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Abstract— In recent years, there has been much interest in
the design of low noise MEMS oscillators. This paper presents
a new analytical formulation for noise in a MEMS oscillator
encompassing essential resonator and amplifier nonlinearities.
The analytical expression for oscillator noise is derived by solving
a second order nonlinear stochastic differential equation. This
approach is applied to noise modelling of an electrostatically
addressed MEMS resonator-based square wave oscillator in
which the resonator and oscillator circuit nonlinearities are
integrated into a single modelling framework. By considering
the resulting amplitude and phase relations, we derive additional
noise terms due to resonator nonlinearities. The phase diffusion
of an oscillator is studied, and the phase diffusion coefficient
is proposed as a metric for noise optimisation. The proposed
nonlinear phase noise model provides analytical insight into
the underlying physics and a pathway towards the design
optimisation for low noise MEMS oscillators.

Index Terms— MEMS, resonator, oscillator, nonlinear effects,
bifurcation, stochastic integration, phase diffusion, amplitude
noise, phase noise.

I. INTRODUCTION

Silicon MEMS oscillators have emerged as alternatives to

traditional crystal oscillators for a number of applications in

timing and frequency control [1]. The advantageous properties

of MEMS resonators for these applications include their small

size and the potential for tight monolithic or in-package

integration with standard CMOS. Recent developments in

vacuum packaging [2], temperature compensation [3] and

readout electronics [4] have helped to substantially bridge the

performance gap with respect to crystal oscillators particularly

with regard to long-term stability. However, nonlinear effects

are often inherent to the operation of MEMS resonators

where power handling is limited by device dimensions and

this ultimately places a ceiling on the achievable frequency

stability [5].

Noise modelling in MEMS oscillators has always been

of interest to the research community as MEMS oscillators

continue to be engineered for higher performance applications.

However, the current literature on noise modelling in MEMS

oscillators is largely based on models developed for standard

crystal or electrical oscillators where nonlinear effects are of-

ten neglected or not exploited to improve oscillator frequency

stability. Moreover, the impact of specific nonlinearities of
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both the oscillator circuit (e.g. the sustaining amplifier and am-

plitude limiting mechanism) and the resonator on noise perfor-

mance have not been considered simultaneously. It should be

noted here that previous work by Yurke et al. [6] showed that

for an oscillator incorporating a Duffing resonator biased at the

critical bifurcation point, the contribution of amplifier noise

to long-term frequency stability may be suppressed. However,

this result was not been pursued substantively through further

studies including applications to the MEMS domain until very

recent work by Villanueva et al. [7] extended this result with

an experimental demonstration of noise reduction in a phase-

feedback oscillator based on a piezoelectrically driven non-

linear nano-electro-mechanical resonator.

Previous approaches to oscillator phase noise modeling may

be broadly classified as linear time invariant (LTI) models, lin-

ear time variant (LTV) models and models based on numerical

techniques. The LTI models are useful as a starting point but

they fail to capture several important effects including the in-

teraction of nonlinearities on noise performance, experimental

observations of the up-conversion of low frequency noise and

the interaction between amplitude noise and phase noise [8].

These LTI models have been extended using semi-empirical

approaches but these approaches do not reveal insight into the

underlying physics or enable significant design optimisation

studies [5], [9]–[11].

Unlike the LTI approach, LTV models incorporate the

time varying nature of an oscillator and can be extended to

address the impact of operative nonlinearities in the oscilla-

tor loop [12]. However, this approach requires the a-priori

knowledge of an Impulse Sensitivity Function (ISF) that is

usually obtained only through detailed numerical simulation

with analytical formulations available for only the simplest

oscillator topologies. Traditional numerical simulators such

as SPICE may not integrate nonlinear modelling of the res-

onator together with circuit nonlinearities. A linear growth

of phase fluctuations with respect to the injected noise is

an underlying assumption of the LTV approach neglecting

the cross-correlation between amplitude and phase fluctua-

tions. Furthermore, both LTI and LTV models calculate an

unbounded power spectral density (PSD) at a very small offset

from the carrier frequency compared to the typically observed

Lorentzian response [12], [13]. Nevertheless, recent attempts

have adapted the LTV approach towards the modelling of

MEMS oscillators to provide more insight into the impact of

nonlinear effects on phase noise with some success [14].

Numerical approaches for oscillator phase noise modeling

have made significant progress in recent years. An efficient

numerical approach to modeling phase noise in oscillators en-
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compassing non-linearities was proposed by Demir et al. [15]

and this has since been extended by a number of groups [16],

[17] and applied to a diverse range of applications in oscillator

noise modeling [18]. The basis of this method is in the

application of a nonlinear perturbative analysis about the limit

cycle response leading to the calculation of a single scalar

quantity representing the variance of the per cycle jitter in the

oscillator. The per cycle jitter is dependent not only on the

noise generators but also on the calculation of a perturbation

projection vector (PPV) and efficient numerical approaches to

derive the PPV from the non-linear oscillator dynamics have

now been derived [19].

The goal of this paper is to develop an analytical model

for oscillator noise which fully considers the essential non-

linearities in the resonator and circuit elements comprising

the oscillator. As opposed to approaches based on numerical

techniques or empirical methods, the analytical expression for

phase noise derived in this work enables designer insight into

the underlying physics and provides a starting basis for more

detailed design optimisation studies. In order to achieve this,

we start by integrating the resonator and oscillator circuit

nonlinearities into a unified model. This approach enables the

investigation of the interaction of these nonlinearities with the

injected noise in the oscillator loop.

This paper is organized in six sections. Section II presents a

nonlinear electrical model of an electrostatically driven MEMS

resonator. Next, nonlinearities in the oscillator circuit are

integrated into the model. The description of the oscillator

driven by random noise excitation can then be reduced to a

second order nonlinear stochastic differential equation (SDE).

This modelling approach is applied to a MEMS square-

wave oscillator based on electrostatically driven double-ended

tuning fork resonator. In Section III, we use the stochastic

integration approach to derive analytical expressions for am-

plitude and phase noise. A comprehensive description of this

approach can be found in [20], [21]. In Section IV, the phase

noise expression obtained in this work is compared with the

established Leeson phase noise model, a nonlinear phase noise

model, based on the LTV approach as well as the noise model

proposed by Demir et al. [15].

The analogy between the random walk of the oscillator

phase with the Brownian motion allows for a description of the

spectral broadening of the output signal by a phase diffusion

process. This leads to a direct correlation between the phase

diffusion coefficient and phase noise. Based on this analogy, in

Section V, an analysis is carried out to investigate the degree

of improvement in phase noise using the diffusion coefficient

as a characteristic noise defining parameter. The analysis is

then applied to an electrostatically operated double-ended-

turning fork (DETF) silicon MEMS square wave oscillator

using measured oscillator parameters. Section VI presents a

summary and outlook for future work.

II. MEMS OSCILLATOR MODEL

An oscillator can be conceptually represented by three

elements placed in a close loop configuration as shown in

Fig. 1. The resonator is a frequency selective element pro-

viding a low loss second-order response. This is followed by
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Fig. 1. Block diagram representation of an oscillator.

a gain element, providing for gain and phase conditions to

compensate energy dissipation in the loop and ensure that

the starting conditions for oscillation are met. Finally, an

amplitude limiting mechanism is necessary to regulate oscil-

lation amplitude. This amplitude limited mechanism may be

engineered to provide a gain roll-off at large amplitudes or may

be inherent to the nonlinearities that are operative in MEMS

oscillators. When the oscillator loop gain and phase satisfy

the Barkhausen criteria, a steady-state limit cycle behaviour is

achieved [22], [23]. In this section, the characteristics of each

element are investigated, and consequently an oscillator model

is developed.

A. Nonlinear MEMS Resonator Model

To obtain a describing equation of a MEMS oscillator,

we start by modelling the nonlinear response of an elec-

trostatically driven micro-resonator. In many instances, the

resonator response may be represented by the forced Duffing

equation [24]:

mẍ+ bẋ+ kox+ k2x
3 = fac(t) (1)

where m and b are the lumped effective mass and damping

coefficient while ko and k2 are the linear and second order

spring constants respectively. x is a dynamic displacement

variable and fac(t) is the excitation force. In an electrostat-

ically transduced MEMS resonator, typically ko is defined

by the linear mechanical (kom) and electrical (koe) spring

constants while k2 represents the cubic nonlinearity of the

resonator that combines the mechanical (k2m) and electrical

(k2e) second order corrections in the stiffness of the resonator.

The mechanical spring constants (kom, k2m) are specific to

the topology of the resonator and the selected vibration mode.

There are several excellent publications discussing the calcu-

lation of k2m for various resonator topologies [5], [25], [26].

The electrical nonlinearities can be determined by calculating

the electrostatic force (Fe(x, t)) for a given dc bias (Vdc) and

an ac excitation signal (vac(t)) applied across the electrodes

of the resonator:

Fe(x, t) =
1

2
(Vdc + vac(t))

2 d

dx
C(x, t) (2)

Here, C(x, t) is a time varying dc capacitance which is equal

to ǫoA/(g − x) where ǫo is the permittivity of air, A is the

capacitive area, g is the nominal actuation gap between the

driving and sensing electrodes.
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Using this expression, the linear electrical spring constant

(koe) and the corresponding first (k1e) and second (k2e) order

corrections can be obtained:

koe = −ǫoAV 2
dc

g3
, k1e = koe

3

2g
, k2e = koe

2

g2
(3)

The first order electrical spring constant can be neglected

when considering the response at the fundamental frequency.

Moreover, as the electrical spring constants are negative, the

resonance frequency tends to reduce with higher dc bias. Typ-

ically, the mechanical response of the resonator is transduced

electrically using a capacitive pick-off scheme.

The parallel-plate capacitive sensing is a well established

transduction approach in which a time varying capacitance is

formed when a dc bias and ac excitation signal is applied

across the actuation gap. The resultant output current can be

determined by differentiating the accumulated charge on the

parallel-plate capacitor with respect to time:

I(t) =
d

dt
C(x, t)(Vdc + vac(t)) (4)

In the employed readout mechanism, the output current has

two components – the static current and the dynamic current

produced due to the static gap between the electrodes and the

dynamic motion of the resonator respectively. The magnitude

of the dynamic current is increased relative to the static current

for Vdc >> vac. Considering this and using a Taylor series

approximation, the output current can be determined from (4)

while neglecting the static current term:

I = ηẋ

(

1 +
2x

g
+

3x2

g2
+O(ε)

)

Vdc>>vac(t)

(5)

η is a transduction coefficient for parallel-plate electrostatic

transducers and is defined as VdcǫoA/g2. Moreover, the exci-

tation signal can also be related with the excitation force using

η (fac(t) = ηvac(t)). O(ε) represents the higher order terms

which may be neglected when the displacement amplitude is

relatively small compared to the actuation gap. To integrate

the transduction scheme with (1), we use a describing function

approach to simplify (5). Assuming the resonator response is

weakly nonlinear and the excitation frequency (ω) is close to

the resonance frequency (ωo), the dynamic displacement may

be described as a sinusoidal function x = xp sinωt. Here, xp

is amplitude of the time varying displacement variable. Using

the describing function approach, the output current, at ωo,

can be expressed as

I(t) ≈ ηẋ

(

1 +
3x2

p

4g2

)

(6)

The electrostatic pull-in in capacitively sensed MEMS

resonators limits the maximum obtainable displacement

(g/3) [27]. Therefore, the maximum error in the output current

due to the nonlinear transduction term is less than ∼8 % as

compared to the linear transduction approximation (I ≈ ηẋ).

However, in practical cases, the resonators are operated at

displacements that are significantly smaller than g/3, hence

the corresponding error will be correspondingly much smaller

than the calculated value. Thus, this analysis assumes a linear

I
o 

Hard limiter 

Soft limiter 

vac

Fig. 2. Qualitative description of a hard and soft limiting mechanisms.

transduction relation between the displacement and output

current. This allows (1) to be written as

m

η
İ +

b

η
I +

ko
η

∫

I dt+
k2
η3

(∫

I dt

)3

= ηvac(t) (7)

Defining (7) in terms of equivalent circuit parameters:

Lmİ +RmI +
1

Cmo

∫

I dt+
k2
η4

(∫

I dt

)3

= vac(t) (8)

where

Lm =
m

η2
, Rm =

√
kom

η2Q
, Cmo =

η2

ko
(9)

Here, Lm, Rm and Cmo are the equivalent motional induc-

tance, resistance and capacitance respectively while Q is the

quality factor of the operating vibration mode. Equation (8)

describes the nonlinear dynamic response of the resonator in

the electrical domain.

B. Oscillator Circuit Nonlinearities

The differential amplifier based gain element may be math-

ematically represented by a function describing odd symmetry

in the input-output characteristic [28]. In this approximation,

the amplifier provides linear gain for small signal input while

large signal limiting is approximated by a clipping response.

When a purpose-designed amplitude limiting mechanism is

employed, the front-end amplifier may be approximated as

operating in the linear regime.

The amplitude limiting mechanism can be of either a hard

limiting or soft limiting in nature. The hard limiter response

saturates at relatively smaller values of the input amplitude

while a soft limiter provides a gradual amplitude-dependent

gain reduction as illustrated in Fig. 2. By employing a hard

limiter between the gain element and the resonator, a square

wave oscillator may be developed while a soft limiter is used

to implement a sine wave oscillator [29], [30]. In this paper,

the analysis is conducted for a MEMS square wave oscillator

employing a comparator as the amplitude limiting mechanism.

However, this analysis can be readily extended to a MEMS

sine wave oscillator as well.

Assuming the response of a hard limiter is symmetrical,

a signum function can be used to approximate the response

as seen in Fig. 2. To incorporate this response in the model,
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we define a function G(Io), describing the response of a hard

limiter at the fundamental frequency [31]:

G(Io) =
VF

Io
(10)

Here, Io is the amplitude of the output current of the resonator

while VF is the constant output amplitude of the hard limiter at

the fundamental frequency. In (10), G(Io) can be considered

as a negative resistance as it is a ratio of voltage to current.

Now, the characteristics of the hard limiter can be incorporated

in the nonlinear electrical mode of the resonator using (8):

Lmİ +RmI − VF

Io
I +

1

Cmo

∫

I dt

+
k2
η4

(∫

I dt

)3

= 0

(11)

Note that oscillators do not require an external excitation

signal for operation and this is consistent with the formulation

in (8).

C. Oscillator Model in Presence of Noise

In an oscillator, various noise sources are operative leading

to growing amplitude oscillations when the Barkhausen criteria

is met, ultimately converging to steady limit cycle behaviour.

The noise sources also result in amplitude and phase fluctu-

ations in the output, as a consequence, the output frequency

varies over time. From a modelling perspective, these noise

sources can be considered as an equivalent noise voltage (vn).

In this work, it is assumed that vn is representative of a wide-

sense stationary process such as white noise. In this case, (11)

can be modified as:

Lmİ +RmI − VF

Io
I +

1

Cmo

∫

I dt

+
k2
η4

(∫

I dt

)3

= vn

(12)

If a front-end transresistance amplifier is used as the gain

element, (12) can be expressed in terms of output voltage

signal va = −RfI where Rf is the feedback resistance of the

transresistance amplifier. Further, by using the transformation

va = v̇/ωo, the resulting equation can be written as

v̈ +
Rm

Lm
v̇ − Rf

Lm

VF

ρo
v̇ + ω2

ov+
1

R2
fLmCm2

v3

= −Rf

Lm
ωovn

(13)

Here, ωo is the output frequency of the oscillator and is

identical to the resonance frequency and may also be expressed

as 1/
√
LmCmo. ρo is the steady-state output amplitude of a

noiseless oscillator. Cm2 is governed by the cubic nonlinearity

of the resonator and defined as

Cm2 =
η4ω2

o

k2
(14)

It is desirable to eliminate the dependence of (13) on ρo as

the steady-state output frequency and amplitude are correlated.

The solution (13) can approximated as v = ρo cosωot in

the absence of noise. Since we are interested in determining

the response near to the fundamental frequency, the following

approximation can be used:

sgn(v̇) ≈ − 4

π

∞∑

k=0

sin(2k + 1)ωot

2k + 1
≈ − 4

π
sinωot (15)

Comparing the derivative of v and (15), leads to

v̇

ρo
≈ πωo

4
sgn(v̇) (16)

Substituting (16) in (13) and rewriting it in a more compact

form:

v̈ + αv̇ − βsgn(v̇) + ω2
ov + µv3 = −Rf

Lm
ωovn (17)

where

α =
Rm

Lm
, β =

Rf

Lm

πωoVF

4
, µ =

1

R2
fLmCm2

(18)

Equation (17) is a second order nonlinear SDE. It describes

the steady-state response of a MEMS square wave oscillator in

the presence of noise. In an independent study, the presented

oscillator model in absence of noise has been compared with

the experimental data such as output power and frequency

for various resonator drive parameters. A good agreement

between the between the measured and calculated values is

reported [32] providing experimental validation of its applica-

bility.

III. NOISE ANALYSIS

The proposed oscillator model equation is solved using

nonlinear stochastic analysis to determine the phase noise

expression. However, there are other analytical and numerical

approaches that may be applied to determine oscillator phase

noise in the presence of nonlinearities [15]–[17], [33]–[36].

A. Amplitude and Phase Responses

We start by transforming (17) into a set of equations which

describe the amplitude and phase dynamics. We assume the

approximate solution of (17) to be

v = ρ(t) cos(ωot+ φ(t)) (19)

where ρ(t) and φ(t) are the time dependent amplitude and

phase responses respectively. For simplicity, ρ(t) and φ(t) are

expressed as ρ and φ respectively. In the absence of noise,

ρ and φ are deterministic functions and the spectrum of the

oscillator can be represented by two impulse functions at

±ωo. However, as mentioned earlier, inherent noise sources

in the oscillator results in fluctuations in the amplitude and

phase dynamics resulting in spectral broadening about the

carrier frequency (ωo) as inferred from (19). Using the state

space method, (17) is converted into two first order differential

equations:

ż1 = z2 (20)

ż2 = −αz2 + βsgn(z2)− ω2
oz1 − µz31 − Rf

Lm
ωovn (21)
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where z1 and z2 are the state space variables and they are

described as z1 = v and z2 = v̇. In (20) and (21), z2 is

replaced by −ωoy:

ż1 = −ωoy (22)

ẏ = −αy +
β

ωo
sgn(ωoy) + ωoz1 +

µ

ωo
z31 +

Rf

Lm
vn (23)

Using (19), the state variables can be rewritten in terms of

amplitude and phase:

z1 = ρ cos θ (24)

y = ρ sin θ (25)

Here, the total phase θ is related with the phase drift as

θ = ωot+φ. The first order differential equations of amplitude

and phase responses can be obtained from the aforemen-

tioned equations. The details of the analysis are shown in

Appendix A. The results are

ρ̇ =− αρ

2
(1− cos 2θ) +

µρ3

ωo

(
1

4
sin 2θ +

1

8
sin 4θ

)

+
2β

πωo

(

1− 2

3
cos 2θ − 2

15
cos 4θ

)

+
Rf

Lm
vn sin θ

(26)

φ̇ =− α

2
sin 2θ +

µρ2

ωo

(
3

8
+

1

2
cos 2θ +

1

8
cos 4θ

)

+
2β

ρπωo

(
4

3
sin 2θ +

8

15
sin 4θ

)

+
Rf

Lmρ
vn cos θ

(27)

Equation (26) and (27) contain rapid oscillation terms (ω ≥
2ωo). These high frequency oscillations may be neglected us-

ing the conventional “smooth approximation” in which ampli-

tude and phase behaviour are assumed to be slowly-functions

of time. This allows averaging out of the high frequency terms

over a period of time. Therefore, the approximate modified

amplitude (ρ̇∗) and phase (φ̇∗) equations can simply be written

by neglecting the rapid oscillation terms:

ρ̇∗ = −αρ∗

2
+

2β

πωo
+

Rf

Lm
vn sin θ

∗ (28)

φ̇∗ =
3µρ∗2

8ωo
+

Rf

Lmρ
vn cos θ

∗ (29)

In order to determine the fluctuations in amplitude and phase,

linearization method is used to obtain simplified equations, by

assuming that amplitude of the stochastic terms in the SDE

are much smaller than the deterministic terms [37]. Under this

assumption, smoothly varying averaged amplitude (ρ̇sm) and

phase (φ̇sm) responses can be defined by neglecting the noise

terms in (28) and (29):

ρ̇sm = −αρsm
2

+
2β

πωo
(30)

φ̇sm =
3µρ2sm
8ωo

(31)

Now, the fluctuations in amplitude (δρ) and phase (δφ) may

be defined as

δρ = ρ∗ − ρsm (32)

δφ = φ∗ − φsm (33)

While differentiating (32) and (33), and linearizing them along

the smoothly varying trajectories (ρsm, φsm), the higher orders

of δρn and δφn (n ≥ 2) are neglected at it is assumed that

the deterministic oscillator output dominates over noise. This

leads to the simplified equations:

δ̇ρ = −α

2
δρ+

Rf

Lm
vn sin θsm (34)

˙δφ =
3µρsm
4ωo

δρ+
Rf

Lmρsm
vn cos θsm (35)

As (30) describes the smoothly varying averaged output am-

plitude, it can be shown that ρsm= ρo. Therefore, the approx-

imated steady-state amplitude is determined by equating (30)

to zero and using (18):

ρo =
4β

πωoα
= Rf

VF

Rm
(36)

Using (31) and (36), the modified averaged total phase (θsm)

is given by

θsm = ω1t+ φo (37)

where

ω1 = ωo +
3µρ2o
8ωo

(38)

Here, ω1 is the modified output frequency, which takes into

account the effect of the cubic nonlinearity of the resonator

while φo is the initial phase. Using the steady-state amplitude

and phase responses, (34) and (35) can be rewritten as

δ̇ρ = −α

2
δρ+

Rf

Lm
ξ(t) (39)

˙δφ =
3µρo
4ωo

δρ+
Rf

Lmρo
ζ(t) (40)

Here,

ξ(t) = vn sin(ω1t+ φo) (41)

ζ(t) = vn cos(ω1t+ φo) (42)

From (41) and (42), it can be inferred that the contributing

noise components in the amplitude and phase fluctuations are

orthogonal to each other, thereby, they may be treated as

uncorrelated noise sources. Moreover, if the resonator response

is linear (µ ≈ 0), the amplitude and phase fluctuations are

uncorrelated. However, when the resonator is operated in

the nonlinear regime, the conventional assumption of equally

distributed amplitude and phase noise may not be valid as δρ
and δφ are correlated. As vn is a random variable with flat

power spectral density, it can be shown that the autocorrelation

of the modulated noise components are [38]

〈ξ(t)ξ(t+ τ)〉 = 〈ζ(t)ζ(t+ τ)〉 = v̄2n
4
δ(τ) (43)

In (43), the correlation is determined at time t and t + τ
where τ represents the variable time shift between the signals.
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〈·〉 represents the ensemble average of a signal and δ(τ) is

the Dirac delta function. v̄2n is a single-sided power spectral

density of the equivalent noise voltage source. It should be

noted that this analysis considers noise sources that have equal

intensities in the amplitude and phase quadratures. In order

to determine the oscillator spectrum, first, the autocorrelation

functions of amplitude and phase fluctuations are determined,

and then the PSD of the output is calculated.

B. Autocorrelation of Amplitude Fluctuations

Once the steady-state condition is reached, amplitude fluctu-

ations can be determined by applying the Duhamel integration

to (39) [39]:

δρ(t) =
Rf

Lm

∫ t

0

e−
α
2
(t−t′)ξ(t′) dt′ (44)

The autocorrelation function is given by

〈δρ(t)δρ(t+ τ)〉 =
R2

f

L2
m

∫ t

0

∫ t+τ

0

e−
α
2
(2t+τ−t′−t′′)

〈ξ(t′)ξ(t′′)〉 dt′dt′′
(45)

Equation (45) can be solved using [20], [21]:

〈δρδρτ 〉 =
R2

f

L2
m

v̄2n
4α

e−
α
2
|τ | (46)

Using (18), rewriting (46) in terms of circuit parameters:

〈δρδρτ 〉 =
R2

f

LmRm

v̄2n
4
e−

α
2
|τ | (47)

This equation reveals the dependence of the amplitude noise

on the gain, provided by the front-end amplifier.

C. Autocorrelation of Phase Fluctuations

Integrating the linearised differential equation of phase

fluctuations (40) over a period of time:

δφ =
3µρo
4ωo

∫ t

0

δρ dt′ +
Rf

Lmρo

∫ t

0

ζ(t′) dt′ (48)

Determining the autocorrelation of (48) as

〈(δφ)2〉 =
(
3µρo
4ωo

)2 ∫ t

0

∫ t

0

〈δρ(t′)δρ(t′′)〉 dt′dt′′

+
R2

f

L2
mρ2o

∫ t

0

∫ t

0

〈ζ(t′)ζ(t′′)〉 dt′dt′′
(49)

The solution of this equations is determined using (42), (46)

and [38]. The final expression is

〈(δφ)2〉 =
(
3µρo
2ωoα

)2 R2
f

L2
m

v̄2n
4

(

|t| − 2

α
+

2

α
e−

α
2
t

)

+
R2

f

L2
mρ2o

v̄2n
4
|t|

(50)

When |t| >> 2/α, (50) may be simplified to

〈(δφ)2〉 =
R2

f

L2
mρ2o

v̄2n
4

{

1 +

(
3µρ2o
2ωoα

)2
}

|t| (51)

It is clear from this expression that the phase fluctuations are

directly proportional to the integration time when |t| >> 2/α.

Due to the inherent nature of phase as it neither grows nor

decays in a self-sustained oscillator, any perturbations in the

phase due to noise get accumulated over time. Consequently,

the state point in the phase plane adopts a “random walk”

characteristic along the limit cycle [40]. The analogy between

the dynamics of the phase perturbation and Brownian motion

of unbounded particles enables characterisation of the random

walk behaviour as a phase diffusion process. Therefore, (51)

can be expressed as

〈(δφ)2〉 = Dφ1
|t| (52)

where

Dφ1
= Dφo

(1 + γ2) (53)

Dφo
=

R2
f

L2
mρ2o

v̄2n
4

, γ =
3µρ2o
2ωoα

(54)

Here, Dφ1
and Dφo

are considered as nonlinear and linear

phase diffusion coefficients respectively. Henceforth, Dφ1
will

be referred to as the diffusion coefficient in this paper. γ
is related to the cubic nonlinearity of the MEMS resonator.

Rewriting (54) in terms of circuit parameters using (18)

and (36):

Dφo
=

R2
m

L2
mV 2

F

v̄2n
4

(55)

γ =
3V 2

F

2ωoCm2R3
m

(56)

Equation (52) explains the underlying phenomenon by which

inherent noise in the oscillator results in perturbations in the

phase trajectory. Moreover, it can be inferred that the rate

at which state point in the phase plane diffuses is directly

proportional to the diffusion coefficient. Therefore, a higher

diffusion coefficient may result in larger phase fluctuation.

Furthermore, due to the dependence of Dφ1
on the resonator

nonlinearities, a higher phase noise may result when the

resonator is driven to larger motional amplitudes.

D. Cross-Correlation between Amplitude and Phase

In order to determine the the oscillator output spectrum,

the dependence between the amplitude and phase fluctuations

must be calculated when the MEMS resonator is operated in

the nonlinear regime. The cross-correlation function can be

calculated by multiplying (40) with δρ and then averaging the

resulting expression:

〈δρδφ〉 = 3µρo
4ωo

∫ t

0

〈δρδρ〉 dt′ (57)

Using (47), (57) can be simplified:

〈δρδφ〉 = 3µρo
4ωo

R2
f

L2
mα2

v̄2n
2
(1− e−

α
2
|τ |) (58)

Rewritten (58) using (18) and (36):

〈δρδφ〉 = 3Rf

4LmCm2ωo

VF

R3
m

v̄2n
2
(1− e−

α
2
|τ |) (59)
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From this equation, it can be inferred that the cross-correlation

between the amplitude and phase fluctuations is governed by

the resonator cubic nonlinearity, feedback signal amplitude and

the oscillator loop gain.

E. Spectrum Calculation

The phase noise spectrum is typically calculated from the

power spectral density of the oscillator output. In order to

determine the output power spectral density, we first calculate

the autocorrelation of the output signal v. Consequently, the

PSD will be determined by applying the Wiener-Khintchine

theorem to the resulting autocorrelation function. The auto-

correlation function of (19) is given by

〈v(t)v(t+ τ)〉 = 〈ρ(t)ρ(t+ τ)

cos(ωot+ φ) cos(ωo(t+ τ) + φτ )〉
(60)

We define ρ(t) and ρ(t+τ) as ρo+δρ and ρo+δρτ respectively.

Using these, rewriting (60) as

〈vvτ 〉 =
1

2
Re
{

〈(ρ2o + ρoδρ+ ρoδρτ + δρδρτ )e
−iδφ〉

.e−iωoτ
} (61)

Assuming the phase fluctuations follow the Gaussian distribu-

tion, it can be shown [41]

〈e−iδφ〉 = e−〈(δφ)2〉/2 (62)

Using (62) and [20], (61) can be approximated as

〈vvτ 〉 =
1

2
Re
{

(ρ2o + 〈δρδρτ 〉 − (〈δρδφ〉)2 − 2iρo

.〈δρδφ〉)e−〈(δφ)2〉/2e−iωoτ
} (63)

Equation (63) has two orthogonal components that contribute

to the output spectrum. The first one includes the autocorre-

lation functions of amplitude and phase fluctuations while the

second one is represented by the cross-correlation between

amplitude and phase fluctuations due to the cubic nonlinearity

of the resonator. Assuming the resonator is operated in a

weakly nonlinear regime, using (47) and (59) it can be shown

that 〈δρδρτ 〉 >> 〈δρδφ〉. Therefore, (63) may be written as

svv(τ) =
1

2
(ρ2o + 〈δρδρτ 〉)e−〈(δφ)2〉/2 cos(ωoτ) (64)

Substituting (46) and (52) in (64):

svv(τ) =
ρ2o
2

{

1 +
R2

f

L2
mρ2o

v̄2n
4α

e−
α
2
|τ |

}

.e−
Dφ1

2
|τ | cos(ωoτ)

(65)

To determine the PSD of svv(τ), we apply the Wiener-

Khintchine theorem on (65) [42]:

Svv(ω) =

∫ ∞

−∞

svv(τ)e
−iωτdτ (66)

While considering Dφ1
<< α and using the derived autocor-

relation functions of phase and amplitude fluctuations, shown

in (51) and (47) respectively, (66) can be simplified to

Svv(ω) =
ρ2o
2

{

Dφ1

(ω − ωo)2 +D2
φ1
/4

︸ ︷︷ ︸

Phase fluctuation

+
R2

f

L2
mρ2o

v̄2n
4

1

(ω − ωo)2 + α2/4
︸ ︷︷ ︸

Amplitude fluctuation

} (67)

In this expression, the resulting output PSD includes com-

ponents representing the effect of the phase and amplitude

fluctuations. This expression can be written in terms of a

physical variable such as the output signal at the amplifier

using the relation va = v̇/ωo. The expression of a single-

sideband PSD of the output is expressed as [43]:

L(∆ω) = 10log

(
ω2

ω2
o

Svv

ρ2o/2

)

(68)

By substituting (67) in (68) and using (53), (54), we get

L(∆ω) = 10log

[

R2
f

L2
mρ2o

v̄2n
4

{

1 + γ2

∆ω2 +D2
φ1
/4

+
1

∆ω2 + α2/4

}]

∆ω<<ωo

(69)

Here, ∆ω is the offset from the carrier frequency. This expres-

sion includes the spectrum of phase noise and amplitude noise.

When the resonator response is linear, γ may be neglected

leading to the equal contribution of phase noise and amplitude

noise to the output spectrum assuming ∆ω >> Dφ1
/2 and

∆ω >> α/2, consistent with the LTI models. However, it can

inferred that when γ cannot be neglected, an equal distribution

of the output spectrum into phase noise and amplitude noise

is no longer valid. As phase noise is the primary metric of

significance, the phase noise expression may be expressed in

terms of circuit parameters using (18) and (36):

Lφ(∆ω) = 10log

[

R2
m

L2
mV 2

F

v̄2n
4

1 +
(

3V 2

F

2R3
mωoCm2

)2

∆ω2 +D2
φ1
/4

]

(70)

Compared to the existing phase noise models such as [8],

[14] which fail to predict bounded phase noise at very small

offset with respect to the carrier, (70) predicts the plateau of

Lorentzian and flat phase noise response when ∆ω ≤ Dφ1
.

Moreover, the expression also reveals the dependence of the

phase noise on resonator nonlinearities.

IV. COMPARISON WITH EXISTING MODELS

This section compares previous phase noise models with

the proposed new model. First, the phase noise expression is

rewritten by explicitly adding the noise component (Sn) that

exists at the measurement port of an oscillator. By assuming

an identical front-end amplifier is used for the measurement

port, this contribution can be written as

Sn =
v̄2n
v2sig

(71)
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Here, vsig is the voltage over the resonator. By adding the

injected noise noise component to (70), and using (9), the

resulting phase noise expression is:

Ltφ(∆ω) = 10log

[

Sn

{

1 +

(
ωo

2Q

)2

.
1 +

(
3V 2

F

2R3
mωoCm2

)2

∆ω2 +D2
φ1
/4

}] (72)

This expression for total phase noise will be compared with

the existing linear and nonlinear phase noise models.

A. Model comparison - I

The phase noise expression based on a LTI approach can

be derived, assuming the approximated output current of the

resonator at relatively small offset from the carrier frequency

(∆ω << ωo) to be [44]:

I ≈ vout
Rm + j2∆ωLm

(73)

where vout is the output voltage across the resonator which

includes vsig and vn. Using (9) and vsig = IRm, (73) can be

simplified to

v2out = v̄2n

{

1 +

(
ωo

2Q∆ω2

)2
}

(74)

Consequently, (74) is normalised with the signal power to

determine the phase noise equation:

Lφ(∆ω) = 10 log

[

v̄2n
v2sig

{

1 +

(
ωo

2Q∆ω2

)2
}]

(75)

This equation is known as the Leeson noise model [13]. It

is seen that (72) will lead to a similar expression by making

the assumptions that 1/Cm2 ≈ 0 and ∆ω >> Dφ1
/2. This

model does not address the impact of oscillator nonlinearities

on phase noise.

B. Model comparison - II

Recently Ward et al. presented a phase noise model ad-

dressing nonlinear effects in MEMS resonators [14] which

is verified experimentally in an independent study [45]. The

model showed that the amplitude-frequency relation adds a

new term in the phase noise expression for a LTI model when

the MEMS resonator operated in the nonlinear regime. The

nonlinear phase noise component is given by

Sωn(∆ω) =

∣
∣
∣
∣
∣

∂ω1

∂ρo

∣
∣
∣
∣
∣

2∣
∣
∣
∣
∣

∂ρo
∂VF

∣
∣
∣
∣
∣

2
SAN

∆ω2
(76)

In this expression SAN is the amplitude noise density which

is similar to v̄2n. Using (36) and (38), it can be shown that

∂ω1

∂ρo
=

3VF

4ωoRfRmLmCm2
(77)

and,
∂ρo
∂VF

=
Rf

Rm
(78)

Substituting (77) and (78) in (76), leads to

Sωn(∆ω) =

{

3VF

4R2
mωoLmCm2

}2
SAN

∆ω2
(79)

Equation (79) provides the same additional phase noise com-

ponent which is obtained in (72) while neglecting Dφ1
over

∆ω. Thus, similarities between previous linear and nonlinear

models with the proposed nonlinear phase noise expression

provide further verification of this approach.

C. Model comparison - III

A general numerical approach to phase noise modeling has

been previously presented by Demir et al. [15] and further

extended by a number of groups [16], [18]. The resulting phase

noise expression can be reduced to (Equation (41) in [15])

Lφ(fm) = 10log

(

f2
o c

f2
m + π2f4

o c
2

)

(80)

where fo is the carrier frequency, fm is the frequency spacing

from the carrier and c is a statistical quantity representing the

variance in the per cycle jitter. Demir et al. and other groups

have presented a number of efficient numerical techniques for

the calculation of c.
We note that this expression is consistent with the phase

noise expression derived in this work. This may be seen by

rewriting the phase noise expression using equations (67) and

(68) as:

Lφ(∆ω) = 10log

(

Dφ1

∆ω2 +D2
φ1
/4

)

(81)

The following relation between c and Dφ1
can be inferred by

comparing (80) and (81):

c =
Dφ1

ω2
o

(82)

Equation (82) is fully consistent with the physical interpreta-

tion of the two statistical quantities , Dφ1
and c, representing

the well-established relationship between the variance of the

per cycle time jitter and the variance of the per cycle phase

jitter of the oscillator [46], [47].

V. DESIGN TRADE-OFF

Next, the phase noise model is employed to find an optimum

operating point condition for a MEMS oscillator for improved

phase noise response. To provide a realistic framework, a

MEMS square wave oscillator is realised on a PCB board

and parameters from this oscillator are used for analytical

prediction of noise performance [29]. The oscillator consists of

an electrostatically driven double-ended-turning fork (DETF)

silicon micro-resonator, transimpedance amplifier, bandpass

filter and comparator as depicted in Fig. 3(a). The DETF res-

onator was fabricated in a commercial foundry process using

a standard silicon-on-insulator MEMS process (MEMSCAP

Inc., USA), and consisted of two clamped-clamped beams

and additional moving electrodes. The optical micro-graph

of the resonator is shown in Fig. 3(b) while the dimensions
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Fig. 3. (a) Schematic description of the MEMS square wave oscillator. (b) Optical micrograph of the DETF silicon micro-resonator.

are summarised in Table I. The resonator is operated in the

primary anti-phase tuning fork flexural mode and capacitive

sensing is employed to detect the dynamic motion of the

resonator.

TABLE I

DESIGNED DIMENSIONS OF THE DETF SILICON MICRO-RESONATOR.

Parameter Value (µm)

Beam Length (lb) 350
Beam width (wb) 7
Electrode length (le) 280
Electrode width (we) 10
Device thickness (h) 25
gap (g) 2

The measured open-loop responses at various combinations

of dc bias and excitation signal amplitudes are shown in Fig. 4.

During measurements, the resonator was placed in a custom

vacuum chamber at a pressure of ∼50 mtorr. The extracted

parameters from these responses are shown in Table II. Here,

the effective mass of the resonator is calculated using [5]:

m = 0.375dSiwblbh+ dSiweleh (83)

where dSi is the density of single-crystal silicon.

A. Phase Noise Calculation

Using (72), the phase noise response is calculated for the

corresponding feedback signals and dc bias values shown

in Fig. 5. In these plots, it is visible that the near-carrier

phase noise is significantly impacted by the nonlinear response

of the resonator. For operating conditions where the open-

loop response of the resonator exhibits multivalued amplitude-

frequency behaviour (i.e. bifurcation), higher close-to-carrier

phase noise is observed. Therefore, it cannot be concluded

that the presence of nonlinearities in the resonator response

always degrades or improves the phase noise performance - a

turnover point exists as the resonator approaches the nonlinear

regime where the noise performance is optimum. This may be

observed in Fig. 5(a) and 5(b) where the phase-noise close-

to-carrier is lowest when the resonator is operated at 32 mV.

Moreover, based on the calculated values of Dφ1
, it can be

inferred that higher values of the diffusion coefficient result

in high near-carrier phase noise as discussed by Ham et al. as

well [40]. Therefore, diffusion coefficient can be considered

as a qualitative parameter to quantify the phase noise in the

oscillator. Thus, we refer Dφ1
as a key metric for further

optimisation of phase noise. Now, (53) can be rewriting in

terms of oscillator design variables using (55) and (56):

Dφ1
=

R2
m

L2
mV 2

F

v̄2n
4

︸ ︷︷ ︸

Linear component

+
9V 2

F

4R4
mω2

oL
2
mC2

m2

v̄2n
4

︸ ︷︷ ︸

Nonlinear component

(84)

From this expression it is clear that the diffusion coefficient

demonstrates a dependence on the feedback signal, dc bias and

the oscillator loop gain. Moreover, the linear and nonlinear

components show different dependence on these parameters.

Therefore, design pathways by which the diffusion coefficient

may be minimized, resulting in an improved phase noise

response are explored. When the resonator is operated at a

given dc bias and loop gain, an optimum value of the feedback

signal may be found by differentiating (84) with respect to VF

and finding a local minima point. The resulting expression of

the optimum feedback signal (VFopt) is

VFopt =

√

2

3
R3

mωoCm2 (85)

The corresponding diffusion coefficient is calculated by sub-

stituting (85) in (84) and using (14) to simplify this further.

This leads to the optimum diffusion coefficient (Dφ1opt):

Dφ1opt =
3k2ωo

4k2o

v̄2n
Rm

(86)

To validate this expression, a graphical representation of (84)

is shown in Fig. 6 at 25 V and 30 V Vdc. A local minima can be

observed in these plots, which corresponds to a feedback signal

amplitude of 24 mV and 30 mV respectively. The correspond-

ing values of the diffusion coefficients are 1.34× 10−8 sec−1

and 1.39×10−8 sec−1 respectively. While considering Fig. 5,

It can be clearly seen that at VFopt, Dφ1
attains smaller value,

hence validating the expressions (85) and (86). However, as

the dc bias is increased from 25 V to 30 V, an increment in

Dφ1
is observed due the reduction in Q factor as shown in

Table II.

As can be seen from (86), Dφ1opt is proportional to k2
where k2 = k2m + k2e. In this case, k2m results in spring-

hardening and dominates over k2e at high vibration amplitudes
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Fig. 4. Measured open-loop response of the electrostatically operated DETF MEMS resonator at a set of vac and a fixed value of Vdc (a) 25 V (b) 30 V. As
the excitation signal increases, the amplitude-frequency responses bend towards right due to the mechanical nonlinearities. However, less nonlinear response
can be observed with higher dc bias due to the electrical nonlinearities which reduce the overall effect of the cubic nonlinearity.

TABLE II

SUMMARY OF THE EXTRACTED AND CALCULATED PARAMETERS OF THE DETF MEMS RESONATOR.

Parameter Source Value at 25 V Vdc Value at 30 V Vdc Unit

m Equation (83) 2.1710−10 2.1710−10 kg
kom Measured 436 436 N/m
koe Measured -1.3 -1.9 N/m

k2m Measured 1.43× 1012 1.43× 1012 N/m3

k2e Measured −2.7× 1011 −3.8× 1011 N/m3

Q Measured 14588 11674 -
g Measured 3.1 3.1 µm
Vdc Measured 25 30 V

Lm Equation (9) 8.4× 103 5.8× 103 H

Rm Equation (9) 8.1× 105 7× 105 Ω

Cmo Equation (9) 6× 10−17 8.6× 10−17 F

Cm2 Equation (14) 1.2× 10−27 2.7× 10−27 FA2
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Fig. 6. The effect of the feedback signal on the diffusion coefficient is
shown here. It can be clearly seen that Dφ1

reaches to a minimum value
which corresponds to VFopt

whereas k2e results in spring-softening and may dominate over

k2m at high dc voltages and in electrostatically-transduced

resonators with small transduction gaps. As the two terms

combine with opposite signs, the value of k2 can be minimized

by setting the magnitude of k2m to equal k2e. In systems where

mechanical nonlinearities dominate, the reduction of k2 can be

tuned electrically by increasing Vdc as can be seen from (3).

If the nonlinear component in (84) is neglected, it can be seen

that Dφ1
is inversely related to VF . For the specific case that

k2e is equal to k2m, it is therefore possible to increase output

amplitude and simultaneously suppress the increment in the

phase diffusion coefficient that would otherwise arise due to

the nonlinear term. These findings provide theoretical support

to the independent experimental observation of improved

phase noise performance for MEMS oscillators wherein the

cancellation of the cubic nonlinearity was possible by tuning

the electrical stiffness [48]. It is also important to note that

the phase diffusion coefficient and the optimum value of VF

is primarily dictated by resonator nonlinearities.

The analysis presented here is applicable to optimization



DRAFT AUGUST 2014 11

10
0

10
1

10
2

10
3

−135

−130

−125

−120

−115

−110

−105

−100

−95

−90

−85

−80

∆f (log scale Hz)

L
tφ
(∆

w
)
(d
B
c/
H
z)

 

 
VF=16 mV (Dφ1

=1.84× 10−8 sec−1)

VF=32 mV (Dφ1
=1.53× 10−8 sec−1)

VF=50 mV (Dφ1
=3.02× 10−8 sec−1)

VF=100 mV (Dφ1
=11.45× 10−8 sec−1)

VF=160 mV (Dφ1
=28.68× 10−8 sec−1)

(a)

10
0

10
1

10
2

10
3

−135

−130

−125

−120

−115

−110

−105

−100

−95

−90

−85

−80

∆f (log scale Hz)

L
tφ
(∆

w
)
(d
B
c/
H
z)

 

 
VF=16 mV (Dφ1

=2.62× 10−8 sec−1)

VF=32 mV (Dφ1
=1.40× 10−8 sec−1)

VF=50 mV (Dφ1
=2.22× 10−8 sec−1)

VF=100 mV (Dφ1
=7.94× 10−8 sec−1)

VF=160 mV (Dφ1
=19.81× 10−8 sec−1)

(b)

Fig. 5. Calculated total phase noise plots at a Vdc of (a) 25 V (b) 30 V. The phase noise responses are determined at the same values of excitation signals
at which the open-loop responses are measured. The calculated values of the diffusion coefficient (Dφ1

) are also provided.
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of the near-carrier phase noise. Equation (72) may now be

employed as a starting point for further analysis of noise

optimization when MEMS resonators are operated at or near

the onset of bifurcation.

VI. CONCLUSION

Since last decade, there have been several experimental

studies to understand the impact of nonlinear effects in MEMS

oscillators on the phase noise. In this paper, we presented a

new nonlinear phase noise model which adds new insight of

understanding the impact of oscillator nonlinearities on the

phase noise. By deriving the phase noise expression from a

second order nonlinear SDE describing a MEMS square wave

oscillator response, we showed how the cubic nonlinearity in

a resonator impacts the spectral broadening of the oscillator

output. The resulting analytical expression for phase noise

is consistent with previously presented non-linear models for

oscillator phase noise based on numerical techniques. More-

over, by correlating the simulated phase noise response with

parameters obtained from measurements on DETF MEMS

resonators, it is demonstrated that the near-carrier phase noise

performance may degrade when the resonator is operated

beyond the bifurcation point.

The methodology to integrate the resonator and oscillator

circuit nonlinearities in a single equation is described for an

electrostatically operated MEMS square wave oscillator. How-

ever, it can be extended to other MEMS oscillator topologies

as well. Moreover, in this work, we only consider the impact

of stationary noise in the oscillator. However, the impact of

other noise sources and the up-conversion of 1/f noise due to

nonlinear effects is not considered in this paper. The presented

stochastic analysis may however be extended to address the

impact of 1/f noise.

The presented noise analysis shows the mechanism by

which noise in the oscillator is transformed into the phase and

amplitude noise. The analytical expression of phase noise is

in agreement with existing linear and nonlinear phase noise

models. Moreover, we show that the diffusion coefficient

which describes the rate of phase diffusion, can be employed

as a defining metric for phase noise. By presenting a new

analytical framework, this paper provides useful design insight

into the noise optimisation for MEMS oscillators. Future work

includes the development of a more generalised phase noise

model while incorporating other white and non-white noise

sources.

APPENDIX A

AMPLITUDE AND PHASE BEHAVIOUR

The first derivatives of (23) and (24) are given by

ż1 = ρ̇ cos θ − ρθ̇ sin θ (87)

ẏ = ρ̇ sin θ + ρθ̇ cos θ (88)

By substituting (23) and (24) in (21) and (22), we get

ż1 = −ωoρ sin θ (89)

ẏ = −αρ sin θ +
β

ωo
sgn(ωoρ sin θ) + ωoρ cos θ

+
µρ3

ωo
cos3 θ +

Rf

Lm
vn

(90)

The differential equation of ρ and φ can be manipulated

from (87)-(90):

ρ̇ = −αρ sin2 θ +
β

ωo
sgn(ωoρ sin θ) sin θ

+
µρ3

ωo
cos3 θ sin θ +

Rf

Lm
vn sin θ

(91)

φ̇ = −α

2
sin 2θ +

β

ωoρ
sgn(ωoρ sin θ) cos θ

+
µρ2

ωo
cos4 θ +

Rf

Lmρ
vn cos θ

(92)

Here, sgn function can be approximated as

sgn(ωoρ sin θ) ≈
4

π

∞∑

k=0

sin(2k + 1)θ

2k + 1
(93)

The amplitude and phase dynamics are determined by replac-

ing (93) in (91) and (92) and taking into account limited rapid

oscillation terms. The resulting expressions are

ρ̇ =− αρ

2
(1− cos 2θ) +

µρ3

ωo

(
1

4
sin 2θ +

1

8
sin 4θ

)

+
2β

πωo

(

1− 2

3
cos 2θ − 2

15
cos 4θ

)

+
Rf

Lm
vn sin θ

(94)

φ̇ =− α

2
sin 2θ +

µρ2

ωo

(
3

8
+

1

2
cos 2θ +

1

8
cos 4θ

)

+
2β

ρπωo

(
4

3
sin 2θ +

8

15
sin 4θ

)

+
Rf

Lmρ
vn cos θ

(95)
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single-crystal silicon microresonators,” Journal of Microelectromechan-

ical Systems, vol. 13, no. 5, pp. 715–724, Oct. 2004.

[6] B. Yurke, D. S. Greywall, A. N. Pargellis, and P. A. Busch, “Theory of
amplifier-noise evasion in an oscillator employing a nonlinear resonator,”
Physical Review A, vol. 51, no. 5, pp. 4211–29, May. 1995.

[7] L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, Ron
Lifshitz, M. C. Cross, and M. L. Roukes, “Surpassing fundamental
limits of oscillators using nonlinear resonators,” Physical Review Letters,
vol. 110, pp. 177208, Apr. 2013.



DRAFT AUGUST 2014 13

[8] S. Lee and C. T. C. Nguyen, “Influence of automatic level control on
micromechanical resonator oscillator phase noise,” in Proc. IEEE IFCS,
May 2003, pp. 341–349.

[9] L. He, Y.-P. Xu, and M. Palaniapan, “A state-space phase-noise model
for nonlinear mems oscillators employing automatic amplitude control,”
IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 57,
no. 1, pp. 189–199, Jan. 2010.

[10] M. Pardo, L. Sorenson, and F. Ayazi, “An empirical phase-noise model
for MEMS oscillators operating in nonlinear regime,” IEEE Transactions

on Circuits and Systems I-Regular Papers, vol. 59, no. 5, pp. 979-988,
May 2012.

[11] G. Papin, R. Levy, G. Lissorgues, and P. Pouliuchet, “Behavioral
modelling of MEMS oscillator and phase noise simulation,” Journal of

Analog Integrated Circuits and Signal Processing vol. 72, no. 1, pp. 11–
18, Jul. 2012

[12] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical
oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179–
194, Feb. 1998.

[13] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,”
Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966.

[14] P. Ward and A. Duwel, “Oscillator phase noise: Systematic construction
of an analytical model encompassing nonlinearity,” IEEE Transactions

on Ultrasonics Ferroelectrics and Frequency Control, vol. 58, no. 1,
pp. 195–205, Jan. 2012.

[15] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscil-
lators: A unifying theory and numerical methods for characterization,”
IEEE Transactions on Circuits and Systems I-Fundamental Theory and

Applications, vol. 47, no. 5, pp. 655–674, May 2000.

[16] F. L. Traversa, F Bonani, “Oscillator noise: a nonlinear perturbative
theory including orbital fluctuations and phase-orbital correlation,” IEEE

Transactions on Circuits and Systems I-Regular Papers, vol. 58, no. 10,
pp. 2485–97, Mar. 2011.

[17] F. L. Traversa, and F Bonani, “Asymptotic stochastic characterization
of phase and amplitude noise in free-running oscillators,” Fluctuation

and Noise Letters, vol. 10, no. 2, pp. 207–221, 2011.

[18] F. Bizzarri, and X. Wei, “ Phase noise analysis of a mechanical
autonomous impact oscillator with a MEMS resonator,” in Proc. IEEE

ECCTD, Aug. 2011, pp. 729–731.

[19] A. Demir, and J. Roychowdhury, “A reliable and efficient procedure
for oscillator PPV computation, with phase noise macromodeling appli-
cations,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 22, no. 2, pp. 188–197, Feb. 2003.

[20] R. L. Stratonovich, Topics in the theory of random noise. London,
U.K.: Gordon and Breach, 1963.

[21] P. I. Kuznetsov, R. L. Stratonovich, and V. I. Tikhonov, Nonlinear

transformations of stochastic processes. Oxford, U.K: Pergamon, 1965.

[22] E. A. Gerber and A. Ballato, Precision frequency control, vol. 2,

oscillators and standards. London, U.K.: Academic,, 1985.

[23] R. W. Rhea, Oscillator design and computer simulation. London, U.K.:
McGraw-Hill, 1997.

[24] D. E. Newland, Mechanical vibration analysis and computation. Har-
low, U.K.: Longman Scientific & Technical, 1989.

[25] M. I. Younis and A. H. Nayfeh, “A study of the nonlinear response of
a resonant microbeam to an electric actuation,” Nonlinear Dynamics,
vol. 31, no. 1, pp. 91–117, Jan. 2003.

[26] V. Kaajakari, T. Mattila, A. Lipsanen, and A. Oja, “Nonlinear mechanical
effects in silicon longitudinal mode beam resonators,” Sensors and

Actuators a-Physical, vol. 120, no. 1, pp. 64–70, Apr. 2005.

[27] S. D. Senturia, Microsystem design. London, U.K.: Kluwer, 2001.

[28] B. Razavi, Design of analog CMOS integrated circuits. London, U.K.:
McGraw-Hill, 2001.

[29] J. E. Y. Lee, B. Bahreyni, Y. Zhu, and A. A. Seshia, “A single-crystal-
silicon bulk-acoustic-mode microresonator oscillator,” IEEE Electron

Device Letters, vol. 29, no. 7, pp. 701–703, Jul. 2008.

[30] C. T.-C. Nguyen and R. T. Howe, “An integrated CMOS micromechan-
ical resonator high-Q oscillator,” IEEE Journal of Solid-State Circuits,
vol. 34, no. 4, pp. 440–455, Apr. 1999.

[31] P. Grivet and A. Blaquiere, “Nonlinear effects of noise in electronic
clocks,” Proceedings of the IEEE, vol. 51, no. 11, pp. 1606–14, Nov.
1963.

[32] D. K. Agrawal, J. Woodhouse, and A. A. Seshia, “Modeling nonlin-
earities in MEMS oscillators,”IEEE Transactions on Ultrasonics Fer-

roelectrics and Frequency Control, vol. 60, no. 8, pp. 1646–59, Aug.
2013.

[33] H. Risken and T. Frank, The Fokker-Planck Equation: methods of

solutions and applications. London, U.K.: Springer, 1989.

[34] M. Lax, “Classical noise. VI. noise in self-sustained oscillators,” Phys-

ical Review, vol. 160, no. 2, pp. 350–366, Feb. 1967.
[35] T. K. Caughey, “Response of van der pol’s oscillator to random ex-

citation,” Journal of Applied Mechanics, vol. 26, no. 3, pp. 345–348,
1959.

[36] F. X. Kaertner, “Analysis of white and f−α noise in oscillators,”
International Journal of Circuit Theory and Applications, vol. 18, no.
5, pp. 485–519, Sep. 1990.

[37] L. Socha, Linearization Methods for stochastic dynamic systems. Berlin,
Germany: Springer, 2007.

[38] A. Papoulis and S. U. Pillai, Probability, random variables and stochas-

tic processes. London, U.K.: McGraw-Hill, 1991.
[39] F. John, Partial differential equations. Providence, R.I. : American

Mathematical Society, 1998.
[40] D. Ham and A. Hajimiri, “Virtual damping and Einstein relation in

oscillators,” IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 407–
418, Mar. 2003.

[41] A. Papoulis, “Random modulation - a review,” IEEE Transactions on

Acoustics, Speech and Signal Processing, vol. 31, no. 1, pp. 96–105,
Feb. 1983.

[42] C. Chatfield, The analysis of time series : An introduction. London,
U.K.: Chapman and Hall, 1980.

[43] E. S. Ferre-Pikal, J. R. Vig, J. C. Camparo, L. S. Cutler, L. Maleki,
W. J. Riley, S. R. Stein, C. E. Thomas, F. L. Walls, J. D. White, and
D. Joseph, “Draft revision of IEEE std 1139-1988 standard definitions
of physical quantities for fundamental frequency and time metrology -
random instabilities,” in Proc. IEEE IFCS, May 1997, pp. 338–357.

[44] V. Kaajakari, J. K. Koskinen, and T. Mattila, “Phase noise in capacitively
coupled micromechanical oscillators,” IEEE Transactions on Ultrasonics

Ferroelectrics and Frequency Control, vol. 52, no. 12, pp. 2322–31, Dec.
2005.

[45] H. K. Lee, P. A. Ward, A. E. Duwel, J. C. Salvia, Y. Q. Qu, R.
Melamud, S. A. Chandorkar, M. A. Hopcroft, B. Kim, and T. W. Kenny,
“Verification of the phase-noise model for MEMS oscillators operating
in the nonlinear regime,” in Proc. Transducers, Jun. 2011, pp. 510–513.

[46] A. Hajimiri, S. Limotyrakis, and T. H. Lee,“Jitter and phase noise in
ring oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 6,
pp. 790–804, Jun. 1999.

[47] M. J. Underhill, and P. J. Brown,“Estimation of Total Jitter and Jitter
Probability Density Function from the Signal Spectrum,” in IEEE EFTF,
Apr. 2004, pp. 502–508.

[48] M. Agarwal, K. K. Park, R. N. Candler, M. A. Hopcroft, C. M. Jha,
R. Melamud, B. Kim, B. Murmann, and T. W. Kenny, “Nonlinearity
cancellation in mems resonators for improved power-handling,” in Proc.

IEEE IEDM, Dec. 2005, pp. 295–298.

PLACE
PHOTO
HERE

Deepak Agrawal Biography text here.

PLACE
PHOTO
HERE

Ashwin Seshia Biography text here.


