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Abstract

We present a framework for investigating
properties of similarity measures as a crite-
rion for selecting the best-suited measure for
a specific task, in this paper: corpus selection
for self-training. We focus on the squared
Pearson’s correlation coefficient as the prop-
erty to rank similarity measures. Self-
training is an unsupervised domain adapta-
tion technique, in which three corpora are
involved. Especially, the choice of the unla-
beled corpus can be important and we show
that similarity measures can be helpful when
selecting an unlabeled corpus. In addition,
we found that the correlation coefficient be-
tween similarity and accuracy of a similarity
measure can be used to select the most suit-
able similarity measure, but other properties
of similarity measures do also play a role.

1. Introduction

We first give a definition of similarity measure, since
it is a vague term. In the context of this paper, a sim-
ilarity measure is any function that produces a real
number when applied to two text corpora. The out-
put of the function should never switch sign and when
two corpora are more similar, the absolute value of the
similarity measure should be smaller. Divergences, like
the Kullback-Leibler divergence, can be used as sim-
ilarity measure, but divergences are certainly not the
only candidates. When the two corpora are from dif-
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ferent domains, the similarity measure can be called a
domain similarity measure.

Domain similarity measures have been used in differ-
ent natural language processing (NLP) setups (Zhang
& Wang, 2009; McClosky, 2010; Plank, 2011) and,
in general, the best-suited similarity measure depends
on the task and the specific function of the similar-
ity measure. Also combinations of different similarity
measures have been tried. Nevertheless, it remains un-
clear which properties of a good similarity measure are
responsible for its superiority. Our hypothesis is that
a limited set of relevant properties exists and, depend-
ing on the processing task, some of the properties be-
come more important than others. If this point of view
is correct, creating an overview of existing similarity
measures and their ranking for the different properties,
would liberate the researcher from having to try all
similarity measures and all combinations of measures
in order to find the most appropriate measure(s).

In this paper, we investigate one candidate property,
namely the degree of linear correlation between the
similarity between two corpora and the accuracy in a
machine learning experiment, using one of the corpora
as the training corpus and the other corpus as the test
corpus. The incentive to focus on the linear correlation
comes from a general observation in domain adapta-
tion literature: the more the domains of the test and
the training corpus resemble each other, the better the
performance of a machine learner will be. In addition,
it has been found that for part-of-speech tagging, the
correlation between accuracy and similarity is indeed
linear (Van Asch & Daelemans, 2010).

When the linear correlation is selected as the discrimi-
native property for similarity measures, it is possible to
define what best-suited signifies. In this isolated situa-
tion, the best-suited similarity measure is the measure
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that exhibits the highest squared Pearson correlation
coefficient, r2 (Pearson, 1896). With circular reason-
ing, this means that performance is the best similarity
measure, because in this case the linear correlation
would be perfect. Indeed, the best way to find out the
result of an experiment is by running that experiment,
but running an experiment can be time-consuming or
there may be no annotated data available to actually
compute the performance. For this reason, similar-
ity measures that can be more quickly computed and
that do not require annotated data are investigated.
The linear correlation of these measures will be less
strong, but, in return, they come with annotation-
independence.

The remainder of this paper consists of an overview of
the related research (Section 2), definitions of the dif-
ferent similarity measures that are used (Section 3), a
presentation of the machine learning task (Section 4),
the concept of self-training and the performance indi-
cator (Section 5), experimental results (Section 6). A
final section contains the conclusions and perspectives.

2. Related research

Divergences are used in natural language processing
in various situations ranging from feature selection
and training corpus creation to measuring the similar-
ity between two language models (Della Pietra et al.,
1997; Lee, 2001; Gao et al., 2002; Daumé III & Marcu,
2006; Chen et al., 2009; Mansour et al., 2009; Zhang
& Wang, 2009; McClosky, 2010; Moore & Lewis, 2010;
Plank, 2011). Some of the divergences that are used
are perplexity, Kullback-Leibler divergence, and the
Rényi divergence.

It is possible to use the divergence as such, using
its value to draw inferences about corpora (Verspoor
et al., 2009; Biber & Gray, 2010), but the most inter-
esting usages apply the divergence to a machine learn-
ing system. A good example of such an application is
the prediction of parsing accuracy (Ravi et al., 2008).

Despite the fact that authors have shown that a diver-
gence (Van Asch & Daelemans, 2010; Plank, 2011) or
a linear combination of divergences (McClosky, 2010)
can be successfully used to link the similarity between
domains to the performance of a natural language pro-
cessing system, no consensus exists about which diver-
gence or combination of divergences is best suited for
the task. The best divergence is not selected on the-
oretical grounds but by testing a range of divergences
and selecting the best one. Although this is a valid
working method, in this paper we investigate if it is
possible to select the best measure for a given task

using the correlation of the divergence with the per-
formance.

3. Similarity measures

A text corpus needs to be converted into a measur-
able representation if the goal is to express similar-
ity between two corpora by means of a single figure.
Examples of such representations are: a single figure
(e.g. the average sentence length in the corpus) or a
distribution (e.g. the relative frequencies of the unique
tokens in a corpus). Similarity can be expressed by
the difference between two representations or between
combinations of representations. In this paper, we use
similarity measures that are based on distributions,
which are simple, yet expressive, representations of a
corpus. A distribution P can be described formally as:

P =
{
pk : pk ∈ R+ ∧

n∑
i

pi = 1
}

(1)

with k ∈ N, a unique identifier for each unique to-
ken (=type), with pk the relative frequency of a type
k in the corpus, and n the number of unique tokens
in the text corpus. Based on these distributions, the
following similarity measures are tested in this paper:
Kullback-Leibler divergence, KL (Kullback & Leibler,
1951), Rényi divergence, R (Rényi, 1961), Skew di-
vergence, S (Lee, 1999), Jensen-Shannon divergence,
JS (Lin, 1991), simple Unknown Word Ratio, sUWR
(Zhang & Wang, 2009), and overlap. Overlap is the
conceptual complement to sUWR.

Given two distributions: P based on a test corpus T
and Q based on a training corpus S, the formulas of
the similarity measures are:

KL(P ;Q) =
∑
k

pklog2

(pk
qk

)
(2)

R(P ;Q;α) =
1

(α− 1)
log2

(∑
k

pαk q
1−α
k

)
with α ≥ 0

(3)

S(P ;Q) = KL
(
Q;αP + (1− α)Q

)
with α ∈ [0, 1]

(4)

JS(P ;Q) =
1
2

[
KL

(
P ;

P +Q

2

)
+KL

(
Q;

P +Q

2

)]
(5)

sUWR =
|{k : pk 6= 0 ∧ qk = 0}|
|{k : pk 6= 0}|

(6)

Overlap =
|{k : pk = 0 ∧ qk 6= 0}|
|{k : qk 6= 0}|

(7)



An analytical approach to similarity measure selection for self-training

With pk the relative frequency of type k in corpus P ,
qk the relative frequency of type k in corpus Q. If a
type is not present in a distribution, it adopts a relative
probability of 0.1

The measures have been chosen based on their suitabil-
ity in tasks such as parsing and part-of-speech tagging
(Lee, 2001; Daumé III & Marcu, 2006; Zhang & Wang,
2009; Van Asch & Daelemans, 2010; Plank, 2011) and
overlap is chosen because it is an unsuitable measure.
Overlap measures the proportion of types present in
the training corpus, but not included in the test cor-
pus. It is clear that this information is not necessarily
helpful for predicting accuracy. The purpose is to have
a similarity measure that deviates from the others.

4. NLP machine learning task

4.1. British National Corpus

The corpus that is used for the experiments is the
British National corpus, BNC (BNC, 2001). This cor-
pus contains part-of-speech labels and is divided into
different domains.

Table 1. Overview of number of tokens and sentences in
each domain of the BNC.

domain # tokens # sentences

imaginative 19,507,596 1,333,450
world affairs 17,925,728 726,881
social science 13,481,239 542,410
leisure 11,088,447 560,094
arts 7,182,257 303,019
applied science 7,154,185 312,948
commerce & finance 6,787,847 302,455
natural & pure science 4,095,326 172,836
belief & thought 3,160,642 136,366

The BNC annotators provided nine domain codes
(i.e. wridom codes), making it possible to divide the
text from books and periodicals into nine subcorpora.
These annotated semantic domains are: imaginative
(wridom1), natural & pure science (wridom2), applied
science (wridom3), social science (wridom4), world af-
fairs (wridom5), commerce & finance (wridom6), arts
(wridom7), belief & thought (wridom8), and leisure
(wridom9). The smallest domain is the belief &
thought domain, consisting of ∼3M tokens, see Ta-
ble 1. To eliminate the influence of different corpus
sizes, a random selection of approximately 1,500,000

1For the Kullback-Leibler divergence, if pk 6= 0 but qk =
0, smoothing is applied, such that qk = 2−52.

tokens has been taken from each domain. During sam-
pling, sentences are kept intact.

4.2. Part-of-speech tagging

In this paper, we have chosen the part-of-speech tag-
ging machine learning task, because of the substantial
influence of domain differences on the performance for
this task. The machine learner that is used for the ex-
periments is the memory-based part-of-speech-tagger,
MBT (Daelemans & van den Bosch, 2005). MBT2 is a
machine learner that stores examples in memory and
uses an extension of the kNN algorithm to assign part-
of-speech labels. The default settings were used. An
advantage of MBT is its speed, making it the machine
learner of choice to carry out a high number of exper-
iments. In addition, the conclusions of this paper do
not hinge upon the choice of the machine learner, since
the linear correlation between similarity measure and
accuracy is observed for other machine learners (Van
Asch, 2012).

5. Self-training setup

5.1. Procedure

Self-training is a technique consisting of automatically
labeling additional training data in a semi-supervised
way, before running an experiment (Charniak, 1997;
McClosky, 2010; Sagae, 2010). Jiang and Zhai (2007)
present an example for part-of-speech tagging.

Three corpora are needed for self-training: a labeled,
training corpus, a labeled test corpus, and an unla-
beled additional corpus. During self-training, a model
is learned from the training data and it is applied to
the unlabeled data. Thus, the additional training data
is created by automatically labeling unlabeled data.
Next, the (partially incorrectly) labeled, additional
data is appended to the original training data (self-
training step 1 ). This first labeling step is followed by
a second training phase. The model resulting from this
phase is then used to label the test data (self-training
step 2 ).

It remains under debate whether self-training is a use-
ful method; it is not shown to lead to performance gain
in every experimental setup. Sagae (2010) argues that
self-training is only beneficial in those situations where
the training and test data are sufficiently dissimilar,
but other factors – such as labeling accuracy of the
unlabeled data – have an influence too. It would be
helpful if the positive effect of the application of self-

2Available at http://ilk.uvt.nl/mbt (Last accessed:
March 2013)
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training could be determined in advance. Thus, given
a set of three corpora, the experimental question is:
Does a given setup lead to an accuracy increase when
self-training is applied?

5.2. Evaluation and performance indicator

F-score3 can be used for evaluating the setups (van Ri-
jsbergen, 1975). A true positive (tp) is a three-corpus
setup that results in an accuracy increase and that has
been predicted to benefit from self-training. A false
positive (fp) is a setup that does not benefit from self-
training, although it was predicted to do so. A false
negative (fn) is a setup that benefits from self-training,
but was predicted the converse.

For the experiments of this paper, when each setup is
predicted to lead to accuracy gain, the F-score would
be only 25.61% (see Section 6.2). This baseline is an
indication of the general success of self-training. If self-
training would always be helpful, this baseline would
be 100%. But since this is not the case, the low base-
line is an incentive to look for a way to predict whether
self-training will be increasing performance or not for
a given combination of corpora. To this end, a perfor-
mance indicator δ is designed.

In our design, the performance indicator is a binary
indicator: If the performance indicator is positive for a
given setup, self-training is considered to be beneficial.
If the indicator is negative, no gain is to be expected.

Test corpus

Training corpus

Unlabeled
data

d1

d2

d3

Test corpus

Training corpus
+

Labeled unlabeled data

d4

Figure 1. Theoretical justification of the performance indi-
cator δ: Overview of similarities.

Figures 1 and 2 illustrate the rationale behind the de-
sign of the performance indicator δ. Figure 1 shows the

3F-score = (1+β2) tp

(1+β2) tp+β2 fp+fn
; In this paper, β is set to

1.

GOLD
SELF-TRAINING

ACCURACY

SELF-TRAINING
ACCURACY GAIN

DEFAULT
EXPERIMENT
ACCURACY

acc4

acc1

Figure 2. Theoretical justification of the performance indi-
cator δ: Self-training accuracy gain.

different similarities that can be measured. d1 repre-
sents the similarity between the training corpus and
the test corpus. This is the only similarity involved
when a straightforward test/train experiment is run.
d2 is the similarity between the training corpus and
the additional unlabeled data. The labeling accuracy
in the first self-training step is correlated with this
similarity. d3 is the similarity between the additional
data and the test corpus. The more similar the test
corpus and the additional data, the more beneficial
self-training will be, provided that labeling during the
first self-training step is near perfect. d4 is the sim-
ilarity between the composite corpus of training and
additional data on the one side and the test data on the
other. When labeling during the first self-training step
would be perfect, the proportionality between d4 and
its associated accuracy (acc4) would be the same as be-
tween d1 and its accuracy (acc1), since there would be
no conceptual difference: both are measured between
perfectly labeled corpora.

It is known that accuracy ∝ 1
similarity (Van Asch &

Daelemans, 2010).4 In a first step, the most important
similarities are the similarity between training corpus
and test corpus (d1) and the similarity between train-
ing corpus + additional data and test corpus (d4). The
right column in Figure 2 depicts the accuracy of a reg-
ular test/train experiment (acc1), and the height of
this column is inverse proportional to the similarity
d1. Consider the case when labeling is perfect during
the labeling step of a self-training experiment. In this
case, the left column of Figure 2 is the highest obtain-

4In this interpretation, the similarity value should be
smaller when corpora are more alike.
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able accuracy with self-training (acc4). The perfectly
labeled composite corpus serves as the training cor-
pus. More data often leads to a higher performance
e.g. Daelemans et al. (1999) and for that reason the
left column is made higher than the right column.

The difference between acc4 and acc1 is the dashed
column, which is the gain, obtained with (perfect) self-
training, over a regular experiment. The performance
indicator can be defined as

δ′ =
acc4
acc1

(8)

if δ is larger than 1, self-training gain can be expected;
if δ is smaller than 1, no gain is expected from self-
training. Since we want to predict performance gain
without running experiments, the accuracies are not
available, but it is possible to use the similarities in-
stead. In addition, the similarity between the unlabeled
data and the test data (d3) can be used as a proxy for
d4. Rewriting the performance indicator such that its
outcome is binary then yields:

δ =

∣∣d1
d3
− 1
∣∣

d1
d3
− 1

(9)

If δ is +1, gain is expected; if δ is -1, no gain is ex-
pected. The predictive power of this performance in-
dicator is tested for part-of-speech self-training exper-
iments in the next section.

6. Experiments

The corpus, the experimental setup, the evaluation
method and the performance indicator have been pre-
sented in the previous section. In this section, these
elements are used to conduct the experiments. First,
the correlation coefficient for the different similarity
measures is retrieved. Next, the self-training experi-
ments are discussed.

6.1. Correlation r2

The British national corpus contains nine domains,
making it possible to select

(
9
2

)
= 36 different com-

binations of domains. The sets are used to conduct
straightforward test/train experiments. Since it makes
a difference whether a domain is selected as the first,
i.e. as training corpus, or as the second, i.e. as test
corpus, 36 · 2! = 72 experiments can be run.

By running the 72 part-of-speech tagging experiments,
it is possible to compute the r2 between the similarity
measures between the test and training corpus on the

one hand and the accuracy of the experiment on the
other. In practice, each of the 72 experiments is a 25-
fold cross-validation experiment. The training corpus
is divided into five equal parts and the same is done for
the test corpus. Next each training part is combined
once with each test part in a part-of-speech tagging ex-
periment with MBT. The final part-of-speech tagging
accuracy and the similarity value are the averages of
this cross-validation setup.

These experiments can be run while varying the simi-
larity measure. The different correlations that are ob-
tained in this manner will be used to differentiate the
better from the worse similarity measures.

Table 2. The r2 correlation coefficients for different simi-
larity measures. The correlation is computed between sim-
ilarity value and accuracy for 72 part-of-speech tagging ex-
periments.

Measure r2

Rényi 0.083 – 0.987
Kullback-Leibler 0.986
Skew 0.224 – 0.985
sUWR 0.874
Jensen-Shannon 0.863
Overlap 0.051

Table 2 shows the correlation coefficients r2 for the
selected set of similarity measures. Since the Skew and
Rényi divergence contain a parameter α, a range of
correlation coefficients is reported for these similarity
measures.

The asymmetry of a measure M is the property that
makes that the order of the distributions has an in-
fluence: M(P,Q) 6= M(Q,P ). Because all measures
but the Jensen-Shannon divergence are asymmetric,
the reported r2 is an average value. For each run of
72 experiments, nine correlations are computed. One
correlation for each set of 8 experiments for which the
test corpus is the same. Averaging these values gives
the values of Table 2. If all 72 experiments would
be used to calculate a single overall r2, the value for
the Jensen-Shannon divergence would be too low since
this measure cannot accommodate to the asymmetry
of a part-of-speech tagging experiment: the similar-
ity value is the same for JS(P,Q) and JS(Q,P ), but
the accuracy will be different. Splitting the computa-
tion of r2 into a separate r2 associated with each dif-
ferent test corpus, overcomes this incongruence, since
JS(P,Q) and JS(Q,P ) are no longer used for the cal-
culation of the same r2. Averaging all r2’s will aggre-
gate the separate correlations to a single number.
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As can be seen in Table 2, all measures show a good
correlation except for overlap, which has been included
for contrast. Two examples plots are given in Figure 3,
along with the associated average r2 value.
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(a) Overlap (r2 = 0.051)
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(b) Kullback-Leibler (r2 = 0.986)

Figure 3. Plot of two correlations between similarity value
and part-of-speech accuracy for 72 experiments.

The parameterized divergences can also be adapted in
such manner that they perform better or worse. The
Rényi divergence has been applied with α varying from
0.02 to 0.98 in steps of 0.02. The higher α, the better
the correlation. The Skew divergence with α values
varying from 0.02 to 0.98 in steps of 0.02, varying from
0.9805 to 0.9995 in steps of 0.0005, and varying from
0.9995005 to 0.9999995 in steps of 5.10−7. The higher
α, the lower the correlation. Because the correlation
of the Skew divergence declines much slower than the
correlation of the Rényi divergence, more and smaller
steps are computed for the Skew divergence.

6.2. Self-training gain prediction

The British National Corpus consists of nine domains
and a set of three different corpora is needed to carry
out a self-training experiment. This means that there
are

(
9
3

)
= 84 possible sets. Since the order is impor-

tant, and there are 3! permutations possible per set.
In the end, this adds up to 504 experimental setups,
using each domain either as training data, test data,
or additional data.

As mentioned in Section 5.2, the baseline F-score when
each self-training setup is expected to be beneficial is
25.61%. It should be stressed that a whole set of self-
training setups are tested in this paper. As the base-
line indicates, self-training may help performance, but
it is not guaranteed. When examining a self-training
setup for a single run of natural language processing
task, one should be aware of the fact that a positive (or
negative) outcome may be attributed to the corpora
that have been selected. The single outcome should
not give rise to conclusions about the general usability
of the self-training technique for that task.

In this paper, when the 504 setups are tested during
self-training experiments, only 74 experiments benefit
from self-training. Leading to an F-score of 2·74

2·74+430+0
= 25.61%.

When self-training is beneficial, the average perfor-
mance gain is 0.07%, which amounts to an absolute
difference of ∼985 tokens that are labeled correctly
thanks to self-training. When self-training is harm-
ful, the average performance loss is 0.09% or an ex-
tra of ∼1284 incorrectly labeled tokens. Overall, self-
training has only a minor influence on accuracy, but
even this minor influence can be predicted as is shown
in the following experiments.

The derivation of the performance does not put severe
constraints on the similarity measure that needs to
be incorporated. The only requirements being that
the value of the measure should never switch sign and
that more similarity should lead to a smaller value.
The 504 experiments are repeated while the similarity
measure is replaced by one of similarity measures that
are presented in Section 3.

We run a full round of experiments for the follow-
ing similarity measures: Jensen-Shannon, Kullback-
Leibler, sUWR, overlap, Rényi divergence with α vary-
ing from 0.02 to 0.98 in steps of 0.02, and Skew di-
vergence with α varying from 0.02 to 0.98 in steps of
0.02, varying from 0.9805 to 0.9995 in steps of 0.0005,
and varying from 0.9995005 to 0.9999995 in steps of
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Figure 4. The variance of the self-training F-score for sim-
ilarity measures that show different r2 correlations for the
accuracy of straightforward part-of-speech labeling exper-
iments and the degree of test/train-similarity as expressed
by that measure. Each point is a different measure. For
the parameterized measures (Rényi and Skew), each point
is the measure with a different α value, α ∈]0, 1[. For the
Rényi divergence, an increasing α leads to a higher r2. For
the Skew divergence, an increasing α leads to a lower r2.

0.0000005.5 The F-scores of these experiments are
plotted in Figure 4 and the F-scores are given in Ta-
ble 3. The y-axis indicates the F-score, the x-axis indi-
cates the correlation of the used measure, as reported
in Table 2.

Table 3. F-scores for different similarity measures when
used in the performance indicator δ. Statistical difference
with baseline is indicated with *.

Measure F-score

Rényi 25.15 – 42.33*
Kullback-Leibler 40.49*
Skew 33.13* – 42.94*
sUWR 38.04*
Jensen-Shannon 41.72*
Overlap 22.09

A first conclusion that can be drawn from Table 3
and Figure 4 is that it is almost always better to use
the performance indicator to predict whether a self-
training setup will be beneficial than to assume that
self-training is beneficial. Only the two similarity mea-
sures at the left of the figure fall below the previously

5Because of the large amount of data points for the
Skew divergence, with relatively small correlation differ-
ences, not all points are shown in Figure 4.

reported baseline of 25.61%. These two are overlap
(r2 = 0.051) and Rényi with α = 0.02 (r2 = 0.083).

The second conclusion is that, in general, similar-
ity measures that are better correlated with accuracy
(higher r2) are more suited to be used as the core of
the performance indicator δ. Although this observa-
tion holds in general, Figure 4 also shows that there
is a broad range of similarity measures that approach
the maximum F-score, provided that a certain degree
of correlation has been reached. It is even the case
that prediction appears to be less trustworthy when
the higher r2 scores are reached. The best Skew diver-
gence is with α = 0.82, associated with an r2 value of
0.861 and reaching an F-score of 42.94%. Although a
feeble downward trend for the top r2 values can be ob-
served, there is no statistical difference6 between e.g.
sUWR and Jensen-Shannon (p = 0.099). Only a larger
difference, like between Jensen-Shannon and overlap
(p = 9.10−6), is statistically significant.

A higher r2 does not necessitate obtaining a higher F-
score. This fact can also be illustrated when straight-
forward accuracy is used as the similarity measure. As
mentioned before, the best way to predict the accuracy
of an experiment is by running that experiment. We
can derive a similarity measure from the accuracy of an
experiment: similarity value = 1

accuracy . It is clear
that the correlation r2, computed as in Table 2, for this
measure is 1. This perfect similarity measure can now
be used in the performance indicator δ. The associated
F-score for self-training then becomes 40.49%, which
is not markedly better than using any other efficient
measure. Since there is no better similarity measure
available, this figure can be considered as a limitation
to the method of using correlation r2 as the selection
criterion for selecting the best measure for this task.
Indeed, if r2 would be the only factor into play, the
F-score when accuracy is used as similarity measure
should be highest. But this is not the case.

This observation has consequences on two levels. First,
r2 cannot be used as the single selection criterion for
selecting the best measure to be used in the perfor-
mance indicator, although a minimal r2 value is re-
quired. Second, the design of the performance indica-
tor may not be flexible enough to anticipate certain sit-
uations, such as a very unsuccessful first labeling step.
This implies that, even if you have built in the best
similarity measure, it remains impossible to correctly
predict all experimental setups for which self-training

6Stratified approximate randomization testing of F-
score of the positive class has been used to assess the sig-
nificance of different labeling scores of the test set (Noreen,
1989). Implementation: www.clips.ua.ac.be/scripts/art
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is beneficial.

6.3. Influence of the α parameter

When examining the definitions of the Rényi and Skew
divergence, eqs. (3) and (4), we can draw the following
conclusions on the influence of the α parameter on
the measure: For the Rényi divergence, it can be seen
that lowering α implies lowering the influence of the
test corpus (pαk becomes smaller, and q1−αk becomes
larger). As can be seen in Figure 4 by moving from
right to left, lowering the influence of the test corpus
leads to a deteriorated performance of the similarity
measure, after a small initial gain.

For the Skew divergence, lowering alpha also means
lowering the influence of the test corpus. Moving from
left to right in Figure 4, in the beginning, lowering the
influence of the test corpus improves the performance
of the similarity measure, but when an α value of 0.82
is reached, the best parameter setting is reached. Fur-
ther lowering of the influence of the test corpus will
eventually lead to performance decrease.

Conclusion and perspectives

In this paper we investigated the possibility to rank
similarity measures according to appropriateness for
self-training. Our approach offers an analytical and
systematic method to select the best-suited similar-
ity measure from a set of measures. This, in contrast
to the more frequent practical approach of testing all
similarity measures in order to find the measure fit for
the task. An additional advantage of the framework
is that it enables the investigation of other properties
besides linear correlation. This may be a stimulus for
further research focusing on objective ways to express
domain differences between corpora.

The machine learning task we implemented, is a self-
training part-of-speech tagging task, in which a sim-
ilarity measure is used to obtain a prediction about
the usefulness of the self-training setup. To predict
the usefulness, a performance indicator δ has been de-
signed. We found that the r2 of a similarity measure
can be used as a coarse selection criterion for selecting
a set of suitable measures.

The fact that the correlation cannot be used to sin-
gle out one best-suited measure can be attributed to
two interfering causes. The first cause being that the
correlation coefficient may disregard certain influen-
tial properties of similarity measures. The sensitivity
to relative frequency differences or the interdependen-
cies between tokens may be two of such undetected
properties. A second cause making the correlation ap-

pear an insufficient selection criterion may be that the
effectiveness of the performance indicator δ can be lim-
ited by its design. This last conclusion is corroborated
by the observation that incorporating a perfect sim-
ilarity measure (accuracy) does not lead to the best
performance.

For parameterized similarity measures (Rényi and
Skew divergence), we found that moderately lowering
the influence of the test corpus in the measure leads
to an increased performance. This observation may
contribute to the design of parameterized variants of
existing similarity measures (like e.g. a parameterized
sUWR). The newly introduced parameter should reg-
ulate the proportional influence of test and training
corpus.

In general, we can conclude that the use of similar-
ity measures in natural language processing is mainly
a trial-end-error approach. We made start at looking
into the various properties of similarity measures by
investigating the information carried by the correla-
tion coefficient. But, as our research showed, other
properties exist and following research could focus on
conceiving new measures that can express these prop-
erties in an objective manner.
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