP�1

b
KKKc2PPP

�1

b
):

Thus, the solutions of (22) are exhausted by the solution of the form (23).

where

and is an arbitrary orthogonal matrix.
Substituting (33) into (31) gives

(34)

This implies that equality in (32) holds, that is, the extremum
in (27) is actually the minimum of .

Let be the eigenvalues of
Then there exists a nonsingular matrixsuch that

Hence

(35)

This completes the proof of Theorem 1.
From (16), (19), and (33) we obtain

(36)

This shows that the weighted Gramians and are
block balanced [21] when .

Remark 2: If (12b) can be derived from (36), then (12a)
becomes an equality. However, unlike the 1-D case [2], the
derivation is impossible in the 2-D case.

It turns out that the minimization of forms a family
of a matrix parameterized by . We now proceed to
determine that minimizes in (17).

Theorem 2: The optimal solution that
minimizes the weighted sensitivity measure in (17)
subject to the minimization of is given by

(37a)

or equivalently

(37b)

where and is an arbitrary
orthogonal matrix. The minimum of is

(38)
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Proof: Substituting (23) into (17) gives

(39)

Here, the arithmetic-geometric inequality says that

(40a)

where the equality is valid if and only if

or equivalently

(40b)

Substituting (40b) into (23) yields (37a). Substituting (28) into
(39) with (40a) produces (38).

This completes the proof of Theorem 2.
The next theorem describes the relation between the second

term in (38) and the minimum of .
Theorem 3: If and

are real symmetric positive-definite
matrices, then

(41)

where are the square roots of the eigen-
values of . The equality in (41) holds if and only if
the system satisfies

(42)

where and are some positive real numbers,
and

Proof: To minimize in (20), we carry out compu-
tations similar to those done in (22)–(27). The result is that

has the extremum

(43)

at the matrix , which is the unique solution of the equation

Since is solved as

(44)

we obtain

(45)

By an argument similar to those in Theorem 1, it can be
shown that the extremum in (45) is really the minimum of

and is expressed in the form

(46)

Hence, the inequality (41) is proved.

(Necessity) Assume that the equality in (41) holds. Then,
for a positive number

(47a)

must hold where and satisfy

(47b)

and is any positive real number. Using (47a) enables one
to change (47b) to

(48)

Since and are the unique solutions, comparing (47b)
with (48) concludes that

(49)

where .
(Sufficiency) Assume that (42) holds. Substituting (42) into

(26), we obtain

(50)

where is given by (44). It is obvious that the equality in
(41) holds.

This completes the proof of Theorem 3.
It should be noted that

(51)

Corollary 1: The relation (42) holds provided

(52)

Corollary 2: If (42) holds, then (37) is changed to

(53a)

or equivalently

(53b)

and the equality sign in (41) holds. Moreover, (38) becomes

(54)

The optimal filter structures that minimize (17)
subject to the minimization of can readily be synthesized
by substituting (37b) into (4).
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Remark 3: Notice that (53) can be considered to be an
extension of the 1-D closed-form solution reported in [5] to
the 2-D case. In Corollary 2 it is mentioned that (53) can be
derived from (37) as a special case for the system such that
(42) is satisfied. In other words, unlike the solution given by
(53), (37) can be applied to the general systems where (42) is
not always satisfied. It should be pointed out that neither the
1-D version of the closed-form solution (37) stated in Theorem
2 nor the 1-D counterpart of arguments stated in Theorem 3
has been reported in [5].

IV. FILTER SYNTHESIS WITH

MINIMUM WEIGHTED -SENSITIVITY

In this section, we synthesize the 2-D filter structures that
minimize a weighted -sensitivity measure defined by

(55)

instead of (10). Referring to (11) and (14), we can write (55) as

(56)

where is obtained by the general expression of (15) with

and is derived from

with being the unit-sample response of
Applying the coordinate transformation defined by (3) to the
original filter, (56) becomes

(57)

where is as defined in (17). According to the partition of
(18), can be represented as

(58)

Taking (21) into account, it follows from (57) that

(59)

where

Letting the two equations in (59) be null yields

(60)

respectively. From (25) and (60) it follows that the values
and satisfying

(61)

respectively, are given by

(62)

where is the solution of the previous iteration. The initial
estimate in the above iteration is given by (37a). This
iteration process continues until

(63)

where is a prescribed tolerance.
While the convergence of the iterative algorithm described

in (62) remains to be proved, the algorithm was applied to quite
a number of simulation examples and fast convergence was
observed in all the cases. A sample of these examples will be
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illustrated in the next section. As a remark on this convergence
issue, we note that an interesting iterative algorithm, based on
the concept of gradient flow for frequency weighted sensitivity
minimization of 1-D discrete-time systems, was proposed
in [7] and extended to 2-D Fornasini–Marchesini model in
[15]. Although the nonlinear setting in (62) differs from that
of [7] and [15], the technique employed there to show the
convergence of the algorithms appears worthwhile to analyze
in order to show the convergence of (62) or similar algorithms.

Given the -optimal matrix which is
positive-definite and symmetric, the corresponding-optimal
transformation matrix can be constructed as

(64)

where and are arbitrary and orthogonal ma-
trices, respectively. It is possible to synthesize the-optimal
filter structures such that (57) is minimum by substituting (64)
into (4).

Remark 4: As was shown in [22], the orthogonal matrices
and in (64) can be used to obtain a state-space

realization with more zero or one entries, which further reduces
the sensitivity. An alternative approach to accomplish this
is to use singular value decomposition (SVD) [23], [24] as
follows.

Let us denote

(65)

and apply SVD to

(66)

where and are and orthogonal matrices,
respectively, and

...

with being the rank of Evidently, if we let
then has the form

(67)

where has zero entries. Alternatively, SVD may
be applied to the matrix to yield zero entries
where is the rank of .

V. ILLUSTRATIVE EXAMPLES

The frequency weighting functions
and can be either of 2-D finite

impulse response (FIR) or infinite impulse response (IIR)
digital filters. For simplicity, let these be given by the

following 2-D lowpass filters:

where

...
...

.. .
...

A factorization of (8) is now assumed to be

Example 1: (2, 2)th-Order Filter
Consider the LSS model (1) specified by

where 2.
Applying Parseval’s relation to (14) and (15), it follows that

(68)
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where

Here, and are as defined in (56). From (56)
and (68), the 2-D weighted Gramians
and can be calculated by truncation

and 2 as

Then, the original weighted sensitivities (14) and (56) become

respectively, where 7464814.5185 and 43016.3431.

2This region was chosen according to the memory capacity of computers
in the laboratory as well as the approximation accuracy in the truncation.

The suboptimal matrix that minimizes
in (17) is calculated from (44) as

or equivalently

In this case, from (17) and (57) we have

respectively, where and .
The -optimal matrix which minimizes (17) subject

to the minimization of can be computed from (37a) as

or equivalently

As a result, the -optimal filter structure is synthesized
from (4) as shown at the bottom of this page and it follows
from (17) and (57) that

respectively, where and .
Applying the iterative procedure (62) produces
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after 20 iterations or equivalently

where truncation and was used
to compute Substituting the above
coordinate transformation into (4) provides the-optimal
filter structure as shown at the bottom of this page and (17)
and (57) were used to calculate

respectively, where and .
Example 2: (3, 3)th Order Filter
Let the LSS model (1) be given by

where 3.
Using (56) and (68), the submatrices of the 2-D weighted

Gramians and 1, 4 can be
calculated by truncation and as
shown at the bottom of the next page. Then (14) and (56)
becomes

respectively, where and .

Applying (44), the suboptimal filter structures are realized
from

or equivalently,

From (17) and (57), this gives

respectively, where and .
Making use of (37a), the -optimal filter structures

that minimize (17) subject to the minimization of are
constructed from

or equivalently
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Then, making use of (4), we get

and from (17) and (57) it follows that

respectively, where and .

Applying the iterative procedure (62) provides

after 20 iterations or equivalently

where truncation and was
used to compute . Substituting the above
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TABLE I
WEIGHTED SENSITIVITY ANALYSIS

coordinate transformation into (4) results in

which is optimal and from (17) and (57) we have

respectively, where and .
The simulation results of the above examples are summa-

rized in terms of the weighted sensitivities and in
Table I. It is observed that the weighted sensitivity of
the -optimal filter structures is very close to the value of

. Also, of the -optimal filter structures
is not far away from of the -optimal filter structures.

VI. CONCLUSION

Two frequency-weighted sensitivity measures have been
defined as a generalization of those reported in [10] and
[13]. To construct the 2-D coordinate transformation matrix
such that the weighted mixed sensitivity is optimal
in a certain sense, an analytical method has been developed
to obtain the closed-form solution. The 1-D version of the

analytical method can be viewed as an alternative to the
weighted sensitivity minimization algorithm reported in [4]
and is much simpler than the algorithm which relies on the
Lagrange multiplier method. In addition, the 1-D version
of this closed-form solution has not been reported in [5].
An iterative procedure has been proposed to find the opti-
mal coordinate transformation that minimizes the weighted

-sensitivity measure. The merit of this procedure is that
the estimate at each iteration can be derived analytically. Our
first contribution in this paper has been the introduction of
general unconstrained frequency weights for 2-D state-space
digital filters. The second is to present a novel closed-form
solution for obtaining the 2-D filter structures that minimize

, subject to the minimization of The third
is to develop a procedure for iteratively finding the optimal
coordinate transformation that yields the filter structures with
minimum weighted -sensitivity. We have illustrated the
utility of the proposed technique with two numerical examples.

It should be noted that the approach presented here can
be extended to the -dimensional case where in a
straightforward manner, provided the multidimensional LSS
model reported in [25] is employed. In addition, similar
arguments can be applied to the Fornasini–Marchesini second
LSS model [17], [15].
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