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Abstract. The scan design is Ihe most widely used technique used to ensure the testability of sequential circuits. 

In this an icle it is shown that testability is still guaranteed, even if only a smaU part of the flipflops is integrated 

into a scan path. An algorithm is presented for selecting a minimal number of flipflops , which must be directly 

accessible. The direct accessibility ensures that , for each fa ult , the necessary test sequence is bounded linearly 

in the circuit size. Since the underly ing problem is NP-complete, efficient heuristics are implemented to compute 

suboptimaJ solutions. Moreover, a new aJgorithm is presenled to map a sequential circuit into a minimal comb ina· 

tional one, such that test pattern generation for both circuit representations is equivalent aDd the fast combinationaJ 

ATPG methods can be appUed. For aJl benchmark circuits investigated, this approach results in a significant reduction 

of the hardware overhead. and additionally a complete fault coverage is still obtained. Amazingly the overall test 

application time decreases in comparison with a complete scan path, since the width of the shifted patterns is 

shorter. and the number of patterns increase only to a small extent. 

Key words: design fOT testability, panial scan path , sequential test generation. 

1. Introduction 

In 1973, Angell and Williams proposed the scan path in 

order to facilitate test generation for sequential circuits 

[3]. In lfJ77. Eichelberger and Williams established a 

system of rules called Lcvc1·Scnsitive Scan-Design 

(lSSD), resulting in higher flexibility of the design and 

less hardware overhead [91. But the costs of a scan path 

are still up 10 20% additional s ilicon area [4]; and some 

investigations show significant savings if only a part 

of the flipflops is integrated into an incomplete or paniaJ 

scan path . 

The partial scan design does flot lead to combina· 

tional test generation and test application , only the se· 

quential depth of the circuit is reduced . Moreover, the 

costs of wiring of an incomplete scan path do not directly 

depend on the number of scan elements. For this reason 

a partial scan approach is only ~ rthwhil e if the number 

of scan e lements can be kept below 50% of all flipflops 

[34] . Similar results are obtained in [21] . 

TrischIer proposed the selection of scannable e le

ments based on testability measures [35], for instance 

SCOAP [15]. He uses a general-purpose sequential test 

pattern generator for the resulting network of reduced 

sequentiaJ depth. But this approach has two main 

drawbacks: 

I . For the modified sequential network, the use of a 

general ATPG does not guarantee a complete fault 

coverage. 

2. In general, the heuristics for selecting the scannable 

flipflops do not result in a minimaJ number. 

T he first drawback is avoided by the approach pre· 

sented in [I and 2]. Here the selection of the scan 

elements and the generation of the test patterns are inte· 

grated into one aJgorithm. The PODEM algorithm [14] 

tries to generate lest patterns fo r me combinational part 

of the circuit; flipflops arc selected that should be acces· 

sible in order to control the inputs of the combinational 

pan. But the number of selected flipflops wiU become 

rather large. Both drawbacks can be avoided by an ap

proach based on the state transition graph as presented 

in [271 . where circuit design and test generation are in· 

tegrated. This approach is especially applicable for 

logic synthesis. But. in geneml, the circuit structure 

is given and not the state transition graph. Generating 

this graph fo r arbitrary networks can become imprac-

ticable duc to time and storage limits. 
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In the presented work, both disadvantages areavoided 

without any serious time and stOrage restrictions. We 

establi sh some necessary restrictions on the circuit 

structure to ensure that the test length fur each fault 

is linearly bounded by the circuit size. We present a 
new algorithm selecting a minimal set of scan elements 

in order to satisfy these restrictions. Since the selection 

problem is NP-complete, the exact solution optionally 

is weakened by some heuristics. Based on the selection 

of thc scan elements, a new ATPG-algorithm is devel

oped, which is specially suited for these modified cir

cuits and succeeds in complete coverage of the medun

dant faults . 

This article is an extension of the work reported in 

[23] ; similar ideas have been presented in [6] and [13] . 

In section 2 we describe the necessary design restric

tions for our approach , introduce the used. graph

theoretical circuit representations, and discuss the fault 

model. Afte r these preliminaries, section 3 points out 

the relation between circuit structure and test length. 

The necessary restrictions are established; these must 

be satisfied by an incomplete scan path in order to 

bound the test length and the test effort . 

Section 4 presents an algorithm for selecting the 

scannable elements, and section 5 explains the corre

sponding ATPG-algorithm for the modified network. 

A fler a discussion of the necessary and sufficient test 

lengths and also of the test application time, the results 

of severaJ benchmark circuits arc presented in section 7. 

2. Circuit Representation and Fault Modeling 

We assume that the sequential circuits are described 

at gate level, and that the following restrictions are 

fulfilled: 

• The circuit is purely synchronous. 

• The system operation is controlled by a one-phase 

clock. 

• Only D-flipflops are used. 

• The D-flipflops can be completed. according to the . 

rules of either level-sensitive or edge-triggered scan 

design (LSSD, ETSD). 

• Shifting is controlled by an additional clock, or the 

system clock for the non~scannable flipflops can be 

blocked. 

The extensions to multiple clocks are omiued in 

order to simplify the notations. More complex storage 

elements (e.g., T-, RS-, and IK-flipflops) can be used, 

if these components are modeled by D-flipflops and 

some combinational logic. 

We model sequential circuits by a directed graph, 

caUed data-flow graph, where the vertexes or nodes cor

respond to primary inputs, primary outputs, and to the 

outputs of the gates and fliptlops. There is a directed 

edge between node v and w, if v is input of a cOffiJxment 

with output w. For the example circuit of figure 1 the 

corresponding data-flow graph is given in figure 2. 

Here the data-flow graph G = (V, E) consists of the 

nodes V :~ {EI, ... , £5, Ki, ... , K8, Kil, Kl2 , POl, 

P02, P03} and the corresponding edges. 

In the next section, it is shown that the topology of 

the storage elements in particular determines the test 

length. This topology is described by the so~called 

S(torage element)-graph. Figure 3 shows the S~graph 

corresponding to the data-flow graph of figure 2. 

The nodes V of the S-graph Gs : == (V, E) are the 

tcrminals and the outputs of flipflops. There is an edge 

(v, w) E E in the S-graph, if there is a path from node 

v to node w in the data-flow graph, whieh does not con

tain any storage element. 

The presented. approach is valid for a very general 

fault model, including the classical stuck-at fault model, 

combinational faults, and most of the bridging faults . 

El------------f--:l 

E2--:=----CJ<lLJonl.JiliJ 
El 

E4 1'03 

E5 +--+---===1---.1 

CLOCK --~-----4-----~----~ 

Ag. I. Example circuit. 
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Fig. 2. DalO-flow graph. 

PO 

E3l----r 

~ 
Fig. 3. S-graph . 

Thc only restrictions are, that no sequential behavior 

is induced for instance by stuck-open fa ults, and that 

the topology of the S-graph is not altered by shorts. 

3. The S-Graph and Test Lengths 

By the definition of our fault model, the correct circu it 

and all faulty circuits are mapped onto the same S-graph. 

Since all faulty changes of the func..1ions of the combina

tional components are admissible, we have to impose 

some restrictions on the topology of the S-graph, in 

order to ensure thai the test lengths are linearly bounded. 

Duc to observation I and observation 2 below, a neces

sary condition is that the S-grdph contains no cycles 

(i .e., feedback loops wi thin the gate-level netli st). 

Observation 1. If the S-graph of a sequential circuit 

contains cycles, the initiali7.ation sequence of some 

stales can increase exponentially wi th the number of 

flipflops. 

A simple example of this observation is a linear feed

back shift register (LFSR) of length fl , which might 

have an initialization sequence of length 2n 
- l. But 

even a single cycle can lead to a drastic increase in test 

size: 

Obsenation 2. There are S-graphs containing a single 

cycle, where the initialization sequence of some states 

increases quadratically with the number of flipflops. 

Such a circuit is shown in figure 4. 
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Acyclic Shift Register 
oflength n (SR 1) ,r 

& 

Cyclic Shift Register 
oflength n (SR 2) 

Fig. 4. Sequential circuit with a single cycle. 

Fig. 5. S-graph of the circuit of Fig. 4. 

In order to fill the register SR2 completely by "1," 

O(n2} clocks are required. As illustrated by figure 5, 

the S-graph contains exactly one cycle only. The actual 

length of the transition sequence is determined by the 

data-flow graph, and there are circuits with short test 

sequences, though the S-graph contains some cycles. 

But since the data-flow graph is affected. by each fault, 

we have to assume the worst-case, and we demand that 

the S-graph of a sequential circuit is cycle-free. This 

condition requires that almost all the flipflops of coun

ters or control parts must be integrated into a partial 

scan path. This drawback is not too severe, if these tlip

flops are only a small subset of a total set of flipflops, 

as we will demonstrate by the analyzed bendunark cir

cuits. On the other hand , it is well known, for exam

ple, that large counters are hard to test and they should 

be directly accessible anyway_ 

Adding a storage element to an incomplete scan path 

corresponds to the removal of a node from the S-graph 

as described in definition 4.1 below. In the next section, 

we discuss how to determine and to remove a minimal 

set of nodes in order to get an S-graph without cycles. 

In section 5, it is shown that these conditions are 

not only necessary, but also sufficient, to test a sequen

tial circuit with test pattern sequences of linear bounded 

length. 

4. The Selection of Scan Elements 

In order to describe the algorithms selecting scan 

elements, some graph theoretic notations are necessary. 

Let G:= (V, E) be a finite, directed graph with nodes 

V and edges E C V2. We use the following notations. 

A sequence eh ... , eq of nodes (vertexes) is a 

path, if (e;, ei+l) E E for i = 1, ... q - L The length 

few) of a path w is the number of directed edges. An 

elementary path is a path where each node occurs only 

once; and a cycle is path where the first node and the 

last node are identical. An elementary cycle is a cycle, 

where no node occurs twice, with the exception of the 

first and last node. 

Let G = (V, E) be a graph, and v E Va node. p(v, G) 

C V is the set of all predecessors of v in G, s(v, G) 

c V is the set of aU successors, pd(v, G) is the set of 

all direct predecessors, and sd(v, G} is the set of all 

direct successors of v in G. A node v of the graph G 

is initial (final), if p(v, G} = tjJ (s(v, G) = q,}. By this 

definition, all initial nodes correspond to primary 

inputs. 

Definition 4.1. Let G = (V, E) be an S-graph of a se

quential circuit. A cut of a node v E V is a map of G 

into a new graph G' = (V', E,) where 
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V' ~ {p;) u {P, ) U v\{v), with new p; " p, e V 

E' ~ {(P;, w) I wE sd(v, G)) U 

{(w, Po) I w E pd(v, G)) U 
E\{(x,y) I x ~ vVy ~ v) 

If two nodes are Cllt, then the resulting graph G' 

is independent of the order in which the cuts are per~ 

formed. Thus for each W C V, we can cut all nodes 

of W, and we denote the resulting graph by Gw = (V w, 

Ew)· 

The problem of selecting a minimal number of scan 

elements can now be stated as follows: 

(AC): For an S-graph G = (V, E), find a 

set W C Y of minimal cardinality 

such that Gw = (VW, Ew) is acyclic. 

(AC) is an NP-complete problem, sometimes called 

Feedback Node Problem [20]. For this reason, besides 

the exact algorithms some heuristics are necessary in 

order to obtain at least good, suboptimal solutions. Let 

ZG be the set of all elementary cycles of G. For each 

cycle z E ZG' we defme n(z) := {v E V I v E z} the 

set of all nodes of z. Now we can divide the scan selec

tion problem into two subproblems (see figu re 6): 

i) For the S-graph G = (V, EJ. detennine the set of 

all elementary cycles ZG. 

til Set H ~ U n(z). 
taG 

Find a set W C H of minimal cardinality, such that 

Vz E ZG: W n n(z) "# 0. 

Both subproblcms are standard-problems of graph

theory, and mere are well-known solutions. For c:xample, 

algorithms to solve subproblem (i) are presented in [8, 

32, 33, 36]. In the presented approach, an algorithm 

has been implemented based on [19J . In the worst case, 

the cardinality IZGI may increase exponentially in the 

PROCEDURE sca"-.Seiection; 

SET W: = 0, Gw = (V,E); 

REPEAT 

size of V. Also subproblem (ii) has a very high complex

ity, since it is a formulation of the Hitting Set Problem, 

which is also known to be NP-complete [12 , 20]. 

The implemented algorithms are based on methods 

described in [7] , but in combination with subproblem 

(ii) additional heuristics are used. These heuristics are 

divide-and-conquer methods, where the problem size 

is bounded by a constant C E IN. 

This procedure can also be used for probabilistic 

optimization, since the elementary cycles are selected 

randomly. Even a single pass provides gcxxl results; and 

for the results reported in section 7, this procedure has 

been called only once. 

In the next section we show that for circuits repre

sented by an at.)'clic S-graph test patterns can be gener

ated very efficiently. 

5. Test Pattern Generation 

For general synchronous circuits, Roth introduced the 

notation of time-frames [29] . For each time step, a copy 

of the combinational part of the circuit is generated, 

and the number of time steps corresponds to the length 

of the lest sequence (figure 7). 

It is known that for circuits described by an acyclic 

S~graph the necessary number of time-frames is bounded 

by the number of storage elements [10]. In this section 

it is shown that only a small part of the combinational 

circuit must be copied at each time step. This results 

in a rather small combinational representation of the 

sequential circuit. It should be noted , that only a linear 

number of time~fram es is needed in order 10 identify 

all redundancies. This includes combinational redun

dancies and redundancies due to unreachable states. 

Finally, the test pattern generation algorithm for this 

select a set of elementary cycles Z of Gw at random with I~I ::!':Oc; 

SET H , ~ U O(l); 

~EZo 

Solve the hitting problem for H, i.e. find minimal W*CH such that 

VzEZ: W*nn(z)~0. 

SET W: :=WUW*; 

UNTIL Ow is acyclic 

END sca"-.sclection; 

Fig. 6 Selection of scan-elements. 
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rr==Z+~ Combi-
national 

=01 ~ 
circuit 

DOE OI Data Input. (primary) 
DO Data Output (primary) 
Z+ State 

z:- Z- Data Output of the register 
~ h 

rr=.l 
.'" 

I ~ 
Initial 
state 
~ 

DOl~ Z1+-:: 
~ Copy 1 
~ 

=0111;: Z2+:; 0021:: 

• 
Copy 2 

= DI2 c:: Zk+J:: oml:: 

Copyk 

=Ork Zn+:; DO;:: 

Copyn 

=D1n Zn- --::-

Final 
State 

Fig. 7. Time fram~s. 

combinational representation is sketched, and the trans

formation of the combinational test patterns into se

quences is discussed . 

5.1. Test Lengths Jor Acylic S-Graphs 

In order to describe our sol utions exactly, some more 

graph-theoretical definitions arc required: 

Definition 5.1. Let G = (V, E) be an acyclic graph, 

let v E Vbe a node. The value rf(1I): = max {f(w) I 
w is a path in G with final point v} is called forward

rank, and rb(v) := max {f(w) I w is a path in G with 

initial point v} is called backward-rank. 

DefmitioD S.2. Let G = (V, E) be an acyclic graph. 

The rank of G is defined by 

mnk(G) ,= max {<fey») = max {,bey)). 
v{V v{V 

lei G = (V, E) be an acyclic S-graph with '.:lnt(O) 

= r. A time·frdJ11e at time t is a subset of nodes VI 

C V. V r contains all the primary outputs and all the 

nodes that are connected with a primary output via a 

path of combinational elements. The time-frames are 

ordered by V H 
= {v I v E pd(w) , wE V r}. 

Obviously the nodes of Vr have defined values, if 

the nodes of Vl-l have defined values. Hence we can 

use this notations for state-back-tracing, and if we find 

a time-frame V S
, s < I, containing only initial nodes, 

then an uppcrbound (t - s)ofa testsequencc is derived. 

A test sequence of a sequential circuit must drive 

the faulty and the fault-free circuit into a stale s or Sf' 

where the responses to the same pattern are differenl. 

Hence the maximal test length is given by the maximal 

required Slate transition sequence. In a fonnal way, we 

can state the following theorem, which was also ob

served in [10, 18]: 

Theorem 5.3. Let G "'" (V, E) be an, acyclic S-graph 

with rank(G) = r. For each flipflop v, there is an initial

izing sequence of at most length r, if there is such a 

sequence at all. 

Proof. Let rb(v) =- k ::s r, and start with V' =- {v} . 

The theorem is proved if VO = "or VO contains initial 

nodes only. Set 
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m(l) : ~ rna, {rf(u»), i ~ 0, ... , r. 

"'-
By definition 5.1 we have me!) = m(i - 1) + I, if Vi 

contains storage nodes. Since mer) !f r we have m(O) 

~O QE.D 

In order to get a test sequence. we have not only 

to set a single flipflop, but we have to assign an entire 

state. This is possible by the following corollary: 

Corollary SA. Let G = (V. E) be an acyclic S-graph 

with rank(G) = r. Each admissible state can be reached 

within r steps. 

Proof. Let Sj .. ,Sk be the flipflops of the circuit. let 

f(SI> ... , Sk) be a boolean function, which is true, if 
and only if the desired state is reached. Let SHI be a 

new flipflop , and add circuitry such that Sk+l = f(SI> 

... , Sk)' Then the new S-graph has rank r + 1, and 

Sk+J can be set within r + 1 steps by theorem 5.3. 

Thus the desired state can be reached within r steps. 

Q.E.D. 

Up to now we have proved that the test lengths are 

linearly bounded. Now we will describe how to derive 

the test sequences. 

5.2. Equivalent Combinational Circuits 

For a sequential circuit C with an acyclic S-graph G : = 

(V, E), we are generating an equivalent combinational 

circuit C of size O(r(G) . Ie!). such thai a test pattern 

of C corresponds to a test sequence of C. Moreover, 

C should be minimized. For this reason we extend our 

notion of time-frames to data-flow graphs. 

Let Gs : = (VS, Es) be an acyclic S-graph, and 

GD := (VD. ED) be its data flow graph. 

Let Vi be a time-frame of the S-graph. In the data

flow graph, Vi is defined by 

Vi : = Vi U {v E sew, GD) ! W E Vi 

aDd there is a combinational path from w to v} . 

If one node occurs in several time-frames. it must 

be copied sufficiently often. Moreover the flipflops are 

modeled as pseudo-boolean functions in the weU-known 

way. 

The equ ivalent combinational ci rcuit C is repre

sented by the graph Gc := (Ve, Ed where 

Vc : ~ U {(v, i) I v , V;) 
Os isr 

and 

.1 e2 e3 

• 
fig. 8 Sequential circuit and data·flow graph. 

Ec : ~ {((v, I), (w, j) I (v, w) 'ED 

A (i .:= j - 1 A w is a flipflop»}. 

Instead of the fonnal description of this straightfor

ward method, an example is given. Figure 8 shows a 

sequential circuit and its data flow graph. The marked 

nodes of the data-flow graph correspond to flipflops. 

We bave the fullowiug lilllc-frdllles: 

V' ~ {a, kS), 

V' ~ {k4, k3, kL, e3, eL) Dnd 
V' ~ {k2, kL, eL, e2 ). 

The resulting equivalent combinational network is 

shown in figure 9. Test patterns, generated for the com

binational representation with 4 inputs, have to be trans~ 

formed to pattern .sequences of length 2 as represented 

in table 1. 

5. 3. Test Pattern Generation 

A target fault may affect a gate, wh ich is represented 

in multiple timc-frames. In this case me fdult is copied, 

and test generation must be done for a combinational 

network with multiple faults. 

For this purpose the algorithm SPROUT-9V (Signal 

Probability Using Test Pattern Generator, 9-valued 

logic) has been implemented. Thc tool is described in 
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e1/1 e110 eVO e3l1 

aJ2 

nit : node! 
time step 

Fig. 9. Equivalent combinational netWOrk. 

7Ilble 1. Test pattern transfornlation . 

Test pattern 

Test pattern sequences 

el / l etlO e2/0 d/l " 
,2 ,) 

0 - 0 

0 0 0 0 

0 0 

detail in [22], and we are only sketching its main fea

tures. h is based on the nine-valued algebra proposed 

in [28] , in order to guarantee the generation of test pat

terns for any detectable fault , if the computing time is 

not limited. The algorithm is an enumeration algorithm 

controlled by estimations of signal probabilities derived 

by PRarEST r37, 38]. Additional heuristics accelerate 

the TPG in a similar way as used in fAN [11} or 

SOCRATES [3~ , 31J. 

6. Test Application lime 

The test application time is determined by both the 

length of the scan path and the number of pattern se

quences. The shifting time is shortened by using a partial 

scan path, and it turns out that the number of patterns 

does not increase as fast a<; the number of scan elements 

decreascs. Thus the overaU test application time is 

reduced. 

In many cases it is possible to develop an overlay 

scheme for the tcst sequences. That is, new patterns 

can be applied at a time when parts of the circuit arc 

still deaJing with fonner sequences. Most widely this 

pattern compaction can be used for pipeline structures. 

Here, after a certain start-up time, an overlay techrtique 

can be used and at each time step a new pattern can 

be applied. Figure 10 shows the S-graph for pipeline 

circuits. 

Fig . Ia S-graph for a pipeline structure. 
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Fig. /I. Equidistant graphs. 

A complete overlay of test patterns is also obtainable 

for more general structures than pipeline circuits. An 

acyclic S-graph G = (V, £) is called equidistant, if for 

two arbitrary nodes u, v E V, all paths with initial point 

u and final point v have the same length . Figure 11 

shows two examples. 

Definition 6.1. Let G = (V, E) be an acyclic graph. 

An asymmetric recollvergency between u, v E V is a 

set of nodes ReV, such that 

i) there are paths PI> and P2 from u to v with ((P1) ¢ 

f(P,). 

ii) PI n Pl = {u , v}. 

iii) R = (p, U p,)\{u, v}. 

An acyclic graph is equidistant if there are no asym

metric reconvergencies. It can be generated by adding 

a few more elements to the partial scan path. 

An asymmetric reconvergency R is solved if at least 

one node of R is removed by adding the corresponding 

storage element to the scan path. Searching a minimal 

set solving all asymmetric reconvergencies is aD NP

complete problem (see also [24]). Thus we are using 

heuristics, and we have to solve the same subproblems 

as presented in section 3: 

i) Create all .as),mmelfic reeonvergencics RG. 

ii) Set K := U R. 
R~Rv 

Find a set We K of minimal cardinality, such that 

V R ERe: W n R ¢ 0. 

Of course, the shorter test lengths for equidistant S

graphs are at the expense of somewhat longer scan paths. 

7. Results and AppUcations 

The presented algorithms are implemented and inte

grated into a tool system called INSPIRATION (Ineom-

plete Scan Path Integration) . Figure 12 summarizes the 

architecture of this system. 

The approach can also be extended to a test by 

weighted random patterns (WRP). For a design with 

a complete scan path , the application of weighted ran

dom patterns has been discussed in {25] . A partial 

scan path requires the compmation of time-dependent 

weights as discussed in [39]. 

Several sequential circuits have been analyzed by 

INSPIRATION as described in [24J . Here, we discuss 

three examples. The rust one is the operation unit of 

the signal processor (SP) proposed in [5J. The second 

example is a multiplier (MU) presented in [16], and we 

discuss a processor to accelerate PROLOG-programs 

(PP) fI7]. Table 2 shows the relevant data of the exam

ple circuits including the transistor count. 

'Rlble 2. Circuit characteristics. 

SP 

MU 
pp 

ln put~ Outputs 

83 

43 

36 

55 

26 

73 

Gates Flipflops 

1,675 

993 

1,428 

239 

183 

136 

Transistors 

2t,776 

14,652 

17,242 

Both discussed test strategies have been investigated: 

If the main objective is to reduce the hardware over

head , one has to generate acyclic S-graphs, and if the 

objective is to reduce test lengths, one has to generate 

acyclic equidistant S-graphs. Table 3 gives the percent

age of f1ipflops which has to be integrated into a scan

path in order to generate a complete scan path (CS), 

equidistant S-graphs (EQ), and acyclic S-graphs (AC). 

7llble 3. Percentage of scan path elements. 

SP 

MU 
pp 

AC 

17.2% 

39.3% 

20.6% 

EQ 

38.5% 

39.3% 

44.1 % 

CS 

100% 

100% 

100% 



172 Kunmumll and Wunderlich 

___ data flow 

generation 

fault 
generation 

scan path ..... ------, 
integration 

gerlera.tfl( In of an 
equivalent combinational 

circuit 

test program 
generation 

fig. 12. Test system INSPIRATION. 

For the general partiaJ scan approach , only 17.2% 

and 20.6% of the flipflops must have the scan path capa

bility. The multiplier (MU) has a structure, where gen

erating an acyclic S-graph automatically provides an 

equidistant S-graph, too. The execution time for the 

sample circuits to determine the scan fJipflops has 

always been less than 100 seconds (SUN 3/50). 

It has already been mentioned that the test pattern 

generator must take advantage of the different scan tcch-

Diques like acyclie or equidistant S-graphs. General pur

pose ATPG programs are not able to do so, as proved 

by table 4. The different circuit structures have been 

given to the program LASAR2000 [26], where the scan 

clements have been modeled as pseudo-primary inputs 

and outputs. Fault coverages obtained after 3600 

seconds computing time are listed in table 3. 
For the combinational parts of the circuits, the new 

tcst generator SPROUT-W succeeded in identifying all 
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Tobie 4. Fault cC/'lerage I7f LASAR aftcr 3600 seconds. 

AC EQ CS Unmodified circuit 

SP 13.2% 27.9% 80.7 % 8.7 % 

MU 40.9% 40.9% 98.9% 9.8 % 

PP 47.9% 63.2 % 93.0% 11.2% 

redundancies. The number and percentage of redundant 

mults are listed in table 5. These fdults have been removed 

from the fau lt list. By the presented approach, it is also 

possible to idcntify sequentially redundant faul ts requir

ing unreachable states. Different sets of states can be 

reached by an (AC)- and an (EQ)-dcsign, and both sets 

contain the stales reached during system operation. 

Table 6 g.ives the overall number of redundancies, 

7hble 5. Nwnbcr and percentage of combination ally redundant faults. 

Number of combinationally 

redundant faults Percentage 

SP 4 0.1% 

MU 0 0% 

PP 188 7% 

Table 6: Total number of redundancies. 

Total number of 
redundancies Percentage 

AC EQ CS AC EQ cs 

SP 4 4 4 0.1% 0. 1% 0.1% 

MU 10 10 0 0.4 11i 0.4% 0.0% 

PP 692 SI2 188 25.6% 18.4'l. 7.0 % 

For the remaining fau lts, test patterns have been gen

erated . The fault covemge with respect to all detectable 

faults and the necessary computing time are given in 

table 7. The time is measured on a workstation SUN 

3/50. 

Table 7. Fault coverage and cornpUling lime for different scan tech

niques by SPROUT-9\'. 

AC EQ CS 

CO\·crage TImc CoYerage Timc Coverage Timc 

SP 99.8 % 1,099 sec: 99.8 % 1,411 see 100% 238 sec 

MU 100.0% 176 sec 100.0% 176 sec 100% S8= 

PP 100.0% 1,101 sec 100.0% 1,060 sec 100% 513 sec 

The rank of the S-graphs is in the range betwcen 

6 10 8. Compared with the size of the combinational 

part of the sequential circuits, the size of the combina

tional representations of the modified sample circuits 

grows in worst case only by 15 %. 

Up to now, the examples show that complete fa ult 

coverage is obta inablc by scan paths contai ning only 

20%-45% of all fl ipflops. lable 8 indicates the neces

sary test application times. We distinguish the nu mber 

of shifting clocks (SH) and the number of system clocks 

(SY) fo r thc different designs. 

Table 8 Shifting clocks (SH) and systcm clocks (SY) for a complete 

test. 

AC EQ CS 

SH SY SH SY SH SY 

SP t 4 ,SSS '" 
5, 152 

" 
17 ,208 71 

MU 6,696 92 6,696 92 16,653 90 

PP 33,124 1182 12 ,660 210 38,760 2" 

The test lengths for equidistant S-gmphs (EQ) are 

only a third of the test lengths for the more general 

acyclic graph (AC). On the other hand an acyclic graph 

needs only a half of the scan elements. This trade-off 

must be solved by the designer. Surprisingly, for al1 

circuits the largest teSI time is needed. using a complete 

scan path . 

Conclusions 

An efficient method has been proposed 10 scle(:l a 

minimal set of flip flops, which must be integmted into 

a scan path in order to guarantee testabili ty. For the 

modifi ed. circuits, an ATPG-algorithm has been devel

oped, providing complete fau lt coverage with respect 

to all irredundant faults. The proposed design and test 

method leads to lower hardware overhead and to shorter 

test times, thus reducing Ihe overal1 test costs. 
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