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Abstract. This paper presents analytical expressions for predicting distillate and bottoms
composition transient responses due to changes in manipulative and disturbance variables of a
tower. The authors in an earlier paper showed that towers are inherently recyle structures and
linearization techniques should be applied at perturbed conditions of tower models to evaluate
realistic tower time constants. In this earlier paper, a numerical approach to estimating time
constants was presented, The numerical approach is extended in this paper to an analytical
approach that requires only steady state and design information of a tower. The analytical
approach is relatively simple to use and much less time consuming compared to dynamic
simulation. Further, the analytical technique gives insight into why towers respond nonlinearly.
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INTRODUCTION

This paper presents analytical expressions for predicting
distillate and bottoms composition transient responses due
to changes in tower manipulative and disturbance variables.
To date, published work on analytical techniques relates to
predicting transient behavior of product compositions of
an absorber section only (Lapidus and Amundson(1950),
Amundson(1966) and Kim and Friedly(1974)). This paper
deals with a complete distillation tower and presents simple
analytical methods that may be used for short-cut dynamic
modeling of high purity towers. The analytical expressions
given in this paper require only steady state information to
evaluate time constants and dead times of product compo-
sition responses for forcing in manipulative and disturbance
variables. Further, they provide information necessary for
identifying the key sections of a tower which are the major
contributors to their dynamic behavior.

For predicting the transient responses of the product com-
positions Wah! and Harriott(1970) presented a numerical
technique that utilizes the design conditions of a tower.
Their predictions of time constants of product responses
are unrealistically large for high purity towers. An earlier
paper by Kapoor and McAvoy(1986) discusses the cause of
such unrealistically large time constants. In this earlier pa-
per a numerical approach to estimating time constants is
presented. In the present paper an analytical approach is
taken. To put the analytical approach into perspective the
earlier numerical work is briefly reviewed here.

REVIEW OF PAST WORK

Kapoor et al.(1986) carried out a detailed study of six tow-
ers, discussed by Fuentes and Luyben (1983). The essen-
tial features of these towers are shown in Table 1. The
time constants shown in the last column of Table 1, were
obtained from numerically calculated frequency responses
using a stepping technique, developed by Luyben(1973}.
The numerically evaluated time constants, relate response
times of changes in distillate composition zp to changes in
feed composition zp at design conditions. From the actual
responses obtained from the non-linear simulation of tower
models, the gain, time constant and dead time were esti-
mated and are listed in Table 2. The time at which the

Table 1: Essential Features of Luyben’s Towers

Casef# Feed o zg = Nr Ng f; 6(min)
Kg =g (1-2p)

1 65.8 4 .05 13 7 53 10

2 617 4 001 26 13 .73 450

3 61.7 4 .00001 40 20 .78 45400

4 3.3 2 .05 18 9 2.1 30

5 318 2 001 40 20 2.4 1630

6 318 2 .00001 60 30 2.6 170000

6 = Time constant




Table 2: Results from Open Loop Responses

Case# Forcing: zp =.6 Forcing: zp =4
Gain © T Gain © 7

.281 10.0 8.0 1.51 8.0 8.0

.007 23.0 15.0 1.99 13.0 26.0
.00006 25.0 22.0 2.0 10.0 36.0
359 27.0 12.0 1.54 22.0 10.0
.007 25.0 22.0 1.99 23.0 50.0
.00006 28.0 28.0 2.0 30.0 85.0
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© = Time constant 7 = Dead time

response shows a noticeable change from the initial steady
state conditions is used as an approximation to the dead
time. The time required to reach 63% of the final condi-
tions is approximated as the time constant. The gain is
given by the change in zp divided by the change in zp
. The highest purity towers respond much faster than the
time constants, shown in Table 1, indicate. Observe also in
Table 2 the asymmetric behavior of high purity towers 3, 5,
and 6. The gains and time constants that approximate the
zp responses for increases in zp are significantly different
from the gains and time constants that approximate the
zp responses for decreases in 5. To explain the asymmet-
ric behavior of high purity towers and also to explain the
discrepancy between the time constant estimates listed in
Table 1 and time constants that approximate the non-linear
responses(Table 2), a simplified dynamic model of a tower
is analysed. Figure 1 shows the block diagram of a distilla-
tion column consisting of four sections of a tower namely,
condenser, enriching section, stripping section and reboiler.
The various transfer functions that can be defined for feed
composition changes are shown in Fig. 1. The transfer
functions relating D¥p and BZp to FZF can be derived
from Fig. 1 and are given as eqns. 1 and 2.
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Since the gains of all G,’s are positive, Fig. 1 indicates
that there are a number of positive feedback loops in a
tower’s dynamic structure. The 1 — HgHg term in eqn.
1, 1 — G10G11 term in eqn. 2 and 1 — GG term in eqn.
3 indicate positive feedback loops resulting from the recy-
cle structure of a distillation column. In fact, each tray
involves a positive feedback loop. By lumping the enrich-
ing and stripping sections of a tower into Hg and Hs it
is possible to elucidate the underlying reason for the large
time constants which result from a linear analysis. The
authors in another paper(Kapoor et al. (1986b)) showed
that extremely large time constants will result if the gain
of any of the positive feedback loops, i.e. HpHgs, G4Gg or
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Fig. 1. Block transfer function

G10G 11, approaches unity. They also showed that the gains
of G4Gs and GGy rarely approach unity in most tow-
ers. However, the loop gain of the Hg Hg transfer function,
KgKg, approaches unity in a very small region around the
design conditions of high purity towers and indeed around
any steady state where high purity is achieved at both ends
of a tower. Figure 2a is a plot of KgKg versus zp for the
high purity tower 3. As can be seen from Fig. 2a near
the design condition of zr = .5 the KgKg loop gain ap-
proaches 1.0. It was shown in Kapoor et al.(1986b) that for
KgKs approaching unity the dynamic response of a tower
will be extremely sluggish. Figure 2a illustrates that Kg K's
is close to 1.0 in a very small region near x5 = .5. There-
fore we expect the towers dominant time constants to be
large only in this small region. However, outside this small
region, i.e. at slightly perturbed conditions of the tower,
the loop gain KgKs drops off drastically from 1.0 result-
ing in a much smaller and realistic time constant. This
result suggests that one should use a perturbed value of zp
to estimate effective tower time constants from a linearized
model. The authors accordingly used & perturbed steady
state to estimate time constants using the same approach
as Fuentes and Luyben(1983). These estimates are plotted
in Fig. 2b for case 3 at various values of zr . Figure 2b
shows that the time constants are extremely large at design
conditions of zp =.5. However, outside a very small region
the time constants are much smaller and reasonably con-
stant for zr > .5 and zp < .5. For the transients shown
in Fig. 1, large z¢ changes were used to force the towers
. and the towers operated at zy values substantially differ-
ent from the design values. Since time constants change
drastically with z5 , time constants must be evaluated at
perturbed conditions of a tower. Fig. 2b shows that the
time constants change in a fairly linear fashion with re-
spect to g at perturbed conditions. If an average value of
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the time constants is estimated over the linear zone then a
better approximation to the simulation results can be ex-
pected. Such an average value of the time constants can be
obtained approximately half way between the design and
perturbed conditions. For example, if the tower models are
forced from zr =.4 to .5 then the time constants should be
estimated at zr =.45. The results presented in this paper
are obtained by linearizing tower models at conditions half
way between the initial and final steady state values.

To this point this paper has presented a review of the nu-
"merical technique of Kapoor et al.(1986). Our objective
is to develop analytical expressions for all the composition
tranfer functions of a tower for all forcing variables. Further
we want to reduce the final complicated transfer functions
(for example eqns. 1 and 2 for zFr changes) to a first order
with dead time model by the method of moments(Gibilaro
and Lees(1969)). A reduction in order of final transfer func-
- tions will provide simple analytical relationships between a
tower’s dynamic model and its physical variables. The next
section presents analytical expressions for zp respones for
forcing in zp . Additional analytical transfer function ex-
pressions for other forcing variables are given in Kapoor
and McAvoy(1986).

REDUCING THE FINAL TRANSFER FUNCTION

To obtain a simple dynamic model for the zp response due
to zy changes we will make the following assumption.
first order model with dead time approximates the pro-
composition responses for zr changes. Equation 1 is
transfer function of the zp response due to zr change:

it can be divided, into 3 terms. The first term of eqn
Hg/(1- HgHs) and it gives the change in the compos

of the vapor entering the enriching sectiop due to a ch-

in zr. The second term in eqn. 1 is Gg. Referris
Fig. 1, G gives the change in the composition of the
entering the condenser to a change in the compositi.

the vapor entering the enriching section. The third ter
eqn. 1is Gy2/(1 — G10G11) and it gives the change i

zp response due to a change in the composition of the
entering the condenser. The effective time constant «

zp response for £y changes will therefore be a com
effect of all three terms. To develop low order tr
functions the first step is to reduce the order of G,

and Hg in eqn. 1. After substituting the reduced

of G’s, Hg and Hg in eqn. 1 the moments of eqn. 1 are
equated to the moments of a first order transfer function
with dead time, the form of which is given as:

Dzp  Ke-7nlzr)s (5)
Fzr  ©zrp)s+1

To reduce eqn. 1 to eqn. 5, the gain K, the dead time
7p(zr) and the time constant ©(zF) are related to the pa-
rameters in eqn. 1 by the method of moments. A detailed

derivation for K, 8(xzr) and rp(zr) is given in Kapoor(1986).
The final expressions are:

Kq RS
K= K u
(I—KEKS) g(l"‘KIOKU (®)
Loop 1(Enr. Sect.) Loop 2
T, + LTy Te + 1, T:
e — 1 147 C 2487
(zr) T +T + - KoKo (7)
KEK5=K1K1=11 (8)
o(zF) = (7p)o (9)

The expressions for the gains K’s, T;’s and 7pg are given in
Table 3. Equation 7 shows that the time constant of the zp
response due to zr changesis comprised of three parts. The
first term, labeled Loop 1, is due to the recycle structure
formed by integration of the enriching and the stripping
sections. The Loop 1 time constant refers to the response
time of the composition of the vapor entering the enriching
section due to a change in zp. The Loop I time constant
can be extremely large if the variable [; which is the product
of the enriching and stripping section gains, Kg K, is very
close to 1.0, In Fig. 2a it is shown that at design conditions
of high purity towers I; —s 1.0 and therefore the Loop 1
time constant in eqn. 7 is extremely large. The Loop 1
time constant is the major contributor to the time constant
of zp in the small neighborhood near steady state. As can
be seen from Fig. 2a, the loop gain I; drops off drastically
from 1. at perturbed conditions, implying that the Loop 1
time constant is not necessarily the major contributor to the
time constant of the zp response at perturbed conditions
of a tower. This behavior agrees with our numerical results.



The time constant T refers to the response time of y; due
to a change in yn41 (See Fig. 1). The time constant Ty
is usually much larger than the Loop 1 time constant at
perturbed conditions of a tower. The third term in eqn.
7, labeled Loop 2, is a result of the feedback loop formed
by integration of the condenser with the enriching section.

As shown in Kapoor et al. {1986) the loop gain I, rarely
approaches unity. Therefore, the contribution by the Loop
2 time constant to the effective time constant of the zp
response will be approximately of the order of the sum of
the condenser time constant, T, and T5.

Equation 9 is the expression for the dead time of the zp
response for zp changes. The dead time is a sum of all
but the largest lag of the enriching section. All the lags
of an enriching section can be evaluated using analytical
expressions developed by Kim and Friedly(1974) and are
presented in Table 3. Equations 7 and 9 were used for the
evaluation of time constants and dead times of the zp re-
sponses for zy changes. Results obtained from eqns. 7
and 9 for tower 3 are compared with the the non-linear
simulation results in Fig. 3. The tower model starts at
a perturbed initial steady state corresponding to zp = .4
and the response to the design condition corresponding to
zp = .5 is shown. Ascan be seen from Fig. 3 the agreement
between the analytical responses and non-linear simulation
results is very good. We studied all the six towers illus-
trated in Table 1 in detail(Kapoor {1986)) and compared
the analytical expression results with the non-linear sim-
ulation results for forcing in zp from design to perturbed
conditions and back. Both positive and negative pertur-
bations in zr were considered. The analytical expressions
compared very well with the non-linear simulation results
for all the cases except for forcing in zr from design to a
decreased value. A significant error in the dead time was
obtained for this case. This error may not be a serious
problem since one is normally interested in determining re-
sponse times of towers responding from upset conditions
back to their design specifications.

Equations 6-9 are analytical expressions that relate the
gains, time constants and dead-times of the enriching and
stripping sections to zp response times for forcing in zp.
Table 3 shows that the gains, time constants and dead-
times of the eariching and stripping sections can be related
to the physical variables of a tower. Further, the relation-
ships presented in Table 3 provide a method for relating the
product composition response time to the physical variables
such as holdup on a tray, in the condenser and reboiler,

flow variables, relative volatility, etc.. The expressions for

zp responses to changes in zp can be derived in the same
manner as for the zp case and are presented in the following
section.
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Table 3: Gains, Leads and Lags
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X5 RESPONSES FOR Xr CHANGES

The transfer function relating zp responses due to changes
in zr is given as eqn. 2. Equation 2 can be reduced by the
method of moments, to a simple first order transfer function
with dead time following the same approach used for the
zp case. The final expressions for the dynamic parameters

of zp responses for forcing in zr are given as:

Loop 1(Stripp.Sect.) Loop 8
1L(Ty + Tx) Tg + 15T
341
e,n(xr) = —I——IL_TL +Ts + -—’;—_"—I;—" (10)
Is= K4KS (ll)
and
re(zr) = (7D)2 . (12)

The Loop 1(Stripp. Sect.) time constant in eqn. 10 gives
the effect of the first term of eqn. 2. The Loop 3 time
constant gives the effect of the loop formed by the reboiler
and the stripping section on the zp response time. The
time constant T, gives the response time of zy, due to
changes in zn". Equation 12 gives the dead time of the
zp responses due to changes in zp . The analytical ex-
pressions are used to evaluate the time constants and dead
times of the towers when forced from increased values of
zg to design values. Figure 4 gives the zp response for
case study tower 3. Analytical expression results for all the

e



Table 3 continued
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Fig. 4. zp response for zx changes

cases listed in Table 1 are compared with non-linear sim-
ulation results in Kapoor{1986). The agreement between
the simulation and the analytical expressions is good for all
the cases studied.

Since space does not permit the presentation of additional
analytical expressions for the product composition responses]
for forcings in V and B and L and D, they are given in
Kapoor and McAvoy (1986). However, results for tower 3
for forcing in V and L are given in Figs. 5 and 6. Figures §
and 6 give a comparison of the approximate zp and zp re-
sponses determined from the analytical expressions and the
non-linear responses. The agreement between the analyti-
cal expression results and the simulation results is excellent
for the V case and very good for L case. In Kapoor{1986)
analytical expression results for all the six towers and a
number of towers with non-ideal and multicomponent fea-
tures are compared with non-linear simulation results. A
reasonably good comparison is obtained for most of the
cases studied. As a result the analytical expressions derived
in Kapoor(1986) present an approximate and short-cut ap-
proach to modeling towers in a timely manner. Addition-
ally, the expressions provide insight for high purity towers
where the existing linearization techniques fail.
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Conclusion

The analytical expressions presented in this paper are an
extension of the analysis technique employed in Kapoor and
McAvoy(1986). In this earlier paper, it is shown that dis-
tillation tower models can be modeled by block transfer
functions integrated to each other in a recycle processing
configuration. In this paper analytical expressions for the
various block transfer functions are developed and reduced
to first order transfer functions with or without dead times
by the method of moments. These reduced order transfer
functions are used to predict response times of towers for
forcing in manipulative and disturbance variables. The re-
sults obtained from the analytical expressions are compared
with the non-linear simulation results. The agreement be-
tween the responses obtained from the analytical expres-
sions and the non-linear responses is good for a number of
cases studied in Kapoor(1986). In this paper, results for a
high purity tower are presented. The high purity tower is
forced from perturbed conditions back to its design speci-
fications. The reason for studying this forcing is that for
control and operability studies one is insterested in deter-
mining the response times of towers for forcing from upset
conditions back to the normal operating setpoints.

The analytical expressions presented in this paper require
only steady state and design information of the tower to
evaluate tower time constants. Further, the analytical ex-
pressions help in determining which sections of a tower,
namely, condenser, enriching and stripping sections and re-
boiler, are the major contributors to the response times.
Finally, these expressions provide insight into the effect of
a change in design on the response times of a tower.
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Nomenclature

Ag Effective Absorption Factor
B Bottoms Flow
Distillate Flow

F Feed Flow

Gy Transfer function

Hg Transfer function for enriching section
Hg Transfer function for stripping section
Kg Gain for enriching section

Kg Gain for stripping section

L Reflux Flow in the Enriching Section
r Reflux Flow in the Stripping Section
Ng Trays in the Enriching Section

Ng Trays in the Stripping Section

RR Reflux Ratio

Ss Effective Stripping Factor

|4 Vapor Flow

zp Bottoms mole Fraction
£33 Feed mole Fraction
Tp Distillate mole Fraction

Greek Letters

o Relative volatility
(<] Time Constant
T Dead Time
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