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Abstract: The area in which a multivariate α-stable distribution could be applied is vast; however, a
lack of parameter estimation methods and theoretical limitations diminish its potential. Traditionally,
the maximum likelihood estimation of parameters has been considered using a representation of
the multivariate stable vector through a multivariate normal vector and an α-stable subordinator.
This paper introduces an analytical expectation maximization (EM) algorithm for the estimation of
parameters of symmetric multivariate α-stable random variables. Our numerical results show that
the convergence of the proposed algorithm is much faster than that of existing algorithms. Moreover,
the likelihood ratio (goodness-of-fit) test for a multivariate α-stable distribution was implemented.
Empirical examples with simulated and real world (stocks, AIS and cryptocurrencies) data showed
that the likelihood ratio test can be useful for assessing goodness-of-fit.

Keywords: EM algorithm; maximum likelihood method; statistical modeling; α-stable distribution;
crypto-currency

1. Introduction

Several empirical studies confirm that the real financial market data are often skewed
and heavy-tailed (e.g., [1–3]). Therefore, a Gaussian distribution rarely fits the data—
for example, stock returns or risk factors are badly fit by this law [4,5]. Note that the
α-stable distribution offers a reasonable improvement, if not the best choice, among the
alternative distributions that have been proposed in the literature (e.g., [6,7]). Thus, normal
distributions are usually substituted by more general stable distributions that allow us to
model both the effects of leptokurtosis and asymmetry in the data.

In the one-dimensional case, the distribution of the random α-stable variable is charac-
terized by four parameters: the tail (stability) parameter α ∈ (0; 2], skewness β ∈ [−1; 1],
scale σ > 0 and position µ ∈ ℜ1. The stability parameter α is the most important, because
it describes the behavior of the tails [2]. Moreover, when α → 2, the distribution of the
random variable is equivalent to a normal distribution and β → 0 (normal tail behavior).
If α → 0, then the distribution becomes degenerate (extremely heavy tails). For example,
Fielitz and Smith [8] showed that a symmetric univariate α-stable distribution appears
to be appropriate when stock prices are modeled. Rachev and Mittnik [2] estimated the
parameters of autoregressive-moving-average models with asymmetric stable Paretian
distributions. Kabasinskas et al. [9] proposed a mixed-stable model to model the intra-daily
data from German DAX component stock returns. Furthermore, the parameters of the
stable distribution collectively and the skewed t-distribution, calculated on the basis of
stock data, were applied to predict the direction of the change in future Accounting and
Governance Risk rating [10]. Ogata [11] revealed that cryptocurrencies are a special class of
assets. During various clustering procedures, parameters of α-stable distribution (together
with other) were used as the main features.

One of the most recent applications of α-stable and truncated α-stable distributions
in pension fund selection was published by Kopa [12]. They used first-, second- and
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third-order stochastic dominance rules to select the best pension fund from second pillar in
Lithuania on the basis of the risk profile of the participant.

Furthermore, the multivariate α-stable symmetric vector with the stability parameter
α is expressed through a normally distributed random vector whose variance is distributed
by an α

2 -stable distribution [13–16]

X = µ +
√

s1 · s2, (1)

where s1 is a subordinator with the stability parameter α
2 < 1; s2 is a random vector, dis-

tributed by the d-variate normal law N(0, Ω); and µ is a random vector of the means. The
random α-stable variable with α

2 < 1 and β = 1 is called a subordinator. In general, a subordi-
nator is a one-dimensional non-decreasing Lévy process [17]. The estimation of parameters
of multivariate α-stable distributions has been a possibility for long time [18–23]; however,
researchers emphasize that methods of the estimation of parameters still have weaknesses. For
example, the authors of [20] gave an example of an application of the elliptical sub-Gaussian
distribution to DAX 30 and reported how to deal with issues when the α values of underlying
assets are different and data are asymmetric; however, they could not incorporate time depen-
dencies. Daul [24] explained how to deal with large portfolios when assets have very different
marginal distributions (αs are very different). Furthermore, Nolan [25] gave an example of
how to use it for Dow Jones 30 portfolios and introduced how to solve tail and serial depen-
dency issues. Moreover, Kouaissah [26] showed how to use parametric multivariate stochastic
dominance in the case of a sub-Gaussian distribution, even with different tail parameters.
Such results are crucial in portfolio selection and management problems. However, practical
applications of the multivariate stable law are limited by the fact that its distribution and
density functions are not expressed through elementary functions. That said, Ravishanker’s
group and Rezakhah’s group[15,27] reported the estimation of parameters of sub-Gaussian
vectors by stochastic EM algorithms. The MCMC approach for the maximum likelihood
estimation of model parameters (µ, Ω, α) was considered by Ravishanker [15]. However, the
accuracy of stochastic methods (e.g., [27]) is highly dependent on internal sample size, the
error of stochastic integration and convergence criteria.

The analytical EM parameter estimation approach is considered in this paper. Since
the probability density function (see the next section) of a random symmetric multivariate
α-stable vector might be expressed through bivariate integrals, it may be calculated using
Gaussian and Gauss–Laguerre quadratures instead of using stochastic integration. This
approach increases accuracy, simplifies the calculation of likelihood functions and increases
computational efficiency compared to regular MLE methods and stochastic EM algorithms.

Now, let us discuss goodness-of-fit tests that were used in similar studies. The well
known Kolmogorov–Smirnov test [28,29] is sensitive to differences in the position and
shape of the sample distribution. It is extremely difficult to implement the proposed meth-
ods, as they require a transformation whose derivation is analytically intractable for most
multivariate distributions. Another famous goodness-of-fit test is the Anderson–Darling
test [30], which is used to estimate statistical differences between observed values and
theoretical univariate distributions. However, there has been no multivariate case for this
test created yet. Goodness-of-fit tests for univariate, symmetric, α-stable distributions were
considered by Matsui and Takemura [31]. Their methodology requires complicated numer-
ical integration in order to preform goodness-of-fit tests for symmetric stable distributions.
A completely different approach based on the empirical characteristic function tests for the
multivariate stable distributions was considered by Meintanis [32]. However, they used
weighted L2-type statistics that are difficult to compute. In [33], specific goodness-of-fit
test for multivariate normal distributions are proposed. The authors claimed that their
test is overall the most powerful and is effective against skewed, long-tailed and short-
tailed symmetric alternatives. Moreover, they claimed that this test can be used for testing
fitness for an assumed p-variate non-normal distribution. However, the major weakness
of the test is related to the proposed test statistics. McAssey [34] introduced a technique
of a goodness-of-fit test for general multivariate distributions based on multivariate nor-
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mal, uniform, Student’s t and beta distributions. This method is simple to implement,
involves a reasonable computational burden and does not require analytically intractable
derivations. It has sufficient power to detect a poor fit in most situations. However, the
authors did not provide evidence that such a technique could be used for a multuvariate
α-stable distribution.

As an alternative to the mentioned goodness-of-fit tests, in this paper, we suggest
a likelihood ratio test (developed in [35]). This test has never been used in the scientific
literature for the goodness-of-fit of multivariate α-stable distributions. However, this
likelihood ratio test is computationally fast and does not require specific knowledge. The
only two things that must be known are how to generate random variables and how to
compute a likelihood function.

The paper is structured as follows: the likelihood function and the maximum likeli-
hood method are described in Section 2. The EM algorithm is considered and applications
of the Gaussian and Gauss–Laguerre quadrature formulas for bivariate integration are
discussed in Section 2.3. The likelihood ratio test for distribution fitting with the estimated
parameters is given in Section 2.4. In Section 3, we provide evidence of the convergence
of the EM algorithm and real world examples with stock data, biomedical data and cryp-
tocurrency data. Finally, we provide empirical recommendations in Section 3.5 and discuss
our findings in Section 4.

2. Materials and Methods

In this section, we introduce maximum likelihood estimates of a multivariate α-stable
distribution, the proposed expectation maximization (EM) algorithm, quadrature formulas
and the likelihood ratio test. The experimental design is also presented at the end of
this section.

2.1. Maximum Likelihood Estimation

Maximum likelihood estimates (MLE) of parameters of any model are obtained by
maximizing the likelihood function, calculated for a sample consisting of independent
vectors [5,15,36,37]. Let us consider the probability density of a random vector created ac-
cording to Equation (1). Indeed, the density of the d-dimensional normal vector N(µ, s · Ω)
is as follows:

N( x|µ, s, Ω) =
s−

d
2

(2π)
d
2 · |Ω|

1
2

· exp

[

− (x − µ)T · Ω
−1 · (x − µ)

2 · s

]

,

where |Ω| > 0, d > 1.
Now, let us write down the probability density of an α-stable subordinator [2,38]:

S(s|α ) = α · s
2

α−2

2 · |2 − α|

1
∫

−1

U
α

2−α
α

(y) · exp

[

−
(

Uα(y)

s

)
α

2−α

]

dy,

where s > 0, −1 6 y 6 1, 0 < α 6 2 and

Uα(y) =
sin
(

π
4 · α · (y + 1)

)

· cos
(

π
4 · (α − (2 − α) · y)

) 2−α
α

cos
(

π · y
2

)
2
α · cos

(

π·α
4

) 2
α

.

Thus, the probability density of a symmetric multivariate α-stable random vector with
given parameters µ, Ω, α is expressed as a bivariate integral:

f ( x|µ, Ω, α) =
( α

2−α )

2·(2π)
d
2 ·|Ω|

1
2
×

×
∞
∫

0

1
∫

−1
exp

[

− 1
2 (x − µ)T Ω

−1

s (x − µ)−
(

Uα(y)
s

) α
2−α

]

U
α

2−α
α (y)

s
2

2−α + d
2

dyds.
(2)
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However, it is very difficult to use this function in practice, even in a univariate case.
Let us consider the sample X =

(

X1, X2, . . . , XK
)

consisting of independent d-variate
α-stable vectors. The likelihood function by virtue of (2) is

L̃(X, µ, Ω, α) =
K

∏
i=1

f
(

Xi
∣

∣µ, Ω, α
)

=
( α

2−α )
K

2K ·(2π)
K·d

2 ·|Ω|
K
2
×

×
K

∏
i=1

∞
∫

0

1
∫

−1
exp

[

− 1
2

(

Xi − µ
)T Ω

−1

s

(

Xi − µ
)

− s
α

α−2 · U
α

2−α
α

(y)
]

· U
α

2−α
α (y)

s
d
2 + 2

2−α

dyds.

The maximum likelihood estimates can be obtained by maximizing the latter function
with respect to µ, Ω and α. Note that very small or very large values of it can occur during
numerical calculations. Therefore, from a computational point of view, it is reasonable to
use the log-likelihood function (LLF):

L(X, µ, Ω, α) = − ln
(

L̃(X, µ, Ω, α)
)

= −
K

∑
i=1

ln
(

f
(

Xi
∣

∣µ, Ω, α
))

=

= −
K

∑
i=1

ln

(

∞
∫

0
exp {−z}

1
∫

−1
B
(

Xi, y, z, µ, Ω, α
)

dydz

)

,
(3)

where B(·) is denoted as

B(x, y, z, µ, Ω, α) =
1

2 · (2π)
d
2 · |Ω|

1
2 · U

d
2

α
(y)

· z
d·(2−α)

2·α · exp

{

− (x − µ)T
Ω

−1(x − µ)

2 · Uα(y)
· z

2−α
α

}

,

where the substitution of integration variable is z = s
α

α−2 · U
α

2−α
α

(y). The latter substitution
is useful in Gauss–Laguerre quadrature for numerical integration (see Section 2.3).

Hence, the estimates of parameters µ̂, Ω̂ and α̂ are obtained by minimizing the LLF

L
(

X, µ̂, Ω̂, α̂
)

= min
µ,Ω,α

L(X, µ, Ω, α). (4)

This optimization problem may be solved in many ways; however, it is very time
consuming and inefficient. In the next section, we introduce the expectation maximization
approach in MLE estimation.

2.2. The Expectation Maximization Algorithm

Let us consider a two-step recurrent procedure, in which the parameters µ and Ω of
the multivariate α-stable distribution are estimated at each iteration by the expectation
maximization (EM) algorithm, and then α is estimated by solving the corresponding
univariate optimization problem.

Since LLF is an analytical function, its partial derivatives with respect to µ and Ω can be
found. Hence, if α is fixed, then the Maximal Likelihood estimates of the parameters µ and
Ω can be found by setting partial derivatives of (3) to zero and solving the corresponding
system of nonlinear equations:















∂L(X,µ,Ω,α)
∂µ

= −
K

∑
i=1

∂ f (Xi|µ,Ω,α)
∂µ

· 1
f (Xi|µ,Ω,α)

= 0,

∂L(X,µ,Ω,α)
∂Ω

= −
K

∑
i=1

∂ f (Xi|µ,Ω,α)
∂Ω

· 1
f (Xi|µ,Ω,α)

= 0.

Using the rules of differentiation with respect to vector or matrix [39], one can write
the derivatives



Mathematics 2021, 9, 945 5 of 20

∂B(x,y,z,µ,Ω,α)
∂µ

= − 1

2·(2π)
d
2 ·|Ω|

1
2 ·U

d
2 +1

α (y)

· z
(d+2)·(2−α)

2·α · Ω
−1(x − µ)×

× exp
{

− (x−µ)T
Ω

−1(x−µ)
2·Uα(y)

· z
2−α

α

}

= Ω
−1(x−µ)
Uα(y)

· z
2−α

α · B(x, y, z, µ, Ω, α),

∂B(x,y,z,µ,Ω,α)
∂Ω

= 1

2·(2π)
d
2 ·|Ω|

1
2 ·U

d
2 +1

α (y)

· z
(d+2)·(2−α)

2·α ·
(

−Ω
−1 + Ω

−1 · (x − µ) · (x − µ)T · Ω
−1)×

× exp
{

− (x−µ)T
Ω

−1(x−µ)
2·Uα(y)

· z
2−α

α

}

=

=
(

−Ω
−1 + Ω

−1·(x−µ)·(x−µ)T ·Ω−1

Uα(y)
· z

2−α
α

)

· B(x, y, z, µ, Ω, α).

Let us denote a few important functions gi, fi, h(·) and w(·)

gi = g
(

Xi
∣

∣

∣µ, Ω, α
)

=

∞
∫

0





1
∫

−1

B
(

Xi, y, z, µ, Ω, α
)

Uα(y)
dy



z
2−α

α exp {−z}dz, (5)

fi = f
(

Xi
∣

∣

∣µ, Ω, α
)

=

∞
∫

0





1
∫

−1

B
(

Xi, y, z, µ, Ω, α
)

dy



 exp {−z}dz, 1 6 i 6 K, (6)

h(X, µ, Ω, α) =

K

∑
i=1

Xi ·gi
fi

K

∑
i=1

gi
fi

,

w(X, µ, Ω, α) =
K

∑
i=1

(

Xi − µ̂
)(

Xi − µ̂
)T

gi

fi
.

Using the notation from above, the derivatives of LLF can be rewritten in the follow-
ing way:

∂L

∂µ
= (h(X, µ, Ω, α)− µ) ·

K

∑
i=1

gi

fi
,

∂L

∂Ω
= −K · Ω

−1 + Ω
−1 · w(X, µ, Ω, α) · Ω

−1.

By setting the later derivatives to zero, one can write down the fixed point equations
for MLE:

µ̂ = h
(

X, µ̂, Ω̂, α̂
)

and

Ω̂ =
1
K

w
(

X, µ̂, Ω̂, α̂
)

.

Assume the initial values µ0, Ω
0 and α0 are chosen. Then, k iterations of the EM

algorithm can be generated and estimates µk, Ω
k and αk at each iteration can be com-

puted [40,41]. Following the two-step approach, estimates of the mean and covariance
matrix are calculated for a particular tail parameter αk:

µ
k+1 = h

(

X, µ
k, Ω

k, αk
)

(7)

Ω
k+1 = w

(

X, µ
k, Ω

k, αk
)

(8)
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Thus, an estimate of a stability parameter α at the (k + 1)th step is obtained by solving
the univariate LLF minimization problem:

αk+1 = arg min
0<α62

L
(

X, µ
k+1, Ω

k+1, α
)

(9)

Our empirical studies show that the LLF for fixed parameters µ and Ω is unimodal
with respect to the stability parameter α (for examples, see Results Section). Hence, in the
current study, the golden section search method is applied to the minimization of (9).

The sample mean vector and sample covariance matrix can be selected correspond-
ingly as initial values of µ and Ω:

µ
0 =

1
K

K

∑
i=1

Xi (10)

and

Ω
0 =

1
K

K

∑
i=1

(

Xi − µ
0
)

·
(

Xi − µ
0
)T

. (11)

Hence, the initial value of the stability parameter can be taken as α0 = 1.5. Many
literature sources support this assumption, since, usually, for financial datasets, the tail
parameter is from interval (1; 2) (e.g., see [4]). Mainly, the value is greater than 1.5 for
assets from developed financial markets, and it is smaller for cryptocurrencies and emerg-
ing markets.

2.3. Gauss and Gauss–Laguerre Quadratures

Integrals in the expressions of the LLF (3), and corresponding estimates and minimiza-
tion problems (4) or (7)–(9), can be computed by subroutines of mathematical programming
systems such as MathCad and Maple, or using open source code, e.g., R or Python. Compu-
tational experiments with the α-stable models of several variables have shown that solving
(4) or (7)–(9) using MathCad (on PC Intel(R) Core(TM) i5, CPU 2.40 GHz, RAM 4.00 GB, OS
64-bit) usually requires many hours of processing time (see [16], Section 6.1). Since such
computational time can be unacceptable in many applications, it is wise to implement the
quadrature formulas for integration. Let us consider the Gaussian and Gauss–Laguerre
quadrature formulas for the calculation of integrals in LLF and related expressions [41–44].

Thus, to calculate the integrals in Equations (3), (5) and (6) with respect to y, Gaussian
quadrature formulas are used:

1
∫

−1

f (y)dy ∼=
m

∑
i=1

ϑi f (yi), (12)

where f (yi) is an integrated function, ϑi and yi are the Gaussian quadrature weights and
nodes over [−1, 1] and m is the number of nodes. The positions yi (termed nodes) and
weighting coefficients ϑi (termed weights) are chosen such that the integral is evaluated
exactly by the quadrature (12), for some class of functions f (usually polynomials of a
given degree). The Gaussian quadrature nodes yi are roots of polynomials Pm(y) and can
be computed by any root-finding algorithm [44].

To calculate the integrals in (3), (5) and (6) with respect to z, the Gauss–Laguerre
quadrature formulas are applicable.

∞
∫

0

zγe−z f (z)dz ∼=
n

∑
i=1

κi f (zi), (13)

where f (zi) is an integrated function, κi and zi are the Gaussian–Laguerre quadrature
weights and nodes (the ith zeros of Laguerre polynomials L

γ
n(z)) over [0, ∞] and n is the

number of nodes. Note that the appropriate choice of parameter γ with respect to the
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dimensionality of the problem and the initial value of the tail parameter α can improve
calculation time. In this study, we set γ = 0.

Computational experiments showed that it is enough to take Gauss–Laguerre quadra-
ture with 20 nodes and 70 nodes for Gaussian quadrature to guaranty admissible accuracy
of the corresponding calculations. Tables of the nodes and weights for Gaussian and
Gaussian–Laguerre quadratures can be found in [42].

2.4. A Likelihood Ratio Test for Multivariate, α-Stable Distribution

There are any different and reliable goodness-of-fit tests that could be used to test
whether data fit a univariate distribution well. However, this cannot be said about the
multivariate case. Among other multivariate (Kolmogorov–Smirnov, based on the charac-
teristic function, based on specific test statistics, based on a beta function, etc.) methods,
the most simple and straightforward is the likelihood ratio test [35].

The likelihood ratio test [45] can be applied to asses the quality of the MLE estimation
of the multivariate α-stable model too. The set of parameters (µ̂, Ω̂, α̂) of the model is
assumed to be known when considering the likelihood ratio test for distribution fitting to
some data sample X.

The method works as follows. At the beginning, N multivariate random vectors Y

with α-stable parameter estimates (µ̂, Ω̂, α̂) are simulated. Then, the empirical distribution

function F
(n)
Y

(x, µ̂, Ω̂, α̂) from the values of LLF (from generated random vectors Y) is
constructed. Secondly, the likelihood LLFX value of initial data sample X is compared with

this empirical distribution F
(n)
Y

(x, ·) [45]. If the empirical probability F
(n)
Y

(LLFX , µ̂, Ω̂, α̂) of
the latter value is within the interval

( p
2 , 1 − p

2

)

, with p indicating significance, then there
is no reason to reject the fitness hypothesis. More precisely, in our case, there is no reason to
reject the fitness of underlying samples with the multivariate α-stable law with estimated
parameters (µ̂, Ω̂, α̂) (for examples, see Sections 3.2–3.4).

2.5. Experimental Design

Now, let us describe the experiment. First, we generated multivariate α-stable random
variables X using techniques described in [15]. Secondly, we estimated a set of parameters
(µ̂, Ω̂, α̂) of sample X using different algorithms (direct minimization of (3) and analytical
EM algorithm). We assumed that direct minimization of (3) gives “true” estimates of
parameters µ̂, Ω̂ and α̂. To assess the quality of the EM algorithm, we simulated more
(M) data samples with the same parameters µ̂, Ω̂, α̂. From each iteration, we collected
information and checked the convergence of the EM algorithm. If the LLF value and
parameter estimates converged (with precision 10−8) to a value obtained by direct MLE,
then we could say that the proposed algorithm converged and was reliable. Later, we
proceeded with a goodness-of-fit test (likelihood ratio test). Finally, we give three real word
examples: the stock market, biomedicine and cryptocurrency.

3. Results

The estimation of MLE α-stable parameters by the EM algorithm is an iterative process
that requires one to choose initial values, (10) and (11), and perform a certain number of
iterations—(7)–(9)—while the values in adjacent steps differ insignificantly. To test the
behavior of the designed algorithm, the experiments were performed with simulated and
real world data. The integrals were calculated using the Gaussian (12) and the Gauss–
Laguerre (13) quadratures.

3.1. Test Data Modeling

To test the convergence of the proposed analytical EM algorithm, the following experi-
ment was conducted.
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First, we generated M = 100 two-dimensional, α-stable random vectors of length
K = 50 or K = 100 (for the simulation algorithm, see [1,2]). All samples were distributed

by a bivariate, α-stable distribution with parameters α = 1.5, µ =

(

−2
2

)

and Ω =

(

2 0
0 4

)

.

Then, for each two-dimensional vector, we estimated parameters of a bivariate, α-
stable distribution using the proposed EM algorithm and direct minimization of (3). We
assume that the direct MLE method gives true estimates of a bivariate, α-stable distri-
bution. During each iteration, we registered EM estimates of all parameters until their
values deviated from the previous estimate by no more than 10−8. Moreover, the terminal
estimate was compared with the corresponding true value (obtained by direct method),
and the statistical significance of differences was tested. It turns out that such precision
ensures that there are no statistically significant differences between the true value and
the corresponding terminal estimate. Thus, the analytical EM algorithm converged for all
100 samples. The averaged results are shown in Figure 1.

The averages of LLF and EM estimates are shown as solid lines for each iteration;
corresponding values of direct MLE are dashed lines; and dotted lines are 95% confidence
intervals calculated using the normal approximation. As shown in Figure 1, the conver-
gence of the EM algorithm is rather fast independently of the sample size. The likelihood
function and location parameter converged in 5–7 iterations; however, tail parameter α
and covariance matrix converged only in slightly fewer than 20 iterations. This is not a
surprise, because LLF is much more sensitive to changes in α and Ω. In the case of shorter
samples (K = 50, Figure 1a), the average LLF converged to 268.38, which is equal to the
average value of the direct method (the average is calculated from M = 100 estimates
of random two-dimensional samples). The corresponding values of other parameters on

average converged to α̂ = 1.538, µ̂ =

(

−2.305
1.519

)

and Ω̂ =

(

1.366 0.838
0.838 3.789

)

. If the samples

were of length K = 100 (Figure 1b), then the average LLF converged to 567.69, which on
average is the same as that obtained using the direct MLE method. The corresponding

values of distribution parameters on average converged to α̂ = 1.476, µ̂ =

(

−1.97
2.01

)

and

Ω̂ =

(

2.11 0.075
0.075 4.076

)

. The presented results illustrate the convergence of the created EM

algorithm with respect to (3), (5) and (6).
It must be noted that the same convergence (as seen in the average case) was observed

in each of the 100 cases, too. This means that, independently of the sample selected, the
EM estimates always converged to the values obtained by the direct MLE method.

Finally, the likelihood ratio test was performed for all simulated datasets, where a
particular LLF value in each case was compared with the empirical distribution function
of the LLF with original parameters α, µ and Ω. If we set the significance level p to 0.01,
then, according to the likelihood ratio test (Section 2.4), the empirical probability should
be within the interval

( p
2 , 1 − p

2

)

, i.e., (0.005, 0.995). In this case, we cannot reject the
hypothesis that the simulated data fit a symmetrical, multivariate α-stable distribution
with given parameters α, µ and Ω. During our experiment, there were no cases when the
hypothesis could be rejected.

It must be noted that analytical EM algorithm is 30 times faster than the direct MLE
algorithm and could be used in practice.
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(a) (b)

Figure 1. Average log-likelihood function (LLF) and average estimates of parameters µ, Ω, α in the case of d = 2: K = 50
(a); and K = 100 (b).

3.2. Stock Market Data

In the previous section, we showed that the EM algorithm is fast and converges in
approximately 20 iterations independently of the length of the dataset. Theoretically, if the
datasets are symmetrically distributed with the same parameter α, then the EM algorithm
should converge quickly and the parameter estimates should converge to true values. We
now show a practical example with real stock price data from Yahoo [46]. The algorithm
was applied to daily stock returns of four companies, AAPL, TSLA, LUMIN and ATnT,
collected during 2019–2021. This experiment dataset consisted of four-dimensional vectors
of length K = 545.

First, we investigate the marginal characteristics of the underlying returns (AAPL,
TSLA, LUMIN and ATnT). Table 1 presents the empirical characteristics and estimates of
marginal α-stable distributions.
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Table 1. Marginal characteristics of stock returns.

Characteristics AAPL TSLA LUMIN ATnT

em
p

ir
ic

al

mean, µ0 0.00187 0.00329 −0.00072 −0.00015
median 0.00344 0.00333 0.00076 0.00076

std 0.02283 0.04772 0.02988 0.01630
min −0.09481 −0.26731 −0.15462 −0.11208
max 0.08864 0.23701 0.21938 0.06702

skewness −0.48712 −0.36526 −0.15063 −1.13504
kurtosis 3.17 4.58 9.05 7.98

α
-s

ta
bl

e

α 1.51272 1.53694 1.67748 1.61343
β −0.13074 0.06615 −0.28920 −0.09083
µ 0.00327 0.00314 0.00144 0.00058
σ 0.01143 0.02377 0.01546 0.00816

A-D 0.662 0.305 0.253 0.214

As we can see, the mean returns of AAPL and TSLA were positive, while those
of LUMIN and ATnT were negative, which indicates that prices of the first two were
mostly increasing during the period analyzed, while the prices of the latter two mainly
decreased. We use the vector of empirical means as one of input parameters µ0 for the
EM algorithm. Furthermore, negative skewness and kurtosis above three indicate that the
marginal empirical distributions for all the assets deviate from normality/symmetries. This
assumption is supported by the fact that estimated marginal parameters α are different
from two and β are different from zero. Moreover, Anderson–Darling statistics (A-D) that
is calculated for each sample, if we assume an α-stable distribution with given parameter
estimates, indicate that we cannot reject the non-parametric hypothesis about data fitness
with α-stable distribution. It must be noted that α was slightly different for all assets
analyzed, which indicates that we deviated from theoretical assumptions, but not too far.

Next, in Table 2, we show the correlation and covariance among the assets analyzed.

Table 2. Correlation and covariance of stock returns.

Correlation Covariance, Ω
0

AAPL TSLA LUMIN ATnT AAPL TSLA LUMIN ATnT

AAPL 1 0.4919 0.2864 0.3243 0.00052 0.00054 0.00019 0.00012
TSLA 0.4919 1 0.1822 0.1772 0.00054 0.00228 0.00026 0.00014

LUMIN 0.2864 0.1827 1 0.5149 0.00019 0.00026 0.00089 0.00025
ATnT 0.3243 0.177 0.5149 1 0.00012 0.00014 0.00025 0.00027

The covariance matrix is input parameter Ω
0 for the EM algorithm, while the correla-

tion allows us to understand how strong the linear relation between variables is. As can
be seen, stock returns are positively but weakly correlated. Only ATnT and LUMIN have
correlations above 0.5.

Figure 2 shows that the LLF for fixed µ and Ω is unimodal with respect to the tail
parameter α. Moreover, this property was observed in all iterations.

Therefore, the application of the golden section search method is reasonable in order
to minimize LLF with respect to α. In this case, the EM algorithm converged in fewer
than 30 iterations. Figure 3 shows the dependence of the id of iterations and LLF and the
estimates of parameters α, µ and Ω.
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(a) (b)

Figure 2. LLF dependence on α: (a) at the first iteration; and (b) at the last iteration for stock data.

Figure 3. Dependence of the LLF, α, µ and Ω parameters on the number of iterations for d = 4 and K = 545.

As it may be observed, the convergence is slightly slower in the stock data case
compared with the simulated datasets. Such behavior might be due to the fact that the
real datasets are asymmetric and have different marginal parameters α. However, this
assumption is not supported by any kind of experiments yet.

According to results of the EM algorithm, the parameter estimates of the multivariate
α-stable distribution for stock data are as follows:

α̂14 = 1.51459,

µ̂
27 =









0.0024
0.0044
0.0012
0.0007









and Ω̂
28 =









0.000083 0.00007 0.000024 0.000011
0.00007 0.000351 0.000035 0.000015
0.000024 0.000035 0.00014 0.000034
0.000011 0.000015 0.000034 0.000041









,

while the terminal value of the LLF29 function was equal to −5193.62. The subscript above
indicates the iteration at which the parameter estimate converged. As we can see, the LLF
converged after 29 iterations so we say that the algorithm converged after 29 iterations
too. The estimate α̂14 = 1.51459 confirms the assumption (from literature) that α for stock
returns from developed markets is above 1.5.

We demonstrated that, even if the data are not purely symmetrically distributed, EM
converges quickly and allows us to obtain ML estimates of parameters of multivariate
α-stable random variables. However, it was not shown yet how good the the estimation is.
Now, let us show the likelihood ratio test as a goodness-of-fit test.

First, M = 100 four-dimensional testing samples with estimated parameters α̂14, µ̂27

and Ω̂
28 were generated, and LLF values for each sample were calculated. Then, the
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empirical distribution function from LLF values was constructed (shown as a solid line
in Figure 4).

Figure 4. The empirical distribution function of LLF and test statistics of the stock market data.

Secondly, the empirical probability that the random value of LLF is less than or equal
to the terminal value of LLF = −5193.62 (test statistics) was calculated (shown as a dashed
line in Figure 4). In the case of stock market data, the empirical probability of the test
statistics was equal to 0.020927.

Finally, if we set the significance level to 0.01, according to the likelihood ratio test,
this probability is within the interval (0.005, 0.995). This means that we cannot reject the
hypothesis that the data fit a multivariate, symmetric, α-stable distribution with parameters
α̂14, µ̂27 and Ω̂

28.

3.3. AIS Data Modeling

In a similar manner, we give an example of the analysis of data from the Australian
Institute of Sport (AIS), examined in [47] (the database is often used for statistical calcula-
tions). This dataset contains various biomedical measurements (body fat (Bfat, %), lean
body mass (LBM, kg), height (Ht, cm) and total weight (Wt, kg)) of a group of female
Australian athletes [48]. In this experiment, the data consisted of a four-dimensional vector
of length K = 100. Table 3 gives the empirical characteristics and estimates of marginal
α-stable distributions for female athletes.

Table 3. Marginal characteristics of Australian Institute of Sport (AIS) data.

Characteristics Bfat, % LBM, kg Ht, cm Wt, kg

em
p

ir
ic

al

mean µ0 17.85 54.89 174.59 67.34
median 17.94 54.92 175 68.05

std 5.45 6.92 8.24 10.92
min 8.07 34.36 148.9 37.8
max 35.52 72.98 195.9 96.3

skewness 0.35 −0.31 −0.57 −0.17
kurtosis −0.04 0.54 1.32 0.20

α
-s

ta
bl

e

α 1.9358 1.9145 1.6858 1.9999
β 0.9999 −0.9999 −0.5211 −0.9993
µ 17.54 55.39 175.67 67.34
σ 3.716 4.692 4.873 7.679

A-D 0.563 0.554 0.180 0.395

As shown in Table 3, the data are not leptokurtic (kurtosis < 3), which means that the
data are light-tailed or lack outliers. Moreover, the negative kurtosis of Bfat indicates that
its distribution has a lighter tail than the normal distribution. Bfat, LBM and Wt are fairly
symmetrical, because their skewness is between −0.5 and 0.5. All mentioned observations
indicate that Bfat, LBM and Wt could be normally distributed. This assumption is sup-
ported by goodness-of-fit statistics (A-D statistics), which, being less that 2, indicate that
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Bfat, LBM and Wt are α-stable distributed with α → 2 (normal distribution). However,
the marginal estimate of parameter α for Ht is equal to 1.6858, and we cannot state that
the four-dimensional vector is distributed by a multivariate normal distribution anymore.
That is why we proceed with the estimation of parameters of the multivariate α-stable
distribution. If the terminal α of the EM algorithm turned out to be close to 2, then we
would run a test for multivariate normality.

Next, we give estimates of correlation and covariance matrices for AIS data (see
Table 4).

Table 4. Correlation and covariance of AIS data.

Correlation Covariance, Ω
0

Bfat, % LBM, kg Ht, cm Wt, kg Bfat, % LBM, kg Ht, cm Wt, kg

Bfat, % 1 0.4062 0.4431 0.7249 29.73 15.33 19.91 43.15
LBM, kg 0.4062 1 0.7083 0.9208 15.33 47.92 40.41 69.57
Ht, cm 0.4431 0.7083 1 0.7087 19.91 40.41 67.93 63.76
Wt, kg 0.7249 0.9208 0.7087 1 43.15 69.57 63.76 119.15

As shown in Table 4, AIS data are strongly correlated, with the exception of Bfat,
which correlates weakly with LBM and Ht. When we initiated the EM algorithm (in the
same vein as in previous section), we used the vector of means as the initial value of µ0 and
the covariance matrix as the initial value of Ω

0. Similar to Figure 2, in Figure 5, we show
that the LLF for a fixed µ and Ω is unimodal with respect to the stability parameter α.

(a) (b)

Figure 5. LLF dependence on α: (a) at the first iteration; and (b) at the last iteration for AIS data.

Using the EM algorithm described in this paper, the LLF value and parameter esti-
mates were registered during 100 iterations (see Figure 6).

The optimal value of the parameter α was obtained after 14 iterations. However, the
EM algorithm converged with respect to the mean and covariance matrix, respectively,
after 40 and 47 (slightly more than in stock case) iterations. From the figure of parameters µ

(middle column in Figure 6), it may appear that the convergence of the location parameter
was achieved very early; however, as the initial value of µ was luckily selected very close
to true value, the oscillations were very small. The greatest absolute deviation of µ in
sequential iterations was in the interval [−0.00071, 0.00339] and visually cannot be seen.
According to the EM algorithm, the estimates of the parameters of the multivariate α-stable
distribution for AIS data are as follows:
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α̂14 = 1.61459,

µ̂
40 =









17.61
55.24

175.33
67.38









and Ω̂
47 =









5.49 2.19 3.17 7.07
2.19 7.69 6.44 10.91
3.17 6.44 12.16 10.12
7.07 10.91 10.12 18.76









,

while the terminal value of the LLF27 function is equal to 1039.22. It is interesting to note
that the sample size in the AIS data case was five times smaller than that of the stock data;
however, the number of iterations was nearly double.

Figure 6. Dependence of the LLF and parameters’ MLE on the number of EM iterations, d = 4, K = 100.

As we can see again, terminal α̂ = 1.61459 is not very different form the smallest
marginal α = 1.685812. Furthermore, the estimated α̂ was different from two, which is why
we can reject the hypothesis about the multivariate normality of AIS data.

Now, let us show a likelihood ratio test in the same manner as in the previous section.
First, we constructed empirical distribution function from LLF values with parameters α̂14,
µ̂40 and Ω̂

47 (shown as a solid line in Figure 7).

Figure 7. The empirical distribution function of LLF and test statistics of AIS data.
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Secondly, we calculated the empirical probability that a random value of LLF is less
than or equal to the terminal value LLF = 1039.22 (shown as a dashed line in Figure 7). In
the case of AIS data, the empirical probability is equal to 0.3662.

Finally, we cannot reject the hypothesis that AIS data fit a symmetric multivariate
α-stable distribution with parameters α̂14, µ̂40 and Ω̂

47 because this probability is within
the interval (0.005, 0.995).

3.4. Cryptocurrency Data

Finally, we show how the EM algorithm can be applied to estimate the parameters
of a four-dimensional cryptocurrency dataset. As an example, Bitcoin, Ethereum, Ripple
and ADA (during 2019–2021 [46]) were used. Hence, the length of the vector is K = 791
(exchanges operate 24/7 the whole year).

Table 5 gives empirical characteristics and estimates of marginal α-stable distributions
of four cryptocurrencies.

Table 5. Marginal characteristics of cryptocurrency returns.

Characteristics Bitcoin ETH XRP ADA

em
p

ir
ic

al

mean µ0 0.0024 0.0017 −0.0013 0.0026
median 0.0018 0.0017 −0.0007 0.0027

std 0.0409 0.0523 0.0574 0.0586
min −0.5771 −0.7281 −0.7286 −0.6546
max 0.1580 0.2073 0.3556 0.2441
skew −3.53 −3.72 −2.86 −1.67

kurtosis 52.01 49.05 43.20 20.94

α
-s

ta
bl

e

α 1.3802 1.5239 1.3367 1.6013
β 0.0827 0.0566 −0.0172 0.0904
µ 0.0019 0.0029 −0.0001 0.0019
σ 0.0159 0.0231 0.0190 0.0298

A-D 0.698 0.799 0.447 0.599

There is no big surprise that the characteristics of cryptocurrency data are different
from those analyzed in Sections 3.2 and 3.3. The first obvious things that are very different
from the previous sections are the skewness and kurtosis. The negative skewness is nearly
twice greater than for stocks and AIS data, while the kurtosis is extremely large and exceeds
20. Such a composition indicates that we should expect fat left tails, i.e., α → 1 and β → −1.
However, marginal estimates of the α-stable distribution show that such an assumption is
not completely true. Parameter β is mainly close to 0, which indicates fair symmetry of
the tails. Moreover, marginal αs are not as extreme as expected, but they are significantly
different from stocks and AIS data.

Next, in Table 6, we check for empirical correlation and covariance.

Table 6. Correlation and covariance of cryptocurrency returns.

Correlation Covariance, Ω
0

Bitcoin ETH XRP ADA Bitcoin ETH XRP ADA

Bitcoin 1 0.8531 0.5667 0.7081 0.00172 0.00183 0.00133 0.00169
ETH 0.8532 1 0.6344 0.8103 0.00183 0.00274 0.00191 0.00249
XRP 0.5666 0.6344 1 0.5892 0.00133 0.00191 0.00330 0.00198
ADA 0.7081 0.8103 0.5892 1 0.00169 0.00249 0.00198 0.00344

As we can see, cryptocurrencies are average (above 0.5) to strongly (above 0.8) cor-
related, which indicates that there are high chances that the prices of underlying assets
will move in the same direction. Such a portfolio would have a higher risk than a less
correlated one.



Mathematics 2021, 9, 945 16 of 20

Next, we ran the EM algorithm to estimate the parameters of the multivariate α-stable
distribution. There is no surprise that the LLF for fixed µ and Ω is unimodal with respect
to the stability parameter α (see Figure 8).

(a) (b)

Figure 8. LLF dependence on α: (a) at the first iteration; and (b) at the last iteration.

Using the EM algorithm, the LLF value and parameter estimates were registered for
the first 100 iterations. However, the convergence conditions were reached much more
quickly (see Figure 9).

Figure 9. Dependence of the LLF, α, µ and Ω parameters on the numbers of iterations with d = 4 and K = 791.

Figure 9 shows that LLF and parameter estimates by the EM algorithm converge to the
optimal maximum likelihood value after 50 iterations. The number of iterations is similar
to the case of the AIS data case.

The estimates of parameters of a multivariate α-stable distribution for cryptocurrency
data are as follows: α̂14 = 1.21459,

µ̂
39 =









0.00060
−0.00084
−0.00269
−0.00179









and Ω̂
36 =









0.000236 0.000252 0.000188 0.000256
0.000252 0.000404 0.000273 0.000392
0.000188 0.000273 0.000295 0.000310
0.000256 0.000392 0.000310 0.000589









,
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while the terminal value of the LLF50 function is equal to −7013.09. By contrast to the stock
market, the estimate of parameter α for cryptocurrency is below 1.5, which is not a surprise.

Now, let us show a likelihood ratio test in the same manner as in the two previous
sections. First, we constructed an empirical distribution function from LLF values with
parameters α̂14, µ̂39 and Ω̂

36 (shown as a solid line in Figure 10).

Figure 10. The empirical distribution function of LLF and test statistics of cryptocurrency data.

Secondly, we calculated the empirical probability that a random value of LLF is less
than or equal to the terminal value LLF = −7013.09 (shown as dashed line in Figure 10). In
the case of cryptocurrency data, the empirical probability is equal to 0.08119 and is near the
lower bound of non-rejection (0.005, 0.995) region. However, we cannot reject hypothesis
that cryptocurrency data fits multivariate symmetric α-stable distribution with parameters
α̂14, µ̂39 and Ω̂

36.

3.5. Recommendations

In the previous three sections, we demonstrate examples of how to estimate parame-
ters of a multivariate α-stable distribution using an analytical EM algorithm. In the case
of stock data, the estimated tail parameter α̂ of the multivariate case was very close to the
smallest marginal α estimate (given in Table 1). Moreover, a similar situation was observed
in AIS and cryptocurrency data. This gives us an idea of how to chose the initial α0 for
applications of the EM algorithm in the future.

Furthermore, the estimate µ̂ in the case of stock data was more similar to the vector
of medians or vector µ of marginal estimates rather than the vector of empirical means.
However, for AIS data, marginal empirical distributions were symmetrical (all empirical
location parameters were very similar) so there was no difference if we chose a vector of
empirical means, medians or marginal parameters µ as the initial value for µ0.

By summarizing two latest assumptions, we can recommend one to chose the smallest
marginal α, vector of marginal µ parameters (or medians) and covariance matrix as initial
values for the EM algorithm. This could increase efficiency and reduce the number of
iterations required to converge.

By summarizing the findings from the last four sections, we can give the following
recommendations for the implementation of an analytical EM algorithm:

1. Check for empirical characteristics of datasets. The vectors of means or medians can be
used as initial values for µ0, and the covariance matrix as an input parameter for Ω

0.
2. If estimates of a marginal α-stable distribution are available, then choose the minimal

α as the initial value of α0 and the vector of location parameters as µ0.
3. Run the EM algorithm and check for convergence.
4. (Optional) When one or more parameter estimates converge, stop updating them and

optimize only with respect to parameters that did not converge. However, such a
modification may cause the algorithm to get stuck in a local minimum.

5. Use the likelihood ratio test to check the goodness-of-fit.
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4. Discussion and Conclusions

Today, the research of distributions related to α-stable ones, including sub-Gaussian
vectors, is more relevant, because they often occur in the analysis of economic data, in-
formation flows along computer networks, cryptocurrency markets, etc. The statistical
maximum likelihood approach is constructed by the analytical EM algorithm in this pa-
per, which allows us to estimate the parameters of the symmetric multivariate α-stable
distribution with high precision. Computational experiments showed that multivariate
α-stable distribution parameter estimates, obtained by the developed numerical method,
are statistically adequate, because, after a certain number of iterations, the value of the
likelihood function and estimates of the parameters converged to their corresponding
(“true”) values. However, due to the fact that real data are often asymmetric, it is very im-
portant to perform goodness-of-fit tests. The proposed likelihood ratio test (for assessment
of the goodness-of-fit) showed that the data fit a multivariate α-stable model well with
obtained estimates in all three cases analyzed (stock market data, biomedical measurements
data and cryptocurrency data). In future research, this test could be compared with other
multivariate goodness-of-fit tests, e.g., the one proposed in [34] or based on characteristic
functions [32].

Moreover, it is more important to make sure that the methodology is robust with
respect to the asymmetry and the fact that marginal αs in real data are different. This is
also the future trend of our research.

Furthermore, in the Results Section, we emphasized that the number of iterations is
nearly independent of sample size; however, the duration of calculations (real CPU time)
is highly dependent on that. This is due to the fact that the likelihood function is sample
dependent. We plan (in the near future) to implement parallel summation in LLF and
parallel quadrature integration to reduce overall processing time.

Finally, it must be noted that the analytical EM algorithm is 30 times faster than the
regular ML algorithm and could be very useful in practice. However, it is currently not
available in R or Python, where the stochastic EM algorithm is already implemented.
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