
An Analytical Inductive Functional Programming
System that Avoids Unintended Programs ∗

Susumu Katayama
University of Miyazaki

skata@cs.miyazaki-u.ac.jp

Abstract
Inductive functional programming (IFP) is a research field extend-
ing from software science to artificial intelligence that deals with
functional program synthesis based on generalization from am-
biguous specifications, usually given as input-output example pairs.
Currently, the approaches to IFP can be categorized into two gen-
eral groups: the analytical approach that is based on analysis of the
input-output example pairs, and the generate-and-test approach that
is based on generation and testing of many candidate programs.
The analytical approach shows greater promise for application to
greater problems because the search space is restricted by the given
example set, but it requires much more examples written in order
to yield results that reflect the user’s intention, which is bother-
some and causes the algorithm to slow down. On the other hand,
the generate-and-test approach does not require long description of
input-output examples, but does not restrict the search space using
the example set. This paper proposes a new approach taking the
best of the two, called “analytically-generate-and-test approach”,
which is based on analytical generation and testing of many pro-
gram candidates. For generating many candidate programs, the pro-
posed system uses a new variant of IGOR II, the exemplary analyt-
ical inductive functional programming algorithm. This new system
preserves the efficiency features of analytical approaches, while
minimizing the possibility of generating unintended programs even
when using fewer input-output examples.

Categories and Subject Descriptors I.2.2 [ARTIFICIAL INTEL-
LIGENCE]: Automatic Programming; D.1.1 [PROGRAMMING
TECHNIQUES]: Applicative (Functional) Programming

General Terms Algorithms

1. Introduction
Inductive functional programming (IFP) algorithms automatically
generate functional programs from ambiguous specifications such
as a set of input-output (I/O) example pairs or a loose condition
to be satisfied by inputs and outputs. The term can include cases
where no recursion is involved, as in genetic programming, but it
usually involves generation of recursive functional programs.

∗ This paper extends the short unreviewed versions [14][13]

Copyright c© ACM, 2012. This is the author’s version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the ACM SIGPLAN 2012 Workshop on Partial
Evaluation and Program Manipulation, Philadelphia, Pennsylvania, USA, January 23-
24, 2012, http://doi.acm.org/10.1145/2103746.2103758.
PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

Currently, two approaches to IFP are under active development.
One is the analytical approach that performs pattern matching to the
given I/O example pairs (e.g., the IGOR II system [15][8]), and the
other is the generate-and-test approach that generates many pro-
grams and selects those that satisfy the given condition (e.g., the
MAGICHASKELLER system [10] and the ADATE system [18]).
Analytical methods can use the information of I/O examples for
limiting the size of the search space for efficiency purposes, but
they have limitations on how to provide I/O example pairs as the
specification, i.e., beginning with the simplest input(s) and progres-
sively increasing their complexity. They often require many lines
of examples because an example for more or less complex inputs
is indispensable for specifying their users’ intention correctly. This
requirement not only makes the algorithm less attractive especially
for synthesis of small programs by lowering its usability, but also
causes the algorithm to slow down. On the other hand, generate-
and-test methods do not usually have limitations on the specifi-
cation to be given (except, of course, that it must be written in a
machine-executable form1), but there are some cases where analyt-
ical systems outperform generate-and-test systems, as we shall see
in Section 4.2.

This paper proposes yet another approach, named analytically-
generate-and-test approach, which can use the I/O examples for
guiding search but still does not require many examples for speci-
fying users’ intentions correctly. The idea is to break the set of I/O
examples into a small set for guiding search and another small set
for specifying the users’ intentions, and to use the former for an-
alytically generating a prioritized infinite stream of programs, and
then to use the latter for filtering those that reflects the users’ inten-
tion (Figure 1). Because the latter set is separate from the former,
complex examples can be included in the latter set without increas-
ing the size of the former set.

Why filtration by a complex example is effective for reflecting
the users’ intention is amplified by considering the example of
synthesizing the reverse function, assuming it is not known how to
implement it. IGOR II requires the trace (or the set of all I/O pairs
that appear during computation) of the biggest example as the set
of examples, as in Table 1.2 In this case, the first four lines are the
computational traces of the last line and, hence, cannot be omitted.
In general, it is tedious to write down all the required elements in
order to generate a desired program, or a program with the intended

1 Some readers may think that termination within a realistic time span is
another limitation on the specification. Termination of the specification
does not mean termination of the test process within a realistic time span,
because the latter involves execution of machine-generated programs which
may request arbitrary computation time. For this reason, time-out is almost
indispensable for systems like MAGICHASKELLER, and in this case there
is no such limitation on the specification.
2 Throughout this paper, HASKELL’s notation is used for expressions.

Figure 1. The structure of the proposed system.

reverse [] = []
reverse [a] = [a]
reverse [a, b] = [b, a]
reverse [a, b, c] = [c, b, a]
reverse [a, b, c, d] = [d , c, b, a]

Table 1. Example of the input source text for synthesizing the
reverse function using IGOR IIH (taken from Version 0.7.1.3 of
IGOR IIH release)

behavior. Moreover, it is sometimes necessary to consider which
examples are necessary in order to reduce the number for efficiency
reasons. As a result, the user sometimes has to tune the set of
examples until a desired program is obtained within a realistic time
span.

On the other hand, MAGICHASKELLER, which is a type of
generate-and-test system that uses systematic exhaustive search
for generating programs, can generate a desired program from
only one example of reverse [1, 2, 3, 4, 5] ≡ [5, 4, 3, 2, 1]. Ob-
viously, this example has enough information to specify the in-
tended function while short examples such as reverse [] = [] or
reverse [a] = [a] can be interpreted in many different ways.3

MAGICHASKELLER often succeeds in generalization from only
one example by the minimal program length criterion, or by se-
lecting the shortest program that satisfies the given specification.
Likewise, the same effect applies even when using an analytical ap-
proach by analytically generating many candidate programs based
on the given few examples and selecting those that satisfy one
larger example, rather than generating a single candidate.

2. Background
The proposed analytically-generate-and-test IFP system generates
a (usually infinite) stream of many programs analytically and se-
lects those that satisfy the condition given separately by the user.
Since existing analytical synthesis systems such as IGOR II gener-
ate only one or a few best programs, a new IGOR II-variant algo-
rithm that generates a stream of programs is invented, which is in-
spired by the way MAGICHASKELLER generates an infinite stream
of programs.

3 Of course, the well-known reverse function is not the only function that
satisfies the longer example. For example, there can be a case where we
want to synthesize a function which differs from reverse only for []. This
is not a problem, however, because no one would consider such a function
by only giving the example of reverse [1, 2, 3, 4, 5] ≡ [5, 4, 3, 2, 1], but
most people would add the example for [] in this case.

This section explains the background of this research by firstly
positioning IFP among related research fields and then introducing
IGOR II and MAGICHASKELLER.

2.1 Inductive functional programming
IFP deals with generation of recursive programs from ambiguous
specifications through generalization. This means the challenge is
not generating “interesting” programs, but how the generalization
reflects the intention of the specification writer. Being able to deal
with many different specifications is another important factor, be-
cause program synthesis is not always possible for existing al-
gorithms when complicated specifications are given. The current
state-of-the-art IFP systems often succeed in synthesizing functions
which cannot easily be written by unskilled programmers, though
they cannot synthesize programs consisting of many lines.

IFP solves different problems from “deductive” automatic pro-
gramming that transforms (or compiles) specifications without am-
biguity into programs. Program transformation systems (e.g. [19])
and semi-automatic proof systems (e.g. [1]) are examples of deduc-
tive program synthesizers. Ambiguous specifications can be given
to proof systems, but they do not automatically induce the general
rules that cannot be deduced from the given specifications.

Inductive logic programming (ILP) (e.g. [17]) that synthesizes
logic programs by inductive inference is related to IFP. The main
advantage of IFP is that it is better at synthesizing recursive func-
tions than ILP which requires desperately many negative examples
for synthesizing recursive functions (e.g. [5]).

Programming by demonstration (PBD) [2] and programming by
example (e.g. [3]) are also important relatives of IFP. They synthe-
size generalized programs from computational traces and/or I/O ex-
amples exploiting domain-specific knowledge. The SMARTpython
system [16] applies version space algebra to general imperative
programming tasks. Its limitation in comparison with IFP is that the
full information of program state transition has to be made available
as the computational trace.

Programming by sketch (e.g. [20]) is another interesting syn-
thesis framework, where the synthesizer finds a finite program that
is semantically equivalent to a given function definition and at
the same time matches to a given template. Although its problem
framework is different from that of IFP, its process of repeatedly
limiting the search space with auto-generated negative examples is
that of inductive programming, and its algorithm might be applied
to more general synthesis tasks.

Genetic programming (GP) is another approach to program
synthesis. Synthesis of recursive programs has not been a main
target of most GP systems, though there have been some attempts
at it (e.g. [23]). The ADATE system [18] can be categorized as a
GP system in a wide sense (though it does not conduct crossovers).

2.2 IGOR II
The algorithm behind IGOR II[15] synthesizes a recursive program
that generalizes the given set of I/O examples by regarding them
as term-rewriting rules through pattern matching. Early versions
by Kitzelmann were written in MAUDE and interpreted, but recent
implementations are in HASKELL, named IGOR IIH [8], which is a
simple port, and IGOR II+ [6], which is an extension with support
of catamorphism/paramorphism introduction. Such support is re-
portedly known to result in efficient algorithms, though this paper
does not deal with those morphisms and, thus, is a counterpart of
IGOR II and IGOR IIH .

These algorithms run in the following way:

1. Obtain the least general generalization of the set of the I/O
examples by antiunification. This step extracts the common
constructors and allows the uncommon terms to be represented
as variables. Here, the same variable name is assigned to terms

with the same example set. Variables that appear in the output
but do not appear in the input represent unfinished terms.

2. Try the following operators4 in order to complete the unfinished
terms.

Case partitioning operator introduces a case partitioning based
on the constructor set of input examples, and tries this for
each argument. Now, case bodies can include new unfin-
ished terms. Each case can be finished by applying this al-
gorithm recursively, supplying each field of the constructor
application as additional inputs.

Constructor introduction 5 operator introduces a constructor,
if all output examples share the same one at the outermost
position. Also it introduces new functions to all fields, and
supply the same set of arguments as the left hand side.
Again, this part can be finished by applying this algorithm
recursively, because it is possible to infer the I/O relation
of the new function by reusing the same input example list
and using each field of the constructor applications as output
examples.

Defined function call operator introduces either a function
from the background knowledge (namely a predefined prim-
itive function that works as a heuristic) if available, or a
function already defined somewhere (causing a recursive
call). These functions are called defined functions in both
cases, and they are also represented as a set of I/O exam-
ple pairs. Now, for each defined function f , the IGOR II
algorithm tries to match the set of output examples that the
unfinished term should return to that of f . Then, successful
f ’s are adopted here.
Each argument of f is unknown, and thus a new function
is introduced here. Again, it can finish this part by applying
this algorithm recursively, because the I/O relation of the
new function can be inferred by reusing the same input
example list and using the input examples of the defined
function as output examples.

Cata/paramorphism introduction (optionally with IGOR II+

) introduces cata/paramorphism. This can make some syn-
thesis tractable, while it can slow down others. This opera-
tor is not included in the current implementation of the pro-
posed algorithm.

Then, expressions with the least cost are kept, and others are
abandoned. The cost function will be explained in Section 2.2.2.

2.2.1 Limitations of IGOR II
The IGOR II algorithm has the following problems:

• IGOR II does not work correctly if we omit a line in the middle
of the set of I/O examples; taking an example of reverse , if we
omit the fourth line stating reverse [a, b, c] = [c, b, a] from
Table 1, it fails to synthesize a recursive program.

• There are many possible combinations while matching the tar-
get function to a defined function. Hence, an increase in the
number of I/O examples easily slows down the synthesis.

4 The term ‘operator’ is also used for ‘operator’ in ‘binary operator’. In
order to avoid confusion, in the latter case, either its arity or HASKELL’s
operator name will always be mentioned, for example, ‘(+) operator’.
5 This is usually called ‘introducing auxiliary functions’ (e.g., [6]), but in
this paper it is called ‘constructor introduction’, because 1) it is the common
constructor that is introduced specifically by this operator, 2) auxiliary
functions are introduced even by other operators, and 3) the term ‘auxiliary
function’ can be confused with the third operator.

Those problems incur a trade-off between the efficiency and
the accuracy: in order to minimize the ambiguity a big example
should be included in the example set; however, this means that
all the smaller examples also have to be included, and as a result,
the efficiency is sacrificed. This is problematic especially when
examples increase in different dimensions. In fact, some functions
such as multiplication cannot be synthesized by IGOR IIH due
to this trade-off. The proposed system solves this trade-off by
enabling to specify the big example as the test function.

2.2.2 Cost and preference bias
When searching in a broad space, in which priority order to try
options is also an important factor in order to find answers in a
realistic time span. IGOR II defines a cost function that returns a
tuple of the number of case distinctions, the number of open rules,
etc., and the returned tuples are compared in lexicographical order.
The search is implemented statefully by keeping track of the set of
the best programs with the least cost.

Simply keeping track of the set of best programs is heap effi-
cient, but that also means that second-best programs measured by
the given cost function are abandoned, thus making it difficult to
salvage a right program when the best programs are not actually
those intended by the user.

2.2.3 Synthesizing total functions
IGOR II offers two termination checkers that ensure termination of
synthesized programs on the given example inputs, and its users
can choose one of them. The idea behind both of them is rather
simple: a recursive call to function f may not occur unless the
example argument set supplied when f is making a recursive call is
“smaller” than that supplied when f was created.

The two termination checkers differ in the definition of the size.
One is just based on the total number of the constructors in all ar-
guments; the other is the default, and is based on the lexicographi-
cal order of the argument vector, comparing each argument by the
number of constructors in it.

2.3 MAGICHASKELLER

MAGICHASKELLER[9][11][12] is a generate-and-test method based
on systematic search. One of its design policies states “Program-
ming using an automatic programming system must be easier than
programming by one’s own brain”, and ease of use is its remark-
able feature compared with other methods. Unlike other methods
requiring users to write down many lines of programming task
specification for each synthesis, users of MAGICHASKELLER only
need to write down the specification of the desired function as a
boolean function that takes the desired function as an argument.
For example, the reverse function can be synthesized by only writ-
ing printOne $ λf → f "abcde" ≡ "edcba". This is achieved
by not using heuristics whose effectiveness is questionable and by
enabling a general-purpose primitive set (called a component li-
brary) that can be shared between different syntheses. On the other
hand, because it searches exhaustively, its ability to synthesize big
programs is hopeless. However, having heuristics and not doing an
exhaustive search do not always mean that an algorithm can syn-
thesize big programs, unless the heuristics are designed adequately
and work well. According to benchmarks from the literature [7]
and inductive-programming.org6, at least it can be claimed that
MAGICHASKELLER performs well compared with other methods.

Figure 2 depicts the structure of MAGICHASKELLER. Its heart
is the program generator, which generates all the type-correct ex-
pressions that can be expressed by function application and λ ab-
straction using the functions in the given component library, as a

6 http://www.inductive-programming.org/repository.html

Figure 2. The structure of MAGICHASKELLER.

stream from the smallest and increasing the size. The generation
is exhaustive, except that MAGICHASKELLER tries not to generate
syntactically different but semantically equivalent expressions. The
generation of expressions with the given type is equivalent to that of
proofs for the given proposition under Curry-Howard isomorphism,
and the MAGICHASKELLER algorithm [10] is essentially an ex-
tension of an automatic prover algorithm that can generate infinite
number of proofs exhaustively[12]. MAGICHASKELLER adopts the
breadth-first search for generating infinite number of proofs, and
this is achieved by using a variant of Spivey’s monad for breadth-
first search [21]. All the generated expressions are compiled and
tested by the given test function. By generating a stream of expres-
sions progressively from the smallest and testing them, the most
adequate generalization of the given specification that avoids over-
fitting comes first by the minimal program length criterion.

The component library corresponds to the set of axioms in a
proof system under Curry-Howard isomorphism[12]. It should con-
sist of total functions including constructors and paramorphisms /
catamorphisms, because permitting partial functions in the compo-
nent library may make any type inhabited and causes search space
bloat. As a result, MAGICHASKELLER with the default component
library cannot generate partial functions without an inhabited type,
such as head :: forall a. [a] → a .

Early versions of MAGICHASKELLER try to detect and prune
as many semantically equivalent expressions as possible by apply-
ing known optimization rules[10]. This involves guessing which
in the component library are case functions, catamorphisms, or
paramorphisms. Because such guessing does not work for user-
defined types, this optimization was once removed, but now it is
available by an option or by init075 action.

3. Proposed Algorithm
This section describes the analytical IFP algorithm that generates
a stream of programs, which is necessary for implementing the
proposed analytically-generate-and-test system. In this paper, this
algorithm for just generating a stream of programs is called “the
proposed algorithm”, and the whole system including the testing is
called “the proposed system”.

The algorithm presented here is simplified to some extent. The
algorithm used for evaluation infers types while generating pro-
grams in order to narrow the search space, though this part is omit-
ted in this paper.

IGOR II generates functional programs as constructor term-
rewriting systems that consist of linear rules. The proposed al-
gorithm generates single λ-expressions, however, because it has
turned out that direct generation of corresponding λ-expressions is
simpler to implement and to explain. The proposed algorithm gen-
erates λ-expressions with constructors and a fixpoint combinator
defined in Table 2. Taking a set of I/O examples dn representing

the target function and possibly a set of background knowledge
functions Γ, the algorithm returns a prioritized stream of recursive
functions, or es.

The grammar defines functions in the uncurried form. Tuples
are assumed to be catenable: e.g., for

ul = (u1, ..., ul)

vm = (v1, ..., vm)

the following equations hold:(
ul, w,vm

)
= (u1, ..., ul, w, v1, ..., vm)(

ul,vm
)

= (u1, ..., ul, v1, ..., vm)

The grammar provides a compact and convenient way of writing
the relation between I/O example sets and the induced function. It
identifies functions with sets of I/O pairs, thus

fp1 = q1 ∧ ... ∧ fpn = qn ⇔ f ⊃


p1 7→ q1

...
pn 7→ qn


holds.

The set of rules for recursively generating generalized functions
based on the grammar follows in this section. Each generation rule
is formalized as a sequent rule. Each sequent is in the form of

Γ ` e ⊃ d (or Γ ` e′ ⊃ d)

which means “e (or e′) is a function which uses the set of available
functions Γ and generalizes (or is induced from) d”. Since “e
generalizes d” is a kind of restriction put into e, it can be put in
the same light as the type of e. Likewise, each sequent rule can be
regarded as a typing rule.

Because the proposed algorithm obtains a stream of generalized
recursive programs es from a given set of I/O examples d, what it
does corresponds to finding expressions with a given type, and find-
ing proofs for a given predicate under Curry-Howard isomorphism.
Thus, the proposed algorithm generates proof trees by following
sequent rules upward.

Once these sequent rules are defined, the above can be im-
plemented monadically, using Spivey’s interface for combinatorial
search[21][22]: if there are more than one rules to which the current
sequent matches, all of them are tried and the results are combined
with the monoidal addition operator ⊕; if a rule has more than one
premise, they are sequentially tried in the lifted manner. This is es-
sentially the same way as MAGICHASKELLER is implemented[12].
The interface includes a function wrap that lowers the priority of
the current search, which is inserted to the case partitioning opera-
tor and the defined function introduction operator in order to avoid
infinite loops.

3.1 Generation of es
According to the grammar defined in Table 2, generation of e
generalizing the I/O example set d involves generation of e′, where
recursive calls to the function e itself are additionally available
within e. Thus, the Fix rule in Figure 3 holds.

3.2 Generation of e′s
Generation of e′s is also done based on Table 2. The careful reader
should have noticed that constructor expressions, function applica-
tions, and case expressions can be introduced by corresponding op-
erators: constructor introduction, defined function introduction, and
case partitioning, respectively. Projections do not have their direct
counterpart operator; this is because induction of projection func-
tion is part of antiunification. More precisely, antiunification has

Cn ∈ Cn n-ary constructors
fn ∈ Fn n-ary function variables
u, v, w ∈ V non-functional variables
un,vn,wn ::= (u1, ..., un) tuples of n variables (The order matters.)
p, q, r ::= u | Cn pn patterns
pn, qn, rn ::= (p1, ..., pn) tuples of n patterns (The order matters.)
dn ::= pn 7→ p I/O pairs

dn ::=


dn1
...

dnm

 n-ary functions as sets of I/O pairs (The order does not matter.)

γ ::= fn ⊃ dn named functions
Γ ::= γ1, ..., γn sets of named functions (The order does not matter.)
e ::= fix(λf.e′) generalized (possibly) recursive functions
e′ ::= λun. u projections

| λun. Ck (e1u
n, ..., eku

n) constructor expressions
| λun. fk (e1u

n, ..., eku
n) function applications

| λun. case u of

Ck1
1 vk1

1 → e1(u
n,vk1

1)
...

Ckm
m vkm

m → em(un,vkm
m)

case expressions

Table 2. The grammar. fix will be interpreted as a fixpoint combinator. n’s in pn, dn, dn, etc. can be omitted if not ambiguous. Subscripted
variable names such as ui have the same type as its unsubscripted version u, but this does not apply to primed names like e′.

two effects: detecting common constructors and detecting subex-
pressions changing together. The former can be considered as a part
of case partitioning and constructor introduction, and for the latter a
new operator projection function introduction is invented which
finalizes the synthesis of the current subexpression by finding an
argument whose examples equal the return value examples.

What follow are the formal definitions and detailed descriptions
of those operators.

Projection function introduction is the simplest operator that
induces a projection function by identifying an argument which is
always equal to the return value. From the I/O relation

∀m ∈ {1...M}. t(pm1, ..., pmn, ..., pmN) = pmn

the operator induces the target function t as

∀v1...vN . t(v1, ..., vn, ..., vN) = vn

This operator is tried for each argument n ∈ {1...N}.
The Proj rule in Figure 3 corresponds to this operator.

Constructor introduction extracts a common constructor among
the output examples of the I/O pairs of the given target function t.
From the I/O relation

∀m ∈ {1...M}. t(pm1, ..., pmN) = CK(qm1, ..., qmK)

it induces

∀v1...vN . t(v1, ..., vN) = CK(e1(v1, ..., vN), ..., eK(v1, ..., vN))

where

∀k ∈ {1...K}.∀m ∈ {1...M}.ek(pm1, ..., pmN) = qmk (1)

Further induction of e1...eK from the newly introduced I/O pairs
shown in Equation 1 is required unless K = 0.

The Constr rule in Figure 3 corresponds to this operator.
In practice, CK need not be a constructor but can be a function

from a library. When this is permitted, synthesis from, e.g.,
sum [] = 0
sum [x] = x

sum [x , y] = x + y
sum [x , y , z] = x + (y + z)

is also possible, where + is not a constructor but a library function.

Defined function introduction matches the output examples of
the target function t to those of a defined function f . From the I/O
relations

∀m ∈ {1...M}. t(pm1, ..., pmN) = θm(qam) (2)

∀l ∈ {1...L}. fK(rl1, ..., rlK) = ql (3)

for existing substitutions θ1...θM and assignments a1...aM ∈
{1...L}, the operator induces

∀v1...vN . t(v1, ..., vN) = fK(e1(v1, ..., vN), ..., eK(v1, ..., vN))
(4)

where

∀k ∈ {1...K}.∀m ∈ {1...M}. ek(pm1, ..., pmN) = θm(ramk)
(5)

A substitution is a set of replacements that replace variables
with patterns. The idea behind this operator is to try to match the
output of the target function to that of each rule of f , i.e., ql. If that
succeeds, the Equation 3 is rewritten using the required substitution
θm as

f(θm(ram1), ..., θm(ramK)) = θm(qam)

Thus, with Equation 2,

t(pm1, ..., pmN) = f(θm(ram1), ..., θm(ramK))

is obtained. Equation 5 follows comparing this equation with Equa-
tion 4.

Further inference of e1...eK from the newly introduced I/O
pairs is required. This operator is tried for each selection of defined
function f and for each selection of am|m∈{1...M}. Then, when
making a recursive call rather than calling a background knowl-
edge function, the termination checker checks if f is called with a
“smaller” argument list in a well-formed sense than when f was
first called, i.e., if

∀m ∈ {1...M}. (θm(ram1), ..., θm(ramK)) < (pm1, ..., pmK)

Γ, fk ⊃ dk ` e′ ⊃ dk

Fix
Γ ` fix(λfk.e′) ⊃ dk

Proj

Γ ` λ
(
ui, u,vj

)
.u ⊃


(
pi
1, p1,q

j
1

)
7→ p1

...(
pi
M , pM ,qj

M

)
7→ pM



Γ ` e1 ⊃


pN
1 7→ p11

...
pN
M 7→ pM1

 ... Γ ` eK ⊃


pN
1 7→ p1K

...
pN
M 7→ pMK


Constr

Γ ` λuN .CK
(
e1u

N , ..., eKuN
)
⊃


pN
1 7→ CK(p11, ..., p1K)

...
pN
M 7→ CK(pM1, ..., pMK)



Γ ` e1 ⊃


pN
1 7→ θ1(pa11)

...
pN
M 7→ θM (paM1)

 ... Γ ` eK ⊃


pN
1 7→ θ1(pa1K)

...
pN
M 7→ θM (paMK)


Def’d

Γ ` λuN .fK
(
e1u

N , ..., eKuN
)
⊃


pN
1 7→ θ1(qa1)

...
pN
M 7→ θM (qaM)


where

fK ⊃


(p11, ..., p1K) 7→ q1

...
(pL1, ..., pLK) 7→ qL


 ∈ Γ and

(θ1(pa11), ..., θ1(pa1K)) < pK
1

...
(θM (paM1), ..., θM (paMK)) < pK

M

Γ ` e1 ⊃


(
pi
11, CK1

1 rK1
1 ,qj

11, rK1
1

)
7→ p11

...
...(

pi
1L1

, CK1
1 rK1

L1
,qj

1L1
, rK1

L1

)
7→ p1L1

 ... Γ ` eM ⊃


(
pi
M1, CKM

M rKM
1 ,qj

M1, rKM
1

)
7→ pM1

...
...(

pi
MLM

, CKM
M rKM

LM
,qj

MLM
, rKM

LM

)
7→ pMLM


Case

Γ `

λ
(
ui, u,vj

)
. case u of

CK1
1 wK1 → e1

(
ui, u,vj ,wK1

)
...

...
CKM

M wKM → eM
(
ui, u,vj ,wKM

) ⊃



(
pi
11, CK1

1 rK1
1 , qj

11

)
7→ p11

...
...

...(
pi
1L1

, CK1
1 rK1

L1
,qj

1L1

)
7→ p1L1

...(
pi
M1, CKM

M rKM
1 , qj

M1

)
7→ pM1

...
...

...(
pi
MLM

, CKM
M rKM

LM
,qj

MLM

)
7→ pMLM


Figure 3. Generation rules as sequent rules.

holds for some well formed order ≤. The proposed algorithm uses
the same order as IGOR IIH ’s default.

The Def’d rule in Figure 3 corresponds to this operator. pK
m in

its “where” clause means the first K of pN
m

Case partitioning focuses on an argument of the target function
t, and puts together I/O pairs with such actual arguments that share
the same constructor. From the I/O relation

∀m ∈ {1...M}.∀l ∈ {1...Lm}.
t(pml1, ..., pml(n−1), pmln, pml(n+1), ..., pmlN) = qml

where

pmln = CKm
m (rl1, ..., rlKm)

the operator infers

∀m ∈ {1...M}.∀v1...vn−1.∀vn+1...vN .∀u1...uKm .

t(v1, ..., vn−1, C
Km
m (u1, ..., uKm), vn+1, ..., vN)

= em(v1, ..., vn−1, C
Km
m (u1, ..., uKm), vn+1, ..., vN ,

u1, ..., uKm)

where

∀m ∈ {1...M}.∀l ∈ {1...Lm}.
em(pml1, ..., pmlN , rl1, ..., rlKm) = qml

Further inference of e1...eM from the newly introduced I/O pairs
is required. This operator is tried for each argument n ∈ {1..N}.
In the above case, there are

∑M
m=1 Lm examples, and they are

categorized into M cases based on the constructor at the nth input.
The mth case is characterized by the Km-ary constructor CKm

m ,
and has Lm examples.

The Case rule in Figure 3 corresponds to this operator.
Note that this definition is slightly different from case partition-

ing of IGOR II. In the proposed algorithm, the number of cases is
equivalent to that of constructors that appear, while IGOR IIis more
liberal about the number of cases and may put together I/O pairs
with different constructors. Also, case partitioning of the proposed
algorithm removes constructors, while that is done by antiunifica-
tion of IGOR II.

In addition, this definition is slightly different even from the
implemented one in that the n-th argument of em, namely pmln,
is actually hidden for efficiency reasons when further inferring em,
though the rule shown in this paper does not hide it in order to
simplify termination checking.

3.3 Efficient matching using a generalized trie
For each defined function and for each output example of the target
function, the defined function introduction operator collects all
the output examples of the defined function that the target output
example matches to. The naive implementation of this process
executes matching mn times for each defined function, where m
denotes the number of I/O examples of the target function, and n
denotes that of the defined function, and thus forms a bottleneck
here. Our idea is to use the generalized trie [4] indexed by the
output example expressions and to put all the I/O examples into
the trie. Then, the n examples can be processed at once while
descending the trie, by collecting values whose keys match the
given expression. This is possible because the indexing of such
generalized tries reflects the data structure of the index type, unlike
hash tables.

Although it is difficult to be specific about the time complexity
of the resulting algorithm, the algorithm reduces the computation
time a great deal, and matching is not the bottleneck any longer.

4. Experimental Evaluation
This section presents the results of the evaluation of the proposed
system empirically on its time efficiency and robustness to changes
in the set of I/O examples. The reader should note that users of
the proposed system have to write the test function, as well as the
I/O example pairs, while users of MAGICHASKELLER have only to
write the test function.

An implementation of the proposed system is now released as
a part of MAGICHASKELLER, which is available from Hackage,
a collection of Haskell package releases7. However, in this paper
“MAGICHASKELLER” means its conventional part conducting ex-
haustive search.

4.1 Experiment conditions
4.1.1 Compared systems
The proposed system was compared with the nolog release of
IGOR IIH Ver. 0.7.1.2, which is the latest nolog release (or release
without logging overhead) at the time of writing, and with MAG-
ICHASKELLER Ver. 0.8.5-1. Comparisons with other conventional

7 http://hackage.haskell.org/package/MagicHaskeller

inductive programming systems are omitted since comparisons be-
tween conventional systems including IGOR IIH and MAGICHAS-
KELLER on the same programming tasks are already in the litera-
ture ([7] and inductive-programming.org 8).

As for the search monad for the proposed system, based on pre-
liminary experiments, Spivey’s monad for breadth-first search [21]
was selected over other alternatives that fit into Spivey [22]’s inter-
face, such as depth-bound search and their recomputing variants,
such as the Recomp monad [10].

MAGICHASKELLER was initialized with its init075 action,
which means that aggressive optimization without proof of exhaus-
tiveness was enabled, like in its old stand-alone versions. By de-
fault, MAGICHASKELLER does not look into the contents of each
component library function (or background knowledge function
in the terminology of analytical synthesis) but only looks at their
types. With init075 action, however, it prunes the redundant search
by guessing which are consumer functions such as case functions,
catamorphisms, and paramorphisms, though some expressions with
user-defined types may become impossible to synthesize due to lan-
guage bias. This condition is fairer when compared with analytical
approaches that know what case functions do.

4.1.2 Set of programming tasks
Table 3 shows the test functions of the target functions used for
filtering the generated programs. These test functions are higher-
order predicates that the target functions should satisfy, and they
were supplied to MAGICHASKELLER and the testing phase of the
proposed system without modifications.

The left column of Table 3 shows the set of function names
that were to be synthesized. They were selected by the following
conditions:

• their I/O example pairs that are usable for synthesis are bundled
in the IGOR IIH release, and

• they have already been compared with MAGICHASKELLER
somewhere.

The second condition is about the adequacy of the task, and it
was decided not to exclude those whose evaluation is temporarily
postponed at the benchmark site6. Those programs that are too
easy and require less than 0.5 second on all the systems were
also excluded from the table. All of the other functions that were
correctly answered by IGOR IIH within five minutes are included,
provided that they satisfy the above conditions.

The first condition is included in order to fix the I/O example set
by using those bundled as is. In analytical synthesis, the efficiency
largely depends on the number of examples (except for the cases
where the computation finishes instantly). For example, the set
of I/O example pairs bundled in IGOR IIH for generating (≡)
compares two natural numbers between 0 and 2 in 9 ways —
recursive programs could not be obtained if there were only 4
examples, while the computation would not be completed in a
realistic time if there were 16 examples. Due to this problem,
pragmatically it makes little sense to insist that an algorithm is
quicker by some seconds if the example set is fine-tuned.

For this reason, the same set of I/O pairs as that included
in IGOR IIH -0.7.1.2 was used for analytical synthesis, namely,
IGOR IIH and the proposed system. That said, some I/O exam-
ple sets bundled in IGOR IIH -0.7.1.2 are obviously inadequate in
that they seem not to supply enough computational traces. In Sec-
tion 4.3, it will be shown what number of examples is enough but
not too big for the corrected sets of examples.

No background knowledge functions were used by IGOR IIH
and the proposed system except the use of addition for the fib task.

8 http://www.inductive-programming.org/repository.html

name test function expected behavior
addN addN 3 [5, 7, 2] ≡ [8, 10, 5] addN n = map (n+)

allodd
allodd [3, 3] ∧ not (allodd [2, 3]) ∧ allodd [1, 3, 5]

allodd = all odd∧ not (allodd [3, 7, 5, 1, 2])

andL
not (andL [True,False]) ∧ andL [True,True]

andL = foldr (∧) []∧ andL [True,True,True] ∧ not (andL [False,True,True])
concat concat ["abc", "", "de", "fghi"] ≡ "abcdefghi" same as Prelude.concat
drop drop 3 "abcde" ≡ "de" same as Prelude.drop
(≡) 3 ≡ 3 ∧ not (4 ≡ 6) ∧ 0 ≡ 0 ∧ not (2 ≡ 0) ∧ not (0 ≡ 2) ∧ not (3 ≡ 5) same as Prelude. ≡
evenpos evenpos "abcdefg" ≡ "bdf" collect the 2nth elements
evens evens [4, 6, 9, 2, 3, 8, 8] ≡ [4, 6, 2, 8, 8] evens = filter even
fib fib 0 ≡ 1 ∧ fib 1 ≡ 1 ∧ fib 3 ≡ 3 ∧ fib 5 ≡ 8 ∧ fib 7 ≡ 21 fib n is the nth Fibonacci number.
head head "abcde" ≡ ’a’ same as Prelude.head
init init "foobar" ≡ "fooba" same as Prelude.init
(++) "foo"++ "bar" ≡ "foobar" same as Prelude.++
last last "abcde" ≡ ’e’ same as Prelude.last
lasts lasts ["abcdef", "abc", "abcde"] ≡ "fce" lasts = map last
lengths lengths ["abcdef", "abc", "abcde"] ≡ [6, 3, 5] lengths = map length
multfst multfst "abcdef" ≡ "aaaaaa" multfst xs = map (\ → head xs) xs
multlst multlst "abcdef" ≡ "ffffff" multlst xs = map (\ → last xs) xs

negateAll
negateAll [False,True,False] ≡ [True,False,True]

negateAll = map not∧ negateAll [True,False,False,True] ≡ [False,True,True,False]
oddpos oddpos "abcdef" ≡ "ace" ∧ oddpos "abc" ≡ "ac" collect the 2n+ 1st elements
reverse reverse "abcde" ≡ "edcba" same as Prelude.reverse
shiftl shiftl "abcde" ≡ "bcdea" shiftl xs = tail xs ++ [head xs]
shiftr shiftr "abcde" ≡ "eabcd" shiftr xs = last xs : init xs
sum sum [7, 3, 8, 5] ≡ 23 same as Prelude.sum
swap swap "abcde" ≡ "badce" swap consecutive pairs of elements
switch switch "abcde" ≡ "ebcda" swap the first and the last elements
take take 3 "abcde" ≡ "abc" same as Prelude.take
weave weave "abc" "def" ≡ "adbecf" merge two lists alternately

Table 3. Test functions for target functions used to filter results from MAGICHASKELLER and the proposed system. The λ-abstraction part
of each function is omitted. Thus, for example, the test functions for addN and (++) are λaddN → addN 3 [5, 7, 2] ≡ [8, 10, 5] and
λ(++) → "foo"++ "bar" ≡ "foobar" respectively. The expected behaviors are also stated.

4.1.3 Environment
The experiments were conducted on one CPU core of the Intel R©
Xeon R©CPU X3460 2.80 GHz. The source code was built with
Glasgow Haskell Compiler Ver. 6.12.1 under the single processor
setting.

4.2 Efficiency evaluation
The first experiment compares the efficiency of the proposed sys-
tem with that of other systems using the same I/O examples as those
bundled in the IGOR IIH release in order to make sure that the pro-
posed system does not sacrifice the efficiency.

Table 4 shows the benchmark results under the condition de-
scribed in the previous section.

4.2.1 Comparison with IGOR IIH
The proposed system successfully avoids generating wrong func-
tions by generating many programs and filtering them with a test
condition. For all the cases where IGOR IIH generated wrong pro-
grams, the proposed system either returned correct programs or did
not terminate. Since yielding a wrong result is just as misleading
and no better than not yielding anything, at this point the proposed
system is at least as good as IGOR IIH .

In addition, the proposed system is as fast as or faster than
IGOR IIH except when synthesizing andL, if the time required
for human users to enter the test condition is ignored. The reason
IGOR IIH is quicker than the proposed system on andL is because
it specializes defined function introduction to direct calls, or calls
with target function arguments.

On the other hand, the main reason the proposed system was
faster than IGOR IIH is because a novel efficient algorithm for
trying to match many expressions at once, which was mentioned in
Section 3.3, was developed. This algorithm does not have a direct
connection with Spivey’s monad and could be applied to IGOR IIH .

It should be noted that the proposed system requires more heap
space than IGOR IIH , because it does not abandon suboptimal pro-
grams. The heap consumption may be ignored when using the
Recomp monad [10] which recomputes instead of keeping tem-
porary search results, but then the computation time increases.
One possible solution to this problem might be using the Recomp
monad and memoizing search results, which is the solution chosen
by MAGICHASKELLER.

4.2.2 Comparison with MAGICHASKELLER

When there are some case partitionings, MAGICHASKELLER tends
to require more computation than analytical systems, which is why
it cannot generate swap or switch in five minutes. Although both
analytical systems and MAGICHASKELLER prioritize the search
based on some cost functions, current versions of MAGICHAS-
KELLER define the cost of a function as the number of function
and constructor applications in the curried form, and thus having
some functions with a bigger arity (like case functions) results in
less priority. The cost function of MAGICHASKELLER may have
room for tuning.

Also, MAGICHASKELLER with the default component library
cannot generate partial functions without inhabited types such as
head :: forall a. [a] → a and last :: forall a. [a] → a .

IGOR IIH MAGICHASKELLER proposed
addN 25 0 2
allodd >300 4 >300
andL 0 0 1
concat >300 3 >300
drop >300 0 0
(≡) 3 22 0
evenpos 0 8 0
evens �0 93 >300
fib >300 16 >300
head 0 ∞ 0
init 0 3 0
(++) 3 0 0
last 0 ∞ 0
lasts 0 35 0
lengths �1 1 0
multfst 0 4 0
multlst 0 1 0
oddpos 0 8 0
reverse 0 0 0
shiftl 0 4 0
shiftr 0 42 0
sum >300 0 >300
swap 0 >300 0
switch 0 >300 0
take 0 7 0
weave >300 142 0

Table 4. Benchmark results. Each number shows the execution
time in seconds, rounded to the nearest integer. This is the time
until the first program is obtained for MAGICHASKELLER and the
proposed system. >300 represents that there was no answer in
5 minutes. Slashed-out numbers like �0 mean that the result was
wrong, that is, the behavior of the generated function to unspecified
I/O pairs did not reflect the user’s intention. ∞ means “impossible
in theory” — this is only used for MAGICHASKELLER, when the
requested function is a partial function without inhabited type and
thus cannot be synthesized with the default primitive component
set of MAGICHASKELLER.

On the other hand, since analytical systems cannot generate tail-
recursive functions, they generate such functions in their linear re-
cursive form. This sometimes results in unnecessarily complicated
function definitions.

4.3 Robustness to changes in I/O examples
The main purpose for adding a generate-and-test aspect to the
analytical IFP is to obtain a system that works as expected for a
variety of I/O example sets. In this section, the robustness of the
proposed system to variation in the number of I/O example pairs is
empirically evaluated in comparison with that of IGOR IIH .

In this experiment, the raw sets of I/O examples from the
IGOR IIH release were not used; rather, an edited version with
enough computational traces was used, since several sets are tested
for each target function. When n I/O example pairs are required,
the first n examples of the longest set of I/O examples are used. For
example, Table 5 shows the set of I/O examples used for synthesis
of addN ; when synthesizing from six I/O example pairs the lines
from addN 0 [] = [] to addN 0 [2] = [2] (and the line for the
type signature) are used.

This experiment was only performed for the first five functions.
Other conditions are the same as those in the previous section.

Table 6 shows the results of the experiments. The results clearly
show the merit of the proposed system over IGOR IIH . In all the

addN :: Int → [Int] → [Int]
addN 0 [] = []
addN 1 [] = []
addN 2 [] = [] -- 3 examples
addN 0 [0] = [0]
addN 0 [1] = [1]
addN 0 [2] = [2] -- 6 examples
addN 0 [0, 0] = [0, 0]
addN 0 [0, 1] = [0, 1]
addN 0 [1, 0] = [1, 0] -- 9 examples
addN 1 [0] = [1]
addN 1 [1] = [2]
addN 1 [2] = [3] -- 12 examples
addN 1 [0, 0] = [1, 1]
addN 1 [0, 1] = [1, 2]
addN 1 [1, 0] = [2, 1] -- 15 examples
addN 2 [0] = [2]
addN 2 [1] = [3]
addN 2 [2] = [4] -- 18 examples
addN 2 [0, 0] = [2, 2]
addN 2 [0, 1] = [2, 3]
addN 2 [1, 0] = [3, 2] -- 21 examples

Table 5. Set of I/O examples of addN used for evaluating the
robustness of the analytical systems.

name #exs. IGOR IIH proposed

addN

3 �0 > 300
6 �0 7
9 �0 6

12 �0 2
15 �0 0
18 35 3
21 > 300 > 300

allodd

6 �0 > 300
10 �0 0
15 > 300 26
21 > 300 > 300

andL

1 �0 > 300
3 �0 0
7 0 0

15 0 1
31 > 300 > 300

concat

3 �0 0
6 �0 0
9 �0 0

13 > 300 > 300

drop

4 �0 0
6 �0 0
9 > 300 0

12 > 300 0

Table 6. Results for different number of I/O examples. “#exs.”
means the number of examples. The meanings of the symbols in
the cells are the same as those in Table 4 .

experiments, the proposed system synthesizes desired programs in
more cases than IGOR IIH . Especially for addN , andL, concat ,
and drop, the proposed system correctly synthesizes desired pro-
grams even from as few as 3 or 6 examples and the test function,

while IGOR IIH does not synthesize expected functions from such
a small set of examples. This is because IGOR IIH is satisfied with
the most simple program explaining the analyzed I/O example pairs
and does not continue the synthesis further. Taking the example of
addN , as can be seen from Table 5, the first 6 examples of addN
simply return the second argument, and therefore IGOR IIH can-
not achieve the same result as that of the proposed system. This
limitation would not be solved even if a test phase were added to
IGOR IIH , because IGOR IIH generates only a few programs. On
the other hand, the proposed system generates a desired program
even in such a hard situation, because it does not abandon programs
just because there are other programs with less cost.

5. Conclusions
An analytical IFP algorithm that can generate a stream of programs
instead of just generating one or some program(s) was created. This
algorithm enabled yet another approach to IFP, the analytically-
generate-and-test approach, which generates a stream of programs
analytically and filters it with a separately supplied test predicate.
By adding the generate-and-test feature to analytical synthesis, the
new approach solved the trade-off between the efficiency and the
sensitivity to the users’ intentions, which IGOR II, the exemplary
analytical IFP system, had been suffering from. As a result, a
desired program can be obtained without giving many I/O example
pairs, and some functions that could not be synthesized analytically
have become able to be synthesized.

As for the efficiency, the proposed system is quicker than
IGOR IIH in most cases. Some readers may suspect analytical (and
analytically-generate-and-test) approaches do not show definite ad-
vantages while they have restrictions on the specification to be
given. However, the proposed system still has room for improve-
ments in efficiency, and is more promising for synthesis of greater
programs than MAGICHASKELLER. For example, memoization of
the function that generates a stream of generalized recursive func-
tions which is used for synthesis of each subexpression is not yet
implemented in the current proposed system, while its counterpart
exists in MAGICHASKELLER. Even without such full memoiza-
tion, just memoizing the result of applying each defined function
to each input pattern should be greatly advantageous in efficiency,
because execution of defined function introduction is quite time-
consuming. In fact, the cata/paramorphism introduction operator,
which can be regarded as a very limited form of such memoization
that keeps some simple function application at hand, reportedly
improves the synthesis efficiency[5].

Since the cata/paramorphism introduction operator changes the
preference bias mainly for efficiency, it should be introduced with
care in order not to tune the preference bias with respect to the
tendency of the benchmark problem set. We are working on a more
general way for making recursive calls more efficient.

Acknowledgments
Dr. Martin Hofmann kindly introduced the author to the implemen-
tation details of IGOR IIH and answered the author’s many ques-
tions. This work was supported by JSPS KAKENHI 21650032.

References
[1] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program

Development. Springer Verlag, 2004.

[2] A. Cypher, editor. Watch What I Do: Programming by Demonstration.
MIT Press, Cambridge, 1993.

[3] W. Harris and S. Gulwani. Spreadsheet table transformations from
examples. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming Language Design and Implementation, 2011.

[4] R. Hinze. Generalizing generalized tries. Journal of Functional
Programming, 10(4):327–351, 2000.

[5] M. Hofmann. Schema-Guided Inductive Functional Programming
through Automatic Detection of Type Morphisms. PhD thesis, Uni-
versity of Bamberg, 2010.

[6] M. Hofmann and E. Kitzelmann. I/O guided detection of list catamor-
phisms: towards problem specific use of program templates in ip. In
Proceedings of the 2010 ACM SIGPLAN Workshop on Partial Evalu-
ation and Program Manipulation, PEPM ’10, pages 93–100, 2010.

[7] M. Hofmann, E. Kitzelmann, and U. Schmid. A unifying framework
for analysis and evaluation of inductive programming systems. In Pro-
ceedings of the Second Conference on Artificial General Intelligence,
2009.

[8] M. Hofmann, E. Kitzelmann, and U. Schmid. Porting IgorII from
Maude to Haskell. In U. Schmid, E. Kitzelmann, and R. Plasmei-
jer, editors, Approaches and Applications of Inductive Programming,
Third International Workshop, AAIP 2009, volume 5812 of LNCS,
pages 140–158, 2010.

[9] S. Katayama. Power of brute-force search in strongly-typed inductive
functional programming automation. In PRICAI 2004: Trends in
Artificial Intelligence, volume 3157 of LNAI, pages 75–84. Springer-
Verlag, August 2004.

[10] S. Katayama. Systematic search for lambda expressions. In Sixth
Symposium on Trends in Functional Programming, pages 195–205,
2005.

[11] S. Katayama. Systematic search for lambda expressions. In Trends in
Functional Programming, volume 6, pages 111–126. Intellect, 2007.

[12] S. Katayama. Recent improvements of MagicHaskeller. In Ap-
proaches and Applications of Inductive Programming, Third Interna-
tional Workshop, AAIP 2009, volume 5812 of LNCS, pages 174–193,
2010.

[13] S. Katayama. An analytical inductive functional programming system
that avoids unintended programs. In E. Kitzelmann and U. Schmid, ed-
itors, Approaches and Applications of Inductive Programming, Fourth
International Workshop, AAIP 2011, pages 33–48, 2011.

[14] S. Katayama. Generating many candidates in analytical inductive
functional programming. In Proceedings of the 38th SICE Symposium
on Intelligent Systems, 2011. in Japanese.

[15] E. Kitzelmann. Data-driven induction of recursive functions from
input/output-examples. In AAIP’07: Proceedings of the Workshop on
Approaches and Applications of Inductive Programming, pages 15–
26, 2007.

[16] T. Lau. Programming by Demonstration: a Machine Learning Ap-
proach. PhD thesis, University of Washington, 2001.

[17] S. Muggleton. Inductive logic programming. New Generation Com-
put., 8(4):295–318, 1991.

[18] R. Olsson. Inductive functional programming using incremental pro-
gram transformation. Artificial Intelligence, 74(1):55–81, 1995.

[19] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion
system HYLO. In Algorithmic Languages and Calculi, pages 76–106,
1997.

[20] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Seshia.
Combinatorial sketching for finite programs. In Twelfth International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2006.

[21] J. M. Spivey. Combinators for breadth-first search. Journal of Func-
tional Programming, 10(4):397–408, 2000.

[22] J. M. Spivey. Algebras for combinatorial search. Journal of Functional
Programming, 19:469–487, July 2009. ISSN 0956-7968.

[23] T. Yu. Polymorphism and genetic programming. In Genetic Program-
ming, Proceedings of EuroGP’2001, volume 2038 of LNCS, pages
218–233, 2001.

