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Cell activities primarily depend on chemical reactions, especially those mediated by

enzymes, and this has led to these activities being modeled as catalytic reaction

networks. Although deterministic ordinary differential equations of concentrations (rate

equations) have been widely used for modeling purposes in the field of systems biology,

it has been pointed out that these catalytic reaction networks may behave in a way

that is qualitatively different from such deterministic representation when the number

of molecules for certain chemical species in the system is small. Apart from this,

representing these phenomena by simple binary (on/off) systems that omit the quantities

would also not be feasible. As recent experiments have revealed the existence of rare

chemical species in cells, the importance of being able to model potential small-number

phenomena is being recognized. However, most preceding studies were based on

numerical simulations, and theoretical frameworks to analyze these phenomena have

not been sufficiently developed. Motivated by the small-number issue, this work aimed

to develop an analytical framework for the chemical master equation describing the

distributional behavior of catalytic reaction networks. For simplicity, we considered

networks consisting of two-body catalytic reactions. We used the probability generating

function method to obtain the steady-state solutions of the chemical master equation

without specifying the parameters. We obtained the time evolution equations of the

first- and second-order moments of concentrations, and the steady-state analytical

solution of the chemical master equation under certain conditions. These results led to

the rank conservation law, the connecting state to the winner-takes-all state, and analysis

of 2-moleculesM-species systems. A possible interpretation of the theoretical conclusion

for actual biochemical pathways is also discussed.
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1. INTRODUCTION

Biochemical systems consist of a variety of chemicals, including
proteins, nucleic acids, and also small metabolites. Enzymatic
reactions, which play an important role in catalyzing many
biological reactions, are particularly important to maintain the
structure and activity of these systems. Hence, biochemical
systems are often modeled as catalytic reaction networks.

These networks are typically analyzed by using deterministic
ordinary differential equations with respect to concentrations
of chemical species, so-called reaction rate equations [or partial
differential equations (reaction-diffusion equations) for spatially
distributed, non-uniform cases]; i.e., the concentrations are
represented by continuous variables. However, because each
chemical actually consists of molecules, the concentration of
each species should be a discrete variable. The effects of such
discreteness as well as finite-size fluctuations in stochastic
reactions become non-negligible if the number of molecules in
the system is small. In theory, situations such as these can result
in phenomena that cannot be described by rate equations (as well
as those equations with additional noise; Togashi and Kaneko,
2001, 2007; Awazu and Kaneko, 2007, 2009).

In contrast, gene regulations are often modeled as a
combination of binary (on/off) switches, typically represented
by Boolean network models (Kauffman, 1969). However, this
approach does not consider the quantities of chemicals such
as DNA, mRNA, and proteins. Even for the seemingly digital
expression of genes, a stoichiometry involving DNA cannot be
ignored, as seen in X-chromosome inactivation (2 to 1) and the
trisomy syndrome (2 to 3). Thus, the use of a binary (on/off)
representation would also be inappropriate. We therefore need
to consider the number of molecules.

Recent experiments have shown the existence in the cell of
proteins that only consist of a few molecules each (Taniguchi
et al., 2010), and these potential biological phenomena
(sometimes referred to as the small-number issue) have
been gradually recognized by biologists. General theories that
would enable predictions in small number situations would
be helpful to every biological scientist seeking to understand
biochemical processes on any level. Of course, the distributional
behavior of such discrete stochastic systems is described by the
chemical master equation. However, it is generally difficult to
obtain its solution; hence, most efforts have been devoted to the
development of approximation and simulation methods and
their application (Gillespie, 1976, 1977; Munsky and Khammash,
2006; Lee et al., 2009; Kim and Lee, 2012).

The effects of small numbers in particular systems, e.g.,
small autocatalytic systems have been mathematically
analyzed (Ohkubo et al., 2008; Biancalani et al., 2012, 2014;
Houchmandzadeh and Vallade, 2015; Saito and Kaneko, 2015).
In addition, a parameter representing the degree of discreteness
in the number of molecules has been introduced (Haruna,
2010, 2015). In this work, we pursue analytical frameworks
for studying the effects of small numbers in catalytic reaction
networks by following an approach that is as general as possible.
Our aim is to obtain the steady-state analytical solution for the
chemical master equation without specifying parameters, rather

than developing numerical schemes to solve it as was previously
done (Kim and Lee, 2012). Furthermore, we try to theoretically
describe the long-term behavior of the system by only using
information about relationships between elements, thereby
implying that we aim to produce results that could be applied to
studies in any field.

Our framework provides good operability because our
formulas have a specific and satisfyingly simple form, and
enables us to obtain the steady state for a wide class of catalytic
reaction networks because our framework never specifies any
parameters for the networks. We use a probability generating
function approach. The probability generating function approach
to stochastic chemical kinetics itself has been proposed a long
time ago (e.g., Krieger and Gans, 1960; McQuarrie, 1967), after
which it spread to biological stochastic kinetics studies (e.g.,
stochastic gene expression Thattai and van Oudenaarden, 2001;
Shahrezaei and Swain, 2008); thus, physicists as well as chemists
and mathematical biologists are familiar with the approach.
Our main contributions in this paper relate to the efficient
usage of the probability generating function (as in Gadgil et al.,
2005 regarding first-order reaction networks). Therefore, our
approach for obtaining the steady state is understandably easier
than that followed in a previous study (Anderson et al., 2010)
while, as a consequence, our results are consistent with that
study (see Theorem 4.1 and 4.2 in Anderson et al., 2010).
Furthermore, since our method uses a procedure based on
analytical calculations, it can be easily converted to a computer
algorithm.

The present paper is organized as follows. In Section 2.1, we
define the catalytic reaction network considered in this paper.
The chemical master equation (CME) is provided in Section 2.2.
We introduce the probability generating function (PGF) and
derive the generating function equation (GFE) in Section 2.3.
In subsequent Sections (2.3.1–2.3.3), we show that the GFE
introduces the time evolution equation of the first-order and
second-order moments of concentrations (we refer to the first-
order moment time evolution equation as the pre-rate equation,
PRE), and the second-ordermoment expression of time-averaged
concentrations (SME). Section 2.4 is devoted to obtaining the
steady-state solutions of the GFE. To simplify the GFE, we
neglect the non-catalytic reactions considered as perturbation
for the catalytic reaction network if the system is “entirely
ergodic.” In Section 2.4.2.3 as the main result, we obtain the
probability generating function without winner-takes-all states
(PGFwoWTAS) including the solutions of the corresponding
rate equation. In Section 3, we describe applications of these
results: the rank conservation law, the connecting state to the
winner-takes-all state, analysis of 2-moleculesM-species systems,
and non-autocatalyzation of autocatalytic reaction networks. The
prospects of our theory in terms of the small-number issue are
briefly discussed in Section 4.

2. METHODS AND RESULTS

2.1. Catalytic Reaction Networks
Consider an abstract catalytic reaction network consisting of
M chemical species and N molecules in a well-stirred reactor
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of volume V , as in Awazu and Kaneko (2007). Each species
is labeled by each of the integers between 1 and M. The total
number of moleculesN is always conserved in reaction processes.
This chemical reaction system involves both catalytic reactions
and non-catalytic reactions, to prevent catalytic reactions from
stopping:

(i) Catalytic reactions (two-body catalysis):

i
j

−→ k, (1)

where the species i, j, k ∈ [1,M] represent a substrate,
a catalyst, and a product. The reaction rate constant is
represented by Rijk > 0. If this catalytic reaction does not exist,
we specify Rijk = 0. Therefore, the catalytic reaction networks
are determined by Rijk. In this paper, we impose the following
conditions for the catalytic reaction networks;

(a) Riik = 0; Substrate 6= Catalyst.
(b) Riji = 0; Substrate 6= Product.
(c) Rikk = 0; Autocatalytic reactions are not included.
(d) #

{

k : Rijk > 0 (∀i, j)
}

= 1;
One product against a substrate and a catalyst.

(ii) Non-catalytic reactions (one-body reactions):

i
Prob. 1/M
−−−−−→ j. (2)

This reaction exists for all combinations between each species,
but a product j ∈ [1,M] is uniformly-randomly selected from
all species 1 to M. The rate constant is set ε > 0 in common,
where ε is very small, i.e., ε ≪min{Rijk > 0}.

The state of this catalytic reaction network is specified by the
combination ofM natural numbers n = (n1, n2, · · · , nM), where
ni ∈ [0,N] is the number of molecules of the ith-species.
For later convenience, we introduce the following notations: the
state space of the catalytic reaction network WM,N (abbr. W) is
represented by

W: = {n ∈ [0,N]M | n1 + · · · + nM = N}, (3)

which consists of
(

(M
N

)

)

: =
(N+M−1)!
(M−1)!N!

points; a collection

consisting of (one species) winner-takes-all states IM,N (abbr. I) is
represented by

I: = {n ∈ WM,N | ∃i ∈ [1,M] s.t. ni = N}, (4)

which consists ofM points. Of course, the winners-take-all states
of more than one species can be considered, but we focus on the
winner-takes-all states of one species by supposing the system
satisfies a certain condition, entire ergodicity (see Section 2.4.2.4).

In the present paper, we are interested in the N-dependence
of the concentration of each species xi = ni/V . We basically
consider a situation in which the total density of molecules ρ =

N/V is conserved, even if the total number of molecules N is
changed.

2.2. The Chemical Master Equation
The rate constant Rijk in the catalytic reaction is defined as the
number of reactions per unit volume, unit concentration, and
unit time. Therefore, the number of reactions per unit time in

the catalytic reaction i
j

−→ k, such that the concentrations are xi
and xj, is

RijkxixjV = Rijk
ninj

V
= Rijk

ninj

N
ρ, (5)

where ρ = N/V is the total density of molecules in the vessel.
On the other hand, the number of reactions per unit time in the
non-catalytic reaction i −→ j with probability 1/M is

εxiV ×
1

M
=

ε

M
ni. (6)

Then, the time-evolution of the probability P(n, t), with which
the system is in the state n at time t, obeys the chemical master
equation (CME):

dP(n, t)

dt
=

ρ

N

∑

i,j,k

Rijk(E
+1
i E−1

k
− 1)ninjP(n, t)

+
ε

M

∑

i,j

(E+1
i E−1

j − 1)niP(n, t), (7)

where E±m
i are step operators, i.e.,

E±m
i f (n1, · · · , ni, · · · , nM): = f (n1, · · · , ni ±m, · · · , nM).

(8)

Of course, the state space on which the probability P(·, t) is
supported, is the previously describedWM,N .

2.3. Probability Generating Function
Method
The probability generating function (PGF) is useful to analyze the
CME:

φ(z, t): =
∑

n1,··· ,nM

P(n, t) z1
n1 · · · zM

nM . (9)

Note that the following expressions are translated to differential
forms of the PGF:

niP(n, t) 7−→ zi
∂

∂zi
φ(z, t), (10a)

ninjP(n, t) 7−→ zizj
∂

∂zi

∂

∂zj
φ(z, t) (i 6= j), (10b)

E+1
i E−1

j niP(n, t) 7−→ zj
∂

∂zi
φ(z, t) (i 6= j), (10c)

E+1
i E−1

k
ninjP(n, t) 7−→ zjzk

∂

∂zi

∂

∂zj
φ(z, t) (i 6= j 6= k 6= i).

(10d)
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Therefore, rewriting the CME to the equation governing the PGF
enables the generating function equation (GFE) to be obtained:

∂φ(z, t)

∂t
=

ρ

N

∑

i,j,k

Rijk(zk − zi) zj
∂

∂zi

∂

∂zj
φ(z, t)

+
ε

M

∑

i,j

(zi − zj)
∂

∂zj
φ(z, t). (11)

The GFE consists of continuous variables, unlike the CME, which
consists of discrete variables.

Once we obtain the PGF φ as a solution to the GFE, we can
derive all statistics of the catalytic reaction network; for example,
the ensemble averages (first-order moments) and second-order
moments become

〈ni〉(t) =
∂

∂zi
φ(z, t)

∣

∣

∣

∣

z=1

, (12a)

〈ninj〉(t) =
∂2

∂zi∂zj
φ(z, t)

∣

∣

∣

∣

z=1

(i 6= j), (12b)

〈

nl(nl − 1)
〉

(t) =
∂2

∂z2
l

φ(z, t)

∣

∣

∣

∣

∣

z=1

, (12c)

and the marginal distributions become

pi(n, t) =
1

n!

∂n

∂zni
φ(z, t)

∣

∣

∣

∣

zi=0; zj=1(j 6=i)

(0 ≤ n ≤ N), (13)

where pi(n, t) is defined by

pi(n, t): =
∑

n1,··· ,nM
(except ni)

P(n, t)
∣

∣

ni=n
. (14)

2.3.1. The Pre-rate Equation
Rate equations are differential equations for the concentrations xi
of chemical species i = 1, · · · ,M whenN → ∞.We use the GFE
to derive a formula, which is reminiscent of the rate equation.

Differentiating both sides of Equation (11) by zi, substituting
z = 1, and writing xi = ni/V , leads to the following pre-rate
equation (PRE);

d

dt
〈xi〉 =

∑

j,k

(

Rjki
〈

xjxk
〉

− Rikj 〈xixk〉
)

+ ε
( ρ

M
− 〈xi〉

)

. (15)

Note that, as we are considering a system of which the
total number of molecules N is conserved, the concentration
conservation law (CCL) must be satisfied;

∑

i

〈xi〉(t) = ρ (∀t), (16)

where the PRE (Equation 15) is consistent with the
CCL (Equation 16).

If the independence 〈xixj〉 = 〈xi〉〈xj〉 (i 6= j) holds,
the PRE (Equation 15) becomes the same expression as the
rate equation. On the other hand, the PRE does not explicitly
include extensive variables, such as the total number of molecules

N. Therefore, the formula (Equation 15) always holds for an
arbitrary molecular number N unless the total molecular density
ρ is changed.

2.3.2. Second-Order Moment Expression for

Time-Averaged Concentrations
We suppose the following ergodicity to replace ensemble-
averages with time-averages; ni = 〈ni〉∗ i.e.,

lim
T→∞

1

T

∫ T

0
ni(t)dt =

∑

n1,··· ,nM

ni P∗(n), (17)

where P∗(n) is the steady-state solution of the CME
corresponding to almost all initial conditions. Considering
the steady state in the PRE [that is, taking t → ∞ on
both sides of Equation (15)], one obtains the following
second-order moment expression (SME) for time-averaged
concentrations:

xi =
ρ

M
+

1

ε

∑

j,k

(

Rjkixjxk − Rikjxixk
)

. (18)

The second term on the right hand side of
Equation (18) represents the difference from the uniform
concentration ρ/M.

If the independence xixj = xixj holds, Equation (18)
becomes an equation that only includes the concentrations
xi. Therefore, in combination with the time-averaged version
of the CCL (Equation 16), the concentrations xi can be
determined without including unknown quantities. However,
the actual concentrations xi depend on their second-order
moments xixj.

2.3.3. Time-Evolution of Second-Order Moments
Determining the concentrations xi from the SME (Equation 18)
requires us to know their second-order moments xixj.

Differentiating both sides of the GFE (Equation 11) by zl
and zm (l 6= m), substituting z = 1, and writing xi = ni/V ,
then, after simplification, the following time-evolution equation
of second-order moments (TESM) is obtained:

d

dt
〈xlxm〉 = −

ρ

N

∑

i

(Rlim〈xixl〉 + Rmil〈xixm〉)

+
∑

i,j

{Rijl〈xixjxm〉 + Rijm〈xixjxl〉 − (Rlij + Rmij)

〈xixlxm〉}

+
ε

M

{

N − 1

N
ρ(〈xl〉 + 〈xm〉)− 2M〈xlxm〉

}

(1 ≤ l < m ≤ M). (19a)

On the other hand, twice differentiating both sides of
the GFE (Equation 11) by zl, substituting z = 1, and
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writing xi = ni/V , then after some simplification, the following
alternative TESM is obtained:

d

dt
〈xl(xl −

ρ
N )〉 = 2

∑

i,j

(

Rijl〈xixjxl〉 − Rlij〈xixl(xl −
ρ
N )〉

)

+
2ε

M

{

N +M − 1

N
ρ〈xl〉 −M〈x2l 〉

}

(1 ≤ l ≤ M). (19b)

The expression of TESMs (Equation 19) consists of M(M +

1)/2 equations containing the third-order moments 〈xixjxk〉(t).
Therefore, the TESMs are not effective unless the systems
are restricted such that the third-order moments vanish (e.g.,
2-molecules systems). If N = 2, because ∂zi∂zj∂zkφ = 0 (φ is
a second-order polynomial), one can calculate the 2-molecules
version of the TESMs (2mTESMs);

d

dt
〈xlxm〉 =

ρ

2

∑

i

{Riml〈xixm〉 + Rilm〈xixl〉

− (Rlmi + Rmli)〈xlxm〉}

+
ρε

2M
(〈xl〉 + 〈xm〉)− 2ε〈xlxm〉

(1 ≤ l < m ≤ M), (20a)

d

dt
〈xl(xl −

ρ
N )〉 =

2ε

M

(

M + 1

2
ρ〈xl〉 −M〈x2l 〉

)

(1 ≤ l ≤ M).

(20b)

Treatment of the 2mTESMs (Equation 20) to demonstrate their
effectiveness appears in a later section.

2.4. Steady-State Solutions of GFE
If the GFE (Equation 11) can be solved, this would enable us
to obtain all the statistics of the catalytic reaction networks.
However, it is generally difficult to solve. Here, we focus on
the steady-state solutions of the GFE and consider the case that
the ε-term in the GFE can be ignored. Through the following
discussion, we see that the approximation is effective only if the
system is ergodic.

2.4.1. The Case of Non-catalytic Reactions Only
First, we consider the steady-state solutions of non-
catalytic reactions only as an introduction. The PGF φnc

∗ (z),
corresponding to the steady state in the case of non-catalytic
reactions only, should satisfy the following equation:

0 =
∑

i,j

(zi − zj)
∂

∂zj
φnc
∗ (z). (21)

By exchanging the subscripts i and j in the second term, one
obtains

0 =
∑

i,j

zi

(

∂φnc
∗

∂zj
−

∂φnc
∗

∂zi

)

. (22)

Because the coefficients of variables zi must be zero, φnc
∗ must

satisfy the following equations:

0 =
∑

j

(

∂φnc
∗

∂zj
−

∂φnc
∗

∂zi

)

(∀i), (23)

equivalently,

∂φnc
∗

∂zi
=

1

M

M
∑

j=1

∂φnc
∗

∂zj
(∀i). (24)

Equation (24) implies that all of ∂ziφ
nc
∗ (i = 1, · · · ,M) are equal

to each other, i.e.,

∂φnc
∗

∂zi
=

∂φnc
∗

∂zj
(1 ≤ i < j ≤ M). (25)

Considering that the PGF φnc
∗ (z) is an Nth order polynomial of

zi and must satisfy the condition φnc
∗ (1) = 1 by definition, the

following solution of Equation (25) can be found:

φnc
∗ (z) =

(

z1 + z2 + · · · + zM

M

)N

. (26)

Therefore, we obtain the following stationary distribution in the
case of non-catalytic reactions only:

Pnc∗ (n) =
1

MN

(

N

n1, n2, · · · , nM

)

(n ∈ W), (27)

where
( N
n1,n2,··· ,nM

)

: = N!
n1!n2!···nM ! are multinomial coefficients.

Furthermore, Equation (13) can also be used to derive the
marginal distribution of the i-th species:

pnci ∗(n) =

(

N

n

)

(

1
M

)n (
1− 1

M

)N−n
(0 ≤ n ≤ N), (28)

which is the binomial distribution with parameters N and 1/M.
If we suppose the ergodicity 〈ni〉 = ni, the following statistics

can be calculated from Equation (12):

xi =
ρ

M
(i = 1, · · · ,M), (29a)

xixj =
( ρ

M

)2
(

1−
1

N

)

(i 6= j), (29b)

Var[xi] =
( ρ

M

)2 M − 1

N
(i = 1, · · · ,M), (29c)

where Var[xi]: = x2i − xi
2 is the variance of the concentration

xi = ni/V .

2.4.2. The Case of Catalytic Reactions Only
Next, we consider the steady-state solutions of catalytic reactions
only, assuming that the ε-term in the GFE (Equation 11) can be
ignored. The steady-state solutions are assumed to have a form
similar to Equation (26), including undetermined coefficients (λi)
deriving from the network structure (Rijk).
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2.4.2.1. A condition for finding the steady state: λ-condition
The PGF φc

∗(z), corresponding to the steady state in the case of
catalytic reactions only, should satisfy the following equation;

0 =
∑

i,j,k

Rijk(zk − zi)zj
∂

∂zi

∂

∂zj
φc
∗(z). (30)

Construction of the steady-state solution requires us to find
a particular solution of Equation (30) as bases of linear
space consisting of N-th order polynomials. Accordingly, let
us assume the following extended form of Equation (26) by
introducing parameters {λi}

M
i=1, which eventually correspond to

the concentrations (per total density ρ) of each species in the
continuous limit N → ∞ as shown in Section 2.4.2.3:

φc
∗(z) = (λ1z1 + λ2z2 + · · · + λMzM)N , (31)

where

M
∑

i=1

λi = 1 (0 ≤ λ1, λ2 · · · , λM ≤ 1), (32)

because φ∗(1) = 1. Substituting Equation (31) into Equation (30)
and setting the coefficients of variables zizj as zero, gives the
following condition for {λiλj}:

M
∑

k=1

{

Rkijλkλi + Rkjiλkλj −
(

Rijk + Rjik
)

λiλj
}

= 0

(1 ≤ i < j ≤ M).
(33)

The λ-condition (Equation 33) represents M(M − 1)/2
homogeneous equations for λiλj; therefore, λi can be calculated
by combining the λ-condition (Equation 33) with Equation (32).
The λ-condition has trivial solutions:

(λ1, · · · , λi, · · · , λM) = (0, · · · , 0,1, 0, · · · , 0) ∃i ∈ [1,M].
(34)

These solutions represent the states for which the i-th species
take all molecules (the winner-takes-all state). On the other hand,
there is also a non-trivial solution. In the following paragraph,
we treat three-species systems (M = 3) to demonstrate that non-
trivial solutions do exist. The following procedures can easily be
extended to those for arbitraryM species systems.

2.4.2.2. Demonstration for non-trivial solutions of the

λ-condition
The λ-condition (Equation 33) can be rewritten in matrix form;
i.e., in the case ofM = 3 for example,





−R123 − R213 R312 R321
R213 −R132 − R312 R231
R123 R132 −R231 − R321









λ1λ2
λ1λ3
λ2λ3



 = 0.

(35)

The 3 × 3 matrix (A) on the left-hand side can be rewritten in
terms of its column vectors:

A =
[

−R123e1 − R213e2, R312e2 − R132e3, R321e1 + R231e3
]

,

(36)

where e1
T = (1, 0,−1), e2

T = (1,−1, 0), and e3
T = (0, 1,−1).

According to the determinant property, i.e., det [a, b, c] =

− det [b, a, c], one has

det(A) = 0. (37)

Therefore, the non-trivial solution of Equation (35), i.e., the
eigenvector corresponding to the eigenvalue 0 of the matrix A,
certainly exists and it has the following expression:





λ1λ2
λ1λ3
λ2λ3



 ∝





R312R231 + R321R132 + R312R321
R213R321 + R231R123 + R213R231
R123R312 + R132R213 + R123R132



 ≡





33

32

31



 .

(38)

The proportionality constant (> 0) can be determined by the
condition (Equation 32), and thus the desired non-trivial solution
of the λ-condition (Equation 33) forM = 3 is obtained:

λ1 =
3233

3132 + 3133 + 3233
, (39a)

λ2 =
3133

3132 + 3133 + 3233
, (39b)

λ3 =
3132

3132 + 3133 + 3233
. (39c)

Note that it is not guaranteed that the above solution always
represents a non-trivial solution of the λ-condition (Equation
33). For example, the case of 31 = 0 (where 32 and 33 are
not zero) implies the existence of a trivial solution (λ1, λ2, λ3) =
(1, 0, 0). In another example, the case of 31 = 32 = 0
implies that the denominator becomes zero; thus, the expression
becomes indefinite.

2.4.2.3. PGF without winner-takes-all states
We are interested in those states in which any species does not
take all molecules, because the actual simulations are performed
by using the initial states excluding the winner-takes-all states.
The PGF without the winner-takes-all states is represented by a
linear summation of winner-takes-all states zNi and Equation (31)
if the λ-condition has a non-trivial solution like Equation (39);

φc
∗(z) =

M
∑

i=1

biz
N
i + bM+1

(

M
∑

i=1

λizi

)N

, (40)

where b1 + · · · + bM+1 = 1. The take-all exclusion conditions are
that the coefficients of zNi are zero;

bi + bM+1λ
N
i = 0 (i = 1, 2, · · · ,M). (41)
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Therefore, we obtain the desired PGF without the winner-takes-
all states (PGFwoWTAS);

φc
∗(z) =

(

∑M
i=1 λizi

)N
−
∑M

i=1 (λizi)
N

1−
∑M

i=1 λNi

,

M
∑

i=1

λi = 1, 0 ≤ λi < 1, (42)

which immediately implies the following stationary distribution
in the case of catalytic reactions only;

Pc∗(n) =











(

N

n1, n2, · · · , nM

)
∏M

i=1 λ
ni
i

1−
∑M

i=1 λNi

(n ∈ W \ I),

0 (n ∈ I),

(43)

where
( N
n1,n2,··· ,nM

)

: = N!
n1!n2!···nM ! are multinomial coefficients.

Furthermore, we can calculate the marginal distribution of the
i-th species from Equation (13);

pci ∗(n) =































(1− λi)
N + λNi −

∑M
l=1 λN

l

1−
∑M

l=1 λN
l

(n = 0),

(

N

n

)

λni (1− λi)
N−n

1−
∑M

l=1 λN
l

(1 ≤ n ≤ N − 1),

0 (n = N)

(44)

If we suppose the ergodicity 〈ni〉 = ni, the time-averaged
concentrations can be derived from Equation (12);

xi =
λi − λNi

1−
∑M

i=1 λNi

ρ (i = 1, · · · ,M). (45a)

The above equations indicate that λi means the concentration
per total density ρ in the continuous limit N → ∞, that is,
λi should be the solution of the classical rate equation. We can

also calculate the second-order moments xixj and the variances

Var[xi]: = x2i − xi
2 from Equation (12);

xixj =
λiλj

1−
∑M

k=1 λN
k

(

1−
1

N

)

ρ2 (i 6= j). (45b)

Var[xi] =





λ2i − λNi − 1
N λi(λi − 1)

1−
∑M

i=1 λNi

−

(

λi − λNi

1−
∑M

i=1 λNi

)2


 ρ2

(i = 1, · · · ,M), (45c)

In the continuous limit N → ∞, the above Equations (45b) and
(45c) become λiλj and 0, respectively, that is, the concentrations
become mutually independent without fluctuating variables.

We compare our formulas with simulation results that are
obtained by applying the Gillespie algorithm (Gillespie, 1977) to
the following three-species system (Figure 1A) as an example:

R123 = R132 = R213 = R231 = R312 = 1, R321 = 0; ρ = 1,
(46)

which implies the following by Equation (39):

λ1 = 2/11, λ2 = 3/11, λ3 = 6/11. (47)

The marginal distributions are shown in Figure 2. Our
formula Equation (44) is entirely in agreement with the
simulation results. When the total number of molecules N is
large, the marginal distributions can be approximated by normal
distributions. Similarly, the formulas of the concentrations and
the variances, Equations (45a) and (45c), are completely in
agreement with the simulation results as shown in Figure 3. One
can see that the variances monotonically decrease as N becomes
larger.

Note that if the λ-condition (Equation 33) does not have a
non-trivial solution like Equation (39), the expression for the
PGF (Equation 42) cannot be applied. Such special cases are
treated in the following section.

2.4.2.4. Ergodicity as a sufficient condition for applying our

PGF
The PGFwoWTAS (Equation 42) would be applicable if the
catalytic reaction network was “entirely ergodic,” which means
the following in this paper (it is reminiscent of the ω-limit set):

ω(n0; ξ ) = W \ I (∀ξ ), (48)

FIGURE 1 | Examples of catalytic reaction networks consisting of 3 species. The rate constants are (A) R123 = 1, R132 = 1, R213 = 1, R231 = 1, R312 = 1,

R321 = 0, (B) R123 = 0, R132 = 0, R213 = 1, R231 = 1, R312 = 2, R321 = 1, and (C) R123 = 1997/3, R132 = 1000/3, R231 = 1, R321 = 1, R213 = 0, R312 = 0.
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FIGURE 2 | Marginal distributions of xi = ni/N (i = 1,2,3) in the three-species system of Figure 1A. The total number of molecules in each figure is (A)

N = 2, (B) N = 5, (C) N = 10, and (D) N = 50. Cross symbols (red, green, blue) represent the simulation results obtained numerically using the Gillespie

algorithm (Gillespie, 1977), which is performed under the following condition; the total number of reactions: 108, the number of reactions for transient exclusion: 107,

and the initial value (n1 (0), n2 (0), n3 (0)) is randomly selected from W \ I such that the average per one-species is N/M. Empty symbols (circle, triangle, square)

represent the theoretical expression Npc
i ∗
(Nx) [Equation (44)] for λ1 = 2/11, λ2 = 3/11, and λ3 = 6/11.

FIGURE 3 | N-dependence of (A) the time-averaged concentrations xi = ni/N and (B) the variances of concentrations Var[xi] = (n2
i

− n2
i
)/N2 in the

three-species system of Figure 1A. Empty symbols are numerically obtained using the Gillespie algorithm, where the time averages are performed over a long time

series ni (t) such that the total number of reactions reaches 108. The initial values are randomly selected from W \ I such that the average per one-species is N/M, and

the number of reactions for transient exclusion is 107. Lines in each figure represent the theoretical expressions, Equations (45a) and (45c), for λ1 = 2/11, λ2 = 3/11,

and λ3 = 6/11. One can see that the rank of concentrations is conserved but the rank of variances is exchanged between N = 2 and 4.

where

ω(n0; ξ ): =
⋂

t≥0

{

n(τ ; ξ ) : τ ≥ t
}

, (49)

and ξ represents one of the trials of the stochastic process n(t)
according to the catalytic reaction network.

We use a specific three-species system to intuitively illustrate
what Equation (48) means. In the case of the three-species

system of Figure 1A, the ergodic condition (Equation 48) can
be rewritten in terms of simplified conditions. As previously
described, the state space of catalytic reaction networks consists

of
(

(M
N

)

)

=
(M+N−1)!
(M−1)!N!

points. Therefore, in the case of M =

3 for example, there are (N + 2)!/(2N!) points. The state
space of the three-species system forms a regular triangle in
three-dimensional Euclidean space (see Figure 4A). The possible
motion from each state point is shown in Figure 4B, where
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FIGURE 4 | (A) State space of the three-species system of Figure 1A in the case of N = 10. Circles (red) represent the states that a single trajectory can visit, which

means that the system is “entirely ergodic.” (B) Motion of the state point when one reaction occurs in the three-species system of Figure 1A. There are 6 possible

directions in which to move from one state point. Each direction is randomly selected in proportion to the specified probability. In the case of Figure 1A, the state

point cannot move in the direction of R321 since R321 = 0. Note that the state point on the boundary (e.g., n1 = 0) cannot move parallel to the boundary (in this case,

the directions of R213 and R312).

there potentially exist six possible directions, but the network
structure forbids the direction of R321 in the case of the network
of Figure 1A. Note that the state point on the boundary cannot
move in a direction parallel to the boundary. In this case
obviously, a trajectory starting from an initial point n0 ∈ W \ I
visits every point in W \ I as shown by the circles in Figure 4A

(the set I is equivalent to the vertexes of a triangle). Therefore, as
seen in Figure 4B, the necessary and sufficient condition to hold
the ergodic condition (Equation 48) forM = 3 is:

∑

i,j

Rijk > 0 &
∑

i,j

Rkij > 0 (∀k), (50)

where the first condition represents that at least one direction
for moving away from the boundary nk = 0 is allowed, and
the second condition represents that at least one direction for
approaching the boundary nk = 0 is allowed. Note that the
condition (Equation 50) is no longer a sufficient condition
for entire ergodicity in the case of four-species systems. In
fact, in the following four-species system (Figure 5A), the
condition (Equation 50) does not imply entire ergodicity;

R132 > 0, R143 > 0, R231 > 0, R243 > 0, R314 > 0,

R413 > 0, (others 0). (51)

This four-species system obviously satisfies the
condition (Equation 50), but most initial states [in particular,
nk(0) > 0 (∀k)] eventually fall into any of 2-species
winners-take-all states, i.e., {n1 = n2 = 0, n3 + n4 = N}.

In the case of M-species systems, a necessary and sufficient
condition for entire ergodicity is difficult to derive, although
we may consider a sufficient condition instead. We discuss
the sufficient condition for entire ergodicity by introducing the
collection of all l-species winners-take-all states (l = 1, 2, · · · ,M):

I
(l)
M,N : =

⋃

1≤i1<···<il≤M

I
(l)
M,N(i1, i2, · · · , il), (52)

where

I
(l)
M,N(i1, i2, · · · , il) : = {n ∈ WM,N | ni1 + ni2 + · · · + nil = N

& nik > 0 (∀k)}. (53)

We omit the subscriptsM andN provided there is no concern for
confusion. The above collections are not empty sets if l ≤ N. Note
that I = I(1) and W =

⋃M
l=1 I

(l). One can see that the following
diagram holds if the catalytic network is fully connected [i.e.,
Rijk > 0 for all i, j, k (i 6= j 6= k 6= i)];

I(1) 6⇆ I(2) ⇆ I(3) ⇆ · · · ⇆ I(M−1) ⇆ I(M)

	 	 	 	
(54)

where each arrow represents the direction in which a state
point can move by one reaction. Each I(l)(i1, · · · , il) is a
(l − 1)-dimensional object in the whole (M − 1)-dimensional
state space W. For example, the state space of four-species
systems forms a regular tetrahedron WM = 4,N (see Figure 5B);
I(4)(1, 2, 3, 4) is the interior of the regular tetrahedron;
I(3)(1, 2, 3), I(3)(1, 2, 4), I(3)(1, 3, 4), and I(3)(2, 3, 4) are
regular triangles that form the boundaries of I(4); and
I(2)(1, 2), I(2)(1, 3), I(2)(1, 4), I(2)(2, 3), I(2)(2, 4), and I(2)(3, 4)
are line segments that form the boundaries of I(3). Note that
I(2)(i1, i2) → I(2)(j1, j2) for (i1, i2) 6= (j1, j2) is possible but
I(2)(i1, i2) → I(2)(i1, i2) is always impossible as seen from
Figure 5C. By considering the diagram (Equation 54) and
keeping in mind Figures 5B,C, we can expect the following
fact: if entire ergodicity holds in the restricted system on I(l) for
l ≥ 3, then entire ergodicity holds in the whole state space W. In
other words, in systems consisting of M-species, the sufficient
condition under which the ergodic condition (Equation 48)
holds can be geometrically described as follows: on each
I(l)(i1, · · · , il) for l ≥ 3, at least one direction for moving away
from each boundary I(l−1)(j1, · · · , jl−1) should be allowed,
and simultaneously at least one direction for approaching each
boundary I(l−1)(j1, · · · , jl−1) should also be allowed, where
{j1, · · · , jl−1} ⊂ {i1, · · · , il}.
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FIGURE 5 | (A) Example of non-ergodic catalytic networks consisting of four species; the rate constants are R132 > 0, R143 > 0, R231 > 0, R243 > 0,R314 > 0,

R413 > 0, and others 0. (B) State space of four-species systems in the case of N = 4. Red circles represent the states a single trajectory can visit in the case that the

system is entirely ergodic. Blue circles represent winner-takes-all states, i.e., nk = 4 (∃k). (C) Motion of the state point when one reaction occurs in four-species

systems (viewed from the top of B). Red and blue arrows represent upward and downward arrows, respectively. There are 12 possible directions in which to move

from one state point. Each direction is randomly selected in proportion to the specified probability. Note that the state point on each I(2) (i1, i2 ) cannot move parallel to

itself (e.g., on I(2) (1, 2), the directions of R231,R241 as well as R132,R142 are not allowed).

2.4.3. The Case of Catalytic-Noncatalytic Mixed

Reactions
We could not obtain the steady-state solution of the general
GFE (Equation 11) in the case of catalytic-noncatalytic mixed
reactions (ε > 0), but we expect our PGF (Equation 42) to
be a good approximation for mixed-reaction systems if ε is
sufficiently small (ε ≪ min{Rijk > 0}). More specifically, we
expect the PGF (Equation 42) to be robust against non-catalytic
reactions if the catalytic reaction system constituting the mixed
reaction system has an ergodic component spread across the
entire state space (entire ergodicity). Otherwise, if the catalytic
reaction system has several ergodic components in the entire
state space, the non-catalytic reactions may imply that a certain
highly stable ergodic component attracts all possible trajectories,
which obviously means that our PGF is not applicable to such
a mixed reaction system. Although we were unable to prove
this mathematically, we used numerical simulations to determine
whether our PGF is a good approximation in the case of “entirely
ergodic.”

Figure 6 represents the non-catalytic reaction rate constant ε

dependencies of time-averaged concentrations xi for the three-
species system of Figures 1A,B. (As shown later, the system
shown in Figure 1B is not entirely ergodic, which is the reason
why the systems shown in Figures 1A,B are compared here.)
It can be seen that the differences of xi in Figure 6A between
ε = 0 and ε = 0.1 are smaller than those in Figure 6B. We
consider the robustness in the case of Figure 6A to originate

from the entire ergodicity of Figure 1A, which means that the
ergodic component spreads on the entire state space except for
winner-takes-all states (see Figure 4A).

3. APPLICATIONS

The starting point of our analysis is the GFE (Equation 11),
from which several useful formulas are derived, namely the
PRE (Equation 15), SME (Equation 18), TESMs (Equation
19) and (Equation 20), the λ-condition (Equation 33), and
the PGFwoWTAS (Equation 42). In this section, we reveal
the effectiveness of these formulas by showing important
applications for several catalytic reaction networks.

3.1. Rank Conservation Law for
Concentrations
We show that the rank of concentrations is conserved even if the
total number of molecules changes in catalytic reaction networks
(excluding non-catalytic and auto-catalytic reactions).

Suppose the concentration of the ith-species is expressed by
Equation (45a) in the state corresponding to the PGFwoWTAS.
When determining the rank conservation, it suffices to confirm
that the relation between the amount of two arbitrary species is
unchanged if the total number of molecules is changed. Let λ1,
λ2 be the concentrations per total density in the continuous limit
such that λ1 < λ2. Because

∑M
i=1 λi = 1, the inequality λ1+λ2 <
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FIGURE 6 | ε-dependence of the time-averaged concentrations xi (N = 10, ρ = 1) in the case of (A) the three-species system of Figure 1A with

non-catalytic reactions and (B) that of Figure 1B with non-catalytic reactions. Points in the figures are numerically obtained using the Gillespie algorithm in the

same way as Figure 3. The catalytic reaction network of Figure 1A is entirely ergodic; thus, the non-catalytic reactions may be treated as perturbation. On the other

hand, that of Figure 1B is non-ergodic; thus, the non-catalytic reactions introduce relatively large differences compared with the case of ε = 0.

FIGURE 7 | N-dependence of (A) the time-averaged concentrations xi = ni/N and (B) the variances of concentrations Var[xi] = (n2
i

− n2
i
)/N2 in the

three-species system of Figure 1C. Empty symbols are numerically obtained using the Gillespie algorithm in the same way as Figure 3. Lines in each figure

represent the theoretical expressions, Equations (45a) and (45c), for λ1 = 1/1000, λ2 = 1/3, and λ3 = 1997/3000. It is clear that the rank of time-averaged

concentrations is conserved.

1 must be satisfied. Therefore, the following evaluation holds:

x2 − x1 =
(λ2 − λN2 )− (λ1 − λN1 )

1−
∑M

i=1 λNi

ρ

=
(λ2 − λ1)ρ

1−
∑M

i=1 λNi

[

1− (λ2 + λ1)
N−1

+

N−2
∑

k=1

{(

N − 1

k

)

− 1

}

λN−1−k
2 λk1

]

> 0 (∀N ∈ N≥2). (55)

This is the rank conservation law of concentrations.
Note that the rank of the variances of concentrations is

generally not conserved when the total number of molecules
changes. For example, let us consider the following three-species
system (Figure 1C);

R123 = 1997/3, R132 = 1000/3, R231 = R321 = 1,

R213 = R312 = 0; ρ = 1. (56)

As shown in Figure 7, this system depends on the
total number of molecules for the time-averaged
concentrations xi and the variances of concentrations
Var[xi], represented by Equations (45a) and (45c) with
λ1 = 1/1000, λ2 = 1/3, and λ3 = 1997/3000. The
rank of time-averaged concentrations is always conserved,
but the rank of variances is exchanged at certain N (see
Figure 8).

3.2. A Special Case: The Connecting State
to the Winner-Takes-All State
There exists anN-molecular state, which connects to the winner-
takes-all state in the continuous limit N → ∞. As is later shown,
such a special case is not the “weakly reversible” case (Anderson
et al., 2010).

We show this by taking the following limit in the
PGFwoWTAS (Equation 42):

λ1 −→ 1, λ2, · · · , λM −→ 0, (57)
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FIGURE 8 | N-dependence of (A) the rank of time-averaged concentrations and (B) the rank of its variances in the three-species system of Figure 1C.

The ranks (lines) in the figures are depicted using the formulas (Equations 45a and 45c). Clearly, the rank of concentrations is conserved, although the rank of

variances is exchanged between N = 2 and 3, and also N = 6 and 7.

where we suppose the following constraints are always satisfied:

λi

λ2 + λ3 + · · · + λM
= κi (i = 2, 3, · · · ,M), (58)

where {κi} are positive constants, which are determined from
the network structure {Rijk} (it is explained later). Evidently, the
following holds;

M
∑

i=2

κi = 1. (59)

The PGFwoWTAS (Equation 42) has the following limiting
expression:

φc
∗(z) =

(

λ1
1−λ1

z1 +
∑M

i=2 κizi

)N
−
(

λ1
1−λ1

z1

)N
−
∑M

i=2 (κizi)
N

(

1
1−λ1

)N
−
(

λ1
1−λ1

)N
−
∑M

i=2 κN
i

,

−−−→
λ1→1

zN−1
1 (κ2z2 + · · · + κMzM) ≡ φcs

∗ (z). (60)

The state corresponding to the PGF (Equation 60) is the
connecting state to the winner-takes-all state (CStoWTAS).
The stationary distribution corresponding to the CStoWTAS is
immediately obtained:

Pcs∗ (n) =

{

κi (n ∈ J),

0 (n ∈ W \ J),
(61)

where JM,N (abbr. J) is defined as

J = {n ∈ WM,N | n1 = N − 1 & ∃i ∈ [2,M] s.t. ni = 1}. (62)

Furthermore, the marginal distributions of the i-th species can be
derived by Equation (13):

pcsi ∗(n) =

{

δn,N−1 for i = 1,

(1− κi)δn,0 + κiδn,1 for i = 2, · · · ,M,

(0 ≤ n ≤ N), (63)

where δij is the Kronecker delta, δij = 0 (if i 6= j) or 1 (if i = j).
The time-averaged concentrations calculated by Equation (12)
are

x1 =

(

1−
1

N

)

ρ, (64a)

xi =
κi

N
ρ (i = 2, · · · ,M), (64b)

and the variances of the time-averaged concentrations calculated
by Equation (12) are

Var[x1] = 0, (65a)

Var[xi] =
κi(1− κi)

N2
ρ2 (i = 2, · · · ,M). (65b)

Next, we derive the relation between the positive constants {κi}
and the network structure {Rijk}. The λ-condition (Equation
33) can be converged to conditions for {κi} (the κ-condition)
by taking the limit λ1 → 1 as follows. Divide the λ-
condition (Equation 33) into two groups, of which one group is
the case of 2 ≤ i < j ≤ M,

R1ijλ1κi + R1jiλ1κj −
(

Rij1 + Rji1
)

κiκj(1− λ1)

+ (1− λ1)

M
∑

k=2

{

Rkijκkκi + Rkjiκkκj −
(

Rijk + Rjik
)

κiκj
}

= 0,

(66a)

and the other group is the case of i = 1, 2 ≤ j ≤ M,

M
∑

k=2

{

Rk1jκkλ1 + Rkj1κkκj(1− λ1)−
(

R1jk + Rj1k
)

λ1κj
}

= 0,

(66b)

where we substituted λi = κi(1−λ1), i ≥ 2 and divided by 1−λ1.
Then, taking the limit λ1 → 1 in Equation (66a),

κiR1ij + κjR1ji = 0 i.e., R1ij = 0 (∀i, j), (67a)

Frontiers in Physiology | www.frontiersin.org 12 March 2016 | Volume 7 | Article 89

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Nakagawa and Togashi Analytical Framework for Catalytic Networks

and taking that in Equation (66b),

M
∑

k=2

(

κkRk1j − κjRj1k
)

= 0 (2 ≤ j ≤ M). (67b)

The condition (Equation 67a) expresses that the 1st-species
cannot be a substrate, and the condition (Equation 67b)
represents the desired κ-condition. Note that the CStoWTAS
must be a limiting state corresponding to the PGFwoWTAS [see
Equation (60)]. Therefore, the network structure {Rijk}must have
definite {λi}.

For example, let us consider the following three-species
system (Figure 1B):

R123 = R132 = 0,R213 = R231 = R321 = 1,R312 = 2; ρ = 1,
(68)

which implies κ2 = 2/3 and κ3 = 1/3. Obviously, this system is
not weakly reversible, which means that the theorems (Theorem
4.1 and 4.2) in the previous study (Anderson et al., 2010) cannot
be applied. This system should have a CStoWTAS because λ1,
λ2, and λ3 are definite from Equation (39) with 31 = 0,
32 = 2, and 33 = 4. As shown in Figure 9, this system
certainly has the time-averaged concentrations xi represented
by Equation (64) and the variances Var[xi] represented by
Equation (65). In this case also, the rank conservation law of
concentrations holds.

3.3. M-Species 2-Molecules Systems with
Non-catalytic Reactions
The 2mTESM (Equation 20) becomes the closed equation of the
second-order moments 〈xlxm〉 if the first-order moments 〈xi〉
are substituted by the second-order moments according to the
PRE (Equation 15). In this subsection, we consider catalytic-non-
catalytic mixed reaction systems of M species, consisting of only
2 molecules in total.

We first focus on the second formula in the
2mTESMs (Equation 20). It can be seen that each variance

of time-averaged concentration Var[xi] = x2i − xi
2 in the steady

state depends solely on its concentration:

Var[xi] =

(

M + 1

2M
ρ − xi

)

xi, (69)

where we supposed the ergodicity 〈xi〉 = xi. The above equation
expresses that the fluctuation of the concentration xi becomes
larger as its time-averaged concentration approaches

x =
M + 1

4M
ρ, (70)

at which the fluctuation takes the largest value
(

M+1
4M ρ

)2
.

Furthermore, the time-averaged concentrations potentially have
the maximum value because the variance must be positive;

xi ≤
M + 1

2M
ρ (∀i ∈ [1,M]). (71)

Next, we focus on the first formula in the 2mTESMs (Equation
20). Let us consider the steady state of Equation (20a) and
suppose the ergodicity 〈xi〉 = xi. Eliminating the first-order
moments in Equation (20a) by using the SME (Equation 18) gives
the determination equation of second-order moments in the 2
molecules system (2mDESM);

4ε

ρ
xlxm +

∑

i

{(Rlmi + Rmli) xlxm − Rilmxixl − Rimlxixm}

−
1

M

∑

ij

{(

Rjil + Rjim
)

xixj − Rlijxixl − Rmijxixm
}

=
2ρε

M2
(1 ≤ l < m ≤ M). (72)

The above 2mDESM can be rewritten in theM(M−1)/2×M(M−

1)/2 matrix form. We demonstrate the procedure for processing

FIGURE 9 | N-dependence of (A) time-averaged concentrations xi = ni/N and (B) the variances of concentrations Var[xi] = (n2
i

− n2
i
)/N2 in the

three-species system of Figure 1B. Empty symbols were numerically obtained using the Gillespie algorithm in the same way as Figure 3. Lines in each figure

represent the theoretical expressions, Equations (64) and (65), for κ2 = 2/3 and κ3 = 1/3.
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FIGURE 10 | ε-dependence of (A) the second-order moments xixj = ninj/N
2 and (B) the time-averaged concentrations xi = ni/N in the three-species

system of Figure 1A with non-catalytic reactions (N = 2, ρ = 1). Empty symbols are numerically obtained using the Gillespie algorithm in the same way as

Figure 3. Lines in each figure represent the theoretical expressions, Equations (74) and (75). Note that there exist differences between the limit ε → 0 and the case

ε = 0 for the second-order moments (solid black points) because the SME (Equation 18) breaks down at ε = 0. The solid black points are calculated from

Equation (45b) as λ1 = 2/11, λ2 = 3/11, λ3 = 6/11, N = 2, and ρ = 1.

the 2mDESM by considering the case ofM = 3. In this case, the
2mDESM (Equation 72) has a matrix of the following form:







4
3 (R123 + R213)+

4ε
ρ

− 4
3R312 − 4

3R321

− 4
3R213

4
3 (R132 + R312)+

4ε
ρ

− 4
3R231

− 4
3R123 − 4

3R132
4
3 (R231 + R321)+

4ε
ρ











x1x2
x1x3
x2x3



 =
2ρε

9





1
1
1



 .

(73)

Moreover, we consider the specific three-species system of
Figure 1A (ρ = 1) including non-catalytic reactions. Solving
Equation (73) as ε > 0 and ρ = 1 in the case of Figure 1A,
then





x1x2
x1x3
x2x3



 =







1+3ε
18(2+3ε)

1
18
1+ε

6(2+3ε)






, (74)

which is consistent with the result obtained when solving the
CME (Equation 7) directly [recall 〈x1x2〉 = 1

4P(n1 = 1, n2 =

1, n3 = 0), 〈x1x3〉 = · · · and so on]. By the SME (Equation 18),
the concentrations become

x1 =
1+ 2ε

2(2+ 3ε)
, x2 =

1

3
, x3 =

5+ 6ε

6(2+ 3ε)
. (75)

Figure 10 shows the second-order moments xixj and the time-
averaged concentrations xi as functions of ε. Note that in the case
of ε = 0 (catalytic reactions only), we need to derive the second-
order moments xixj from Equation (45b) corresponding to λ1 =

2/11, λ2 = 3/11, and λ3 = 6/11. The non-catalytic reaction
rate constant ε seems to be a singular perturbation against the
second-order moments (not the concentrations).

FIGURE 11 | (A) Autocatalytic reactions constituting the 2TK model and (B)

five-component non-autocatalytic reactions duplicating the behavior of the

2TK model; R142 = R153 = R231 = R254 = R351 = R452 = 1 (others 0). If one

regards the species 1, 3, and half of 5 as the species A (similarly, 2, 4, and half

5 as B), the behavior of nA = n1 + n3 + n5/2 and nB = n2 + n4 + n5/2 is

similar to that of the 2TK model.

3.4. Non-autocatalyzation of Autocatalytic
Reaction Networks
The framework we developed in this paper applies to non-
autocatalytic reaction networks. However, our frameworkmay be
applicable to autocatalytic reaction networks if it were possible
to convert autocatalytic to non-autocatalytic networks. Here, we
show several examples of such conversions using a minimal
autocatalytic reaction network “2TK model” (Ohkubo et al.,
2008; Saito and Kaneko, 2015), which is a well-studied model in
the context of discreteness-induced phenomena.

The 2TKmodel consists of only two species, and includes both
autocatalytic reactions (rate const. r) and non-catalytic reactions
(rate const. ε ≪ r) (see Figure 11A);

A
B
⇄
A

B (autocat. react.), (76)

A ⇄ B (non-cat. react.). (77)

If we suppose that each of the species A and B consists of two
further species, we can convert autocatalytic reactions Equation
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(76) of the 2TK model to non-autocatalytic reactions as shown
in Figure 11B. The catalysis of the species 5 between the species
1 and 3 (or, 2 and 4) is to establish an equilibrium between
the concentrations of the species 1 and 3 (or, 2 and 4), that
would make it possible to regard these as one species. The non-
autocatalytic reactions of Figure 11B plus non-catalytic reactions

i
Prob. 1/5
−−−−−→ j is the desired five-component model, of which the

CME is simply described by Equation (7) with

R142 = R153 = R231 = R254 = R351 = R452 = 1 (others 0).
(78)

As shown in Figure 12, the behavior of the variables nA = n1 +
n3+n5/2 and nB = n2+n4+n5/2 in the five-component model
is similar to that of the 2TK model (compare with Figures 1A,B
in Saito and Kaneko, 2015). The λ-condition (Equation 33) of
catalytic reactions in the five-component model can be written
in matrix form,

































0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 1 0
0 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 1 0 0 −1

































































λ1λ2
λ1λ3
λ1λ4
λ1λ5
λ2λ3
λ2λ4
λ2λ5
λ3λ4
λ3λ5
λ4λ5

































= 0, (79)

in which there exist six non-trivial eigenvectors corresponding to
the 0-eigenvalue; hence, the general eigenvector corresponding to
the 0-eigenvalue can be expressed as a linear summation of those

six non-trivial eigenvectors:

































λ1λ2
λ1λ3
λ1λ4
λ1λ5
λ2λ3
λ2λ4
λ2λ5
λ3λ4
λ3λ5
λ4λ5

































= c1

































1

0

0

0

0

0

0

0

0

0

































+ c2
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1

0

0

0

0

0
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1

0
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+ c4
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0

1
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0

0
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+ c6

































0

0

0

0

0

0

1

0

0

1

































.

(80)

The above equation can be used to derive six types of non-trivial
solutions (λ1, λ2, · · · , λ5), which immediately correspond to the
stationary states of catalytic reactions in the five-component
model by using Equation (43):

(λ1, λ2, λ3, λ4, λ5) =







































(i) (0, c, 0, c, 1− 2c),

(ii) (c, 0, c, 0, 1− 2c),

(iii) (2c, 1− 2c, 0, 0, 0),

(iv) (2c, 0, 1− 2c, 0, 0),

(v) (0, 2c, 0, 1− 2c, 0),

(vi) (0, 0, 2c, 1− 2c, 0),

∀c ∈ (0, 1/2),

(81)

where each case (i-vi) corresponds to (i) c3 = c2, c6 = c(1 −

2c) (others 0), (ii) c2 = c2, c5 = c(1 − 2c) (others 0), (iii)
c1 = 2c(1 − 2c) (others 0), (iv) c2 = 2c(1 − 2c) (others 0),
(v) c3 = 2c(1 − 2c) (others 0), and (vi) c4 = 2c(1 − 2c)
(others 0). The switching behavior of the five-component model
may be explained in terms of transition processes between the
above six types of steady states and the five trivial steady states
λi = 1 (others 0) of catalytic reactions in the five-component
model, which are sometimes caused by non-catalytic reactions.

FIGURE 12 | Behavior of the five-component model [Figure 11B plus non-catalytic reactions (ε = 0.01, ρ = 1)]. The behavior of the five-component model is

reminiscent of the behavior of the 2TK model (compare with Figures 1A,B in Saito and Kaneko, 2015). (A) Time series of the total concentration of the species 1, 3,

and half of 5 for N = 20 (red line) and N = 2000 (green line). (B) Stationary distributions of (n1 + n3 + n5/2)/N, obtained numerically from a long time series ni (t) using

the Gillespie algorithm whose simulation conditions are the total number of reactions: 108, the number of reactions for transient exclusion: 107, and the initial value is

randomly selected from W \ I such that the average per one-species is N/M. The unimodal distribution (blue), the flat distribution (green), and the bimodal distribution

(red) indicate the stationary distribution for N = 500, 40, and 20, respectively.
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Furthermore, the marginal distribution of the species A, pA(n),
can be derived by calculating the convolution of the marginal
distributions p1(n), p3(n), and p5(n), if p1(n), p3(n), and p5(n)
were obtained for the case including non-catalytic reactions.

Other non-autocatalytic reaction networks duplicating the
2TK model are shown in Figure 13A, and consist of 4
components only. Although readers would think that the
four-component models do not function properly because the
transitions between the species group (1, 3) [or (2, 4)] depend
on the other species group (2, 4) [or (1, 3)], the four-component
models actually generate much the same behavior with the 2TK
model (see Figure 14). The switching behavior of the four-
component model may also be explained as a transition process
between the following three types of steady states

(λ1, λ2, λ3, λ4) =











(0, 0, c, 1− c),

(0, c, 0, 1− c),

(c, 0, 1− c, 0),

∀c ∈ (0, 1), (82)

and the four trivial steady states λi = 1 (others 0) of
catalytic reactions in the four-component model, which are
sometimes caused by non-catalytic reactions. We also confirmed

FIGURE 13 | Four-component non-autocatalytic reactions duplicating

behaviors of the 2TK model; (A) R123 = R142 = R214 = R231 = R321 =

R412 = 1 (others 0), and (B) R142 = R143 = R231 = R234 = R341 =

R432 = 1 (others 0). If one regards the species 1 and 3 as the species A

(similarly, 2 and 4 as B), the behavior of nA = n1 + n3 and nB = n2 + n4 is

almost equivalent to that of the 2TK model.

that the results are not changed even in the other four-
component model of Figure 13B, of which the catalysis role
of each the species 1 and 2 is exchanged by that of 3 and 4,
respectively.

4. SUMMARY AND DISCUSSIONS

The framework we presented in this paper facilitates the
prediction of the effect of the small-number issue on the
concentration of each species in catalytic reaction networks.
This can be described in an extreme manner by comparing
the concentrations between the continuous limit (N → ∞)
and the case of 2 molecules (N = 2). If the reaction network
does not include non-catalytic reactions (or, includes negligible
non-catalytic reactions), we can use the formula (Equation
45a) to compare them. On the other hand, if the reaction
network includes (non-negligible) non-catalytic reactions, we
need to apply the formula, 2mDESM (Equation 72), with the
SME (Equation 18) to obtain the concentrations in the case
of 2 molecules. Although our theory has a presupposition
referred to as entire ergodicity, the presupposition is intuitively
verifiable if the system is specified, as in Section 2.4.2.4.
We also demonstrated three examples for non-autocatalyzation
conversions of autocatalytic reaction networks in Section 3.4. We
consider this type of conversion to be generalized relatively
easily such that our analytical framework can be applied to
more general catalytic reaction networks including autocatalytic
reactions.

One might think that the analysis presented in this paper can
be straightforwardly extended to the case including autocatalytic
reactions [in fact, the CME (Equation 7) and GFE (Equation
11) themselves hold even in the case including autocatalytic
reactions]. However, if autocatalytic reactions are included (i.e.,
the case Rikk > 0 is allowed), we cannot consider catalytic
reactions and non-catalytic reactions to be completely separate.
The reason is that, in the case including autocatalytic reactions,

FIGURE 14 | Behavior of the four-component model [Figure 13A plus non-catalytic reactions (ε = 0.01, ρ = 1)]. The four-component model reproduces the

behavior of the 2TK model (compare with Figures 1A,B in Saito and Kaneko, 2015). (A) Time series of the total concentration of the species 1 and 3 for N = 20 (red

line) and N = 2000 (green line). (B) Stationary distributions of (n1 + n3 )/N, obtained numerically from a long time series ni (t) using the Gillespie algorithm in the same

way as Figure 12. The unimodal distribution (blue), the uniform distribution (green), and the bimodal distribution (red) indicate the stationary distribution for N = 500,

40, and 20, respectively.
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the absence of non-catalytic reactions generally implies winner-
takes-all steady states. Generally, solving the CME (or GFE) of
catalytic-noncatalytic mixed reactions systems is more advanced
and a more difficult task than that of catalytic reactions only. The
proposed strategy, i.e., non-autocatalyzation conversions, is one
of our ideas to address the problem.

The formulas obtained in the present work are specific and
satisfactorily simple. Therefore, our theory has the capabilities
to be developed into a general theory for catalytic reaction
networks. On the other hand, there exists a mathematical
theory for a certain class of catalytic reaction networks that
are “weakly reversible” and “deficiency zero” (Anderson et al.,
2010). Our formulas (Equations 27 and 43) are consistent with
the main theorems (theorem 4.1 and 4.2 in Anderson et al.,
2010) in the above-mentioned mathematical theory. One of the
advantages of our theory compared to the above mathematical
theory is understandably the probability generating function
(PGF) approach, because the PGF is a major analytical tool
for physicists, chemists, and mathematical biologists. Therefore,
our theory is easily verifiable, and one can design a computer
algorithm to calculate our analytical formulas. We also showed
the extensibility of our theory by using applications (in Section 3),
especially because of the CStoWTAS (Equation 61), which was
not suggested by the above mathematical theory.

Actual biochemical pathways in the cell involve thousands
of chemical species, and their chemical properties vary. Our
theoretical framework is general and extensible to such complex
reaction networks, if they can be represented by CMEs such
as Equation (7). As our current model consists of simple two-
body catalytic reactions, it is difficult to point out examples
in actual biological systems that correspond exactly to our
model. Biochemical reactions in reality may involve a number
of intermediates. There are also autocatalytic processes such as
autophosphorylation, and replication of templates such as DNA,
in which the catalyst or template species is also a substrate or
a product. Our framework is applicable to many such cases
involving network conversion, as shown for simple autocatalytic
cases.

Nevertheless, the reaction kinetics of each enzyme is not
always simple. Enzymes are complex macromolecules and their
reaction cycles may depend on their conformational states.
Therefore, the prediction of biological phenomena caused by
small-number effects in real biochemical reactions, would entail
further analytical challenges for catalytic reaction networks
including arbitrary higher-order mixed reactions (rather than
first- and second-order reactions only) or internal dynamics
of the enzymes (as modeled and analyzed in Togashi and
Casagrande, 2015) as important issues.

Throughout this work, our primary intention is to approach
small-number issues in biological systems. One might
wonder how general these small-number issues appear, and
how important they are, in living cells. Recently, absolute
quantification of various proteins and mRNAs in the cell has
become possible, and the integration of experimental results
(e.g., the construction of a database Milo et al., 2010) is also
underway. Taniguchi et al. investigated the copy number
distribution for more than a thousand protein species in

bacteria (Taniguchi et al., 2010). Li et al. further discussed
the relationship between the copy number and synthesis rate,
and also the role, of proteins (Li et al., 2014). According to
the result, some transcription factors, particularly activators,
are rare, of the order of 0.1 to 10 molecules per genome
equivalent. Although stochastic gene expression has been
intensively discussed for years (McAdams and Arkin, 1997;
Thattai and van Oudenaarden, 2001; Elowitz et al., 2002; Raj
and van Oudenaarden, 2008; Shahrezaei and Swain, 2008),
the discrete small-number nature of transcription factors
has often been ignored; hence, the finding may urge us to
reconsider the issue. Synthetic approaches are also becoming
popular to confirm small-number effects. Ma et al. reported
that an additional stable state in a genetic bistable toggle switch
attributable to the small-number effect, which was predicted
by stochastic simulations, was indeed observed in bacteria
containing the genetically engineered switch (Ma et al., 2012).
These results suggest that such rare proteins, of the order of one
molecule per cell, are common and affect regulatory function in
bacteria.

Although eukaryotic cells are much larger than bacteria, they
have complex membrane structures and cytoskeletons inside,
and the small-number issues can be particularly significant in
compartments or bottlenecks (e.g., if we consider the volume of
a synaptic vesicle represented by a sphere 40 nm in diameter,
then 1 molecule corresponds to ca. 50 µmol/L). Rare proteins
are also involved in physiologically important signaling pathways
in eukaryotes. In the Wnt signaling pathway, for example, the
concentration of axin is reported to be 20 pmol/L in Xenopus
eggs (Lee et al., 2003) (though suggested to be higher in
mammalian cells Tan et al., 2012). Another example is the
MAP-kinase cascade, where proteins of the order of merely
102 molecules (e.g., Ste5) exist in a yeast cell (Thomson
et al., 2011). For scaffold proteins such as axin and Ste5,
specifically, localization (locally high concentrations) of other
chemical species around the scaffold may drastically change the
reaction behavior, as spatial discreteness of the scaffolds becomes
significant (Shnerb et al., 2000; Togashi and Kaneko, 2004).
Further studies in which spatial structures (cf. reaction-diffusion
equations) are considered are also expected to be important.

In the presented framework, we mainly focused on the
steady-state solutions of GFE. Of course, temporal courses are
biologically crucial in some cases. A well-studied example is
oscillatory behavior in circadian clocks (Bell-Pedersen et al.,
2005). In such oscillations, if a chemical factor is depleted
down to a small number in a certain phase, then, the
period can be susceptible to stochastic reactions involving
the factor in that phase; on the other hand, sequestration of
a factor may contribute to regular oscillations (Jolley et al.,
2012). Again, the internal dynamics of enzymes can also be
relevant in some systems. Although stochastic simulations are
indeed powerful and many attempts are currently underway,
further theoretical understanding as well as the experimental
quantitative observation of rare factors would be required.

Note that a chemical “species” here can also be interpreted
as a specific state of a molecule; e.g., we can consider proteins
or genes, with and without modification, as separate species.
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Moreover, a similar interpretation is also applicable to ecology
and ethology (Biancalani et al., 2014), if the laws governing
the system are analogous to reactions. We remain hopeful
that theoretical frameworks including ours will facilitate the
exploration of small-number issues at equally higher levels of
biological systems in future.
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