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Abstract 

We develop a general purpose analytical approximation method for the performance 

evaluation of a multi-stage, serial, echelon kanban control system. The basic principle of the 

method is to decompose the original system into a set of nested subsystems, each subsystem 

being associated with a particular echelon of stages. Each subsystem is analyzed in isolation 

using a product-form approximation technique. An iterative procedure is used to determine 

the unknown parameters of each subsystem. Numerical results show that the method is fairly 

accurate. 

1 Introduction 

In this paper, we develop an analytical approximation method for the performance 

evaluation of an echelon kanban control system, used for the coordination of production in a 

multi-stage, serial, production/inventory system. We then test the behavior of this method on 

several numerical examples. The term “echelon kanban” was introduced in [19]. The basic 

principle of the operation of the echelon kanban control system is very simple: When a part 

leaves the last stage of the system to satisfy a customer demand, a new part is demanded and 

authorized to be released into each stage. It is worth noting that the echelon kanban control 

system is equivalent to the integral control system described in [8]. The echelon kanban 

control system differs from the conventional kanban control system, which is also referred to 

as installation kanban control system or policy in [19], in that in the conventional kanban 

control system, a new part is demanded and authorized to be released into a stage when a part 

leaves this particular stage and not when a part leaves the last stage, as is the case with the 

echelon kanban control system. This implies that in the conventional kanban control system, 

the placement of a demand and an authorization for the production of a new part into a stage 
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is based on local information from this stage, whereas in the echelon kanban control system, it 

is based on global information from the last stage. This constitutes a potential advantage of 

the echelon kanban control system over the conventional kanban control system. Moreover, 

the echelon kanban control system, just like the conventional kanban control system, depends 

on only one parameter per stage, the number of echelon kanbans, as we will see later on, and 

is therefore simpler to optimize and implement than more complicated kanban-type control 

systems that depend of two parameters per stage, such as the generalized kanban control 

system [7] and the extended kanban control system [11]. These two apparent advantages of 

the echelon kanban control system motivated our effort to develop an approximation method 

for its performance evaluation. 

Kanban-type production/inventory systems are often modeled as queueing networks in 

the literature. Consequently, most of the techniques that have been developed for the analysis 

of kanban-type production/inventory systems are based on methods for the performance 

evaluation of queueing networks. Exact analytical solutions exist for a class of queueing 

networks known as separable, in which the steady-state joint probabilities have a product-

form solution. Jackson [18] was the first to show that the steady-state joint probability of an 

open queueing network with Poisson arrivals, exponential service times, probabilistic routing, 

and first-come-first-served (FCFS) service disciplines has a product-form solution, where 

each station of the network can be analyzed in isolation as an M/M/1 queue. For closed 

queueing networks of the Jackson type, Gordon and Newell [17] showed that an analytical, 

product-form solution also exists. The performance parameters of such networks can be 

obtained using efficient algorithms, such as the mean value analysis (MVA) algorithm [22] 

and the convolution algorithm [9]. The BCMP theorem [1] summarizes extensions of product-

form networks that incorporate alternative service disciplines and several classes of 

customers. 

Since the class of queueing networks for which an exact solution is known (separable 

networks) is too restrictive for modeling and analyzing real systems, much work has been 

devoted to the development of approximation methods for the analysis of non-separable 

networks. Whitt [26] presented an approximation method for the analysis of a general open 

queueing network that is based on decomposing the network into a set of GI/GI/1 queues and 

analyzing each queue in isolation. In the case of closed queueing networks, the approximation 

methods are for the most part based on two approaches. The first approach relies on heuristic 
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extensions of the MVA algorithm (e.g. [23]). The second approach relies on approximating 

the performance of the original network by that of an equivalent product-form network. 

Daryanto et al. [13] developed a method that is based on the second approach for a closed-

loop, two-indenture, repairable-item system. Interestingly, their system is equivalent to an 

echelon kanban control system with a finite population of external jobs. Their method 

aggregates several states of the underlying continuous-time Markov chain and adjusts some 

service rates using Norton’s Theorem for closed queueing networks to obtain a product-form 

solution. Among the different methods that rely on the second approach, Marie’s method [20] 

has attracted considerable attention. Extensions and comparative studies of Marie’s method 

have been proposed for a variety of queueing networks [2], [3], [4], [5], and [10]. Di Mascolo, 

Frein and Dallery [14], [16] developed approximation methods based on Marie’s method for 

the performance evaluation of the conventional kanban control system and the generalized 

kanban control system. 

The approximation method that we develop in this paper for the performance 

evaluation of the echelon kanban control system relies on Marie’s method. To develop our 

method, we first model the system as an open queueing network with synchronization 

stations. Each stage has associated with it a particular echelon of stages consisting of the stage 

itself and all its downstream stages. By exchanging the roles of jobs (parts) and resources 

(echelon kanbans) in the open network we obtain an equivalent, multi-class, nested, closed 

queueing network, in which the population of each class is equal to the job capacity or 

number of echelon kanbans of the echelon of stages associated with a particular stage. We 

then decompose the closed network into a set of nested subsystems, each subsystem being 

associated with a particular class. This means that we have as many subsystems as the number 

of the stages. Each subsystem is analyzed in isolation using Marie’s method. Each subsystem 

interacts with its neighboring subsystems in that it includes its downstream subsystem in the 

form of a single-server station with load-dependent, exponential service rates, and it receives 

external arrivals from its upstream subsystem. A fixed-point, iterative procedure is used to 

determine the unknown parameters of each subsystem by taking into account the interactions 

between neighboring subsystems. 

The rest of this paper is organized as follows. In Section 2, we describe the exact 

operation of the echelon kanban control system by means of a simple example. In Section 3 

we present the queueing network model of the echelon kanban control system and the 
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performance measures of the system that we are interested in evaluating. In Section 4, we 

describe the decomposition of the original system into subsystems. In Section 5, we present 

the analysis in isolation of each subsystem, and in Section 6 we develop the analysis of the 

entire system. In Section 7, we present numerical results on the effects and optimization of the 

parameters. Finally, in Section 8, we draw conclusions. The analysis of the synchronization 

stations that appear in the queueing network models of each subsystem is presented in 

Appendices A and B, and a table of the notation used in the paper is given in Appendix C. 

2 Echelon Kanban Control System 

In this section, we give a precise description of the operation of the echelon kanban 

control system by means of a simple example. In this example, we consider a production 

system that consists of M = 9 machines in series, labeled M1 to M9, produces a single part 

type, and does not involve any batching, reworking or scrapping of parts. Each machine has a 

random processing time. All parts visit successively machines M1 to M9. The production 

system is decomposed into N = 3 stages. Each stage is a production/inventory system 

consisting of a manufacturing process and an output buffer. The output buffer stores the 

finished parts of the stage. The manufacturing process consists of a subset of machines of the 

original manufacturing system and contains parts that are in service or waiting for service on 

the machines. These parts represent the work in process (WIP) of the stage and are used to 

supply the output buffer. In the example, each stage consists of three machines. More 

specifically, the sets of machines {M1, M2, M3}, {M4, M5, M6} and {M7, M8, M9} belong 

to stages 1, 2 and 3, respectively. The decomposition of the production system into three 

stages is illustrated in Figure 1. 

 

M1 M2 M3 M4 M5 M6 M7 M8 M9

Manufacturing 
Process 1 

Output 
Buffer 1 

Stage 1 Stage 3 Stage 2 

Raw 
Parts 

Finished 
Parts 

Customer 
Demands  

Figure 1: A serial production system decomposed into three stages in series. 
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Each stage has associated with it a number of echelon kanbans that are used to demand 

and authorize the release of parts into this stage. An echelon kanban of a particular stage 

traces a closed path through this stage and all its downstream stages. The number of echelon 

kanbans of stage i is fixed and equal to Ki. There must be at least one echelon kanban of stage 

i available in order to release a new part into this stage. If such a kanban is available, the 

kanban is attached onto the part and follows it through the system until the output buffer of 

the last stage. Since an echelon kanban of stage i is attached to every part that is in stages i to 

N, the number of parts in stages i to N is limited by Ki. 

Parts that are in the output buffer of stage N are the finished parts of the production 

system. These parts are used to satisfy customer demands. When a customer demand arrives 

to the system, a demand for the delivery of a finished part from the output buffer of the last 

stage to the customer is placed. If there are no finished parts in the output buffer of the last 

stage, the demand cannot be immediately satisfied and is backordered until a finished part 

becomes available. If there is at least one finished part in the output buffer of the last stage, 

this part is delivered to the customer after releasing the kanbans of all the stages (1, 2, and 3, 

in the example) that were attached to it, in the output buffer of the last stage, hence the 

demand is immediately satisfied. The released kanbans are transferred upstream to their 

corresponding stages. The kanban of stage i carries with it a demand for the production of a 

new stage-i finished part and an authorization to release a finished part from the output buffer 

of stage i-1 into stage i. When a finished part of stage i-1 is transferred to stage i, the stage-i 

kanban is attached to it on top of the kanbans of stages 1 to i-1, which have already been 

attached to the part at previous stages. With this in mind, we can just as well assume that 

Ki ≥ Ki+1, i = 1,…, N – 1. (1) 

3 Queueing Network Model of the echelon Kanban Control System 

In order to develop the approximation method for the performance evaluation of the 

echelon kanban control system, we first model the system as an open queueing network with 

synchronization stations. Figure 2 shows the queueing network model of the echelon kanban 

control system with three stages in series considered in Section 2. The manufacturing process 

of each stage is modeled as a subnetwork in which the machines of the manufacturing process 

are represented by single-server stations. The subnetwork associated with the manufacturing 

process of stage i is denoted by Li, and the single-server stations representing machines 
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M1,…, M9 are denoted by S1,…, S9, respectively. The number of stations of subnetwork Li is 

denoted by mi. In the example, mi = 3, i = 1, 2, 3. The echelon kanban control mechanism is 

modeled via three synchronization stations, denoted by Ji, at the output of each stage i, i = 1, 

2, 3. 

 

Customer 
Demands 

PA1 

DA2 

PA2

DA3

PA3

D4 

S1 S3 S4 S2 S6 S5 S9 S8 S7 
J1 J2 J3 L1 L2 L3 

K1 
K2 K3 

 

Figure 2: Queueing network model of the echelon kanban control system of Figure 1. 

A synchronization station is a tool that is often used to model assembly operations in 

queueing networks. It can be thought of as a server with instant service times. This server is 

fed by two or more queues (in our case by two). When there is at least one customer in each 

of the queues that feed the server, these customers move instantly through and out of the 

server. This implies that, at any time, at least one of the queues that feed the server is empty. 

Customers that enter the server immediately exit the server after possibly having been split 

into more or merged into fewer customers. In our case, the queues in each synchronization 

station contain either parts or demands combined with kanbans. 

To illustrate the operation of the synchronization stations, let us first focus on any 

synchronization station Ji, except that of the last stage. This synchronization station represents 

the synchronization between a stage-i finished part and a stage-(i+1) free kanban. Let PAi and 

DAi+1 denote the two queues of Ji. PAi represents the output buffer of stage i and contains 

stage-i finished parts, each of which has attached to it a kanban from each stage from 1 to i. 

DAi+1 contains demands for the production of new stage-(i+1) parts, each of which has 

attached to it a stage-(i+1) kanban. The synchronization station operates as follows. As soon 

as there is one entity in each queue PAi and DAi+1, the stage-i finished part engages the stage-

(i+1) kanban without releasing the kanbans from stages 1 to i that were already attached to it, 

and joins the first station of stage i+1. Note that at stage 1, as soon as a stage-1 kanban is 
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available, a new part is immediately released into stage 1 since there are always raw parts at 

the input of the system. 

Let us now consider the last synchronization station JN (J3 in the example). JN 

synchronizes queues PAN, and DN+1. PAN represents the output buffer of stage N and contains 

stage-N finished parts, each of which has attached to it a kanban from each stage from 1 to N. 

DN+1 contains customer demands. When a customer demand arrives to the system, it joins 

DN+1, thereby demanding the release of a finished part from PAN to the customer. If there is a 

finished part in queue PAN, it is released to the customer and the demand is satisfied. In this 

case, the finished part in PAN releases the kanbans that were attached to it, and these kanbans 

are transferred upstream to queues DAi (i = 1,…, N). The kanban of stage i carries along with 

it a demand for the production of a new stage-i (i = 1,…, N) finished part and an authorization 

for the release of a finished part from queue PAi-1 into stage i. If there are no finished parts in 

queue PAN, the customer demand remains on hold in DN+1 as a backordered demand. 

An important special case of the echelon kanban control system in the case where 

there are always customer demands for finished parts. This case is known as the saturated 

echelon kanban control system. Its importance lies in the fact that its throughput determines 

the maximum capacity of the system. In the saturated system, when there are finished parts at 

stage N, they are immediately consumed and an equal number of parts enter the system. As 

far as the queueing network corresponding to this model is concerned, the synchronization 

station JN can be removed since queue DN+1 is never empty and can therefore be ignored. In 

the saturated echelon kanban control system, when the processing of a part is completed at 

stage N, this part is immediately consumed after releasing the kanbans of stages 1,…, N that 

were attached to it and sending them back to queues DAi (i = 1,…, N). 

It is worth noting that the echelon kanban control system contains the make-to-stock 

CONWIP system [23] as a special case. In the make-to-stock CONWIP system, as soon as a 

finished part leaves the production system to be delivered to a customer, a new part enters the 

system to begin its processing. An echelon kanban control system with K1 ≤ Ki, i ≠ 1 behaves 

exactly like the make-to-stock CONWIP system. 

The dynamic behavior of the echelon kanban control system depends on the 

manufacturing processes, the arrival process of customer external demands, and the number 

of echelon kanbans of each stage. The performance measures that are of particular interest are 
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the average work in process (WIP) and the average number of finished parts in each stage, the 

average number of backordered (not immediately satisfied) demands, and the average waiting 

time and percentage of backordered demands. In the case of the saturated echelon kanban 

control system, the main performance measure is its production rate, Pr, i.e. the average 

number of finished parts leaving the output buffer of stage N per unit of time. Pr represents 

the maximum rate at which customer demands can be satisfied. With this in mind, the average 

arrival rate of external customer demands in the unsaturated system, say λD, must be strictly 

less than Pr in order for the system to meet all the demands in the long run. In other words, 

the stability condition for the unsaturated system is 

λD < Pr. (2) 

4 Decomposition of the Echelon Kanban Control System 

To evaluate the performance of the multi-stage, serial, echelon kanban control system, 

we decompose the system into many nested, single-stage subsystems and analyze each system 

in isolation. The susbsystems are nested in each other in such a way that each subsystem 

includes its downstream subsystem in the form of a single-server station and receives external 

arrivals from its upstream subsystem. The first subsystem mimics the original system. To 

analyze each subsystem, we view it as a closed queueing network and we approximate each 

station of this network by an exponential-service station with load-dependent service rates. 

The resulting network is a product-form network. A fixed-point iterative procedure is then 

used to determine the unknown parameters of each subsystem by taking into account the 

interactions between neighboring subsystems. A detailed description of the decomposition 

follows. 

Consider the queueing network model of an echelon kanban control system consisting 

of N stages in series as described in Section 3 (See Figure 2 for N = 3). Let us denote the 

queueing network of the system by R. Our goal is to analyze R by decomposing it into a set of 

N nested subsystems, Ri, i = 1,…, N. This is done as follows (See Figure 3 for N = 3). 

Subsystem RN is an open queueing network with restricted capacity consisting of 1) an 

upstream synchronization station, denoted by IN, representing JN-1 in the original system, 2) 

the subnetwork of stations, LN, in the original system, and 3) a downstream synchronization 

station, denoted by ON, representing JN in the original system. Each subsystem Ri, i = 2,…,    
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N – 1, is an open queueing network with restricted capacity consisting of 1) an upstream 

synchronization station, denoted by Ii, representing Ji-1 in the original system, 2) the 

subnetwork of stations, Li, in the original system, and 3) a downstream single-server pseudo-

station, denoted by Ŝi, representing the part of the system downstream of Li in the original 

system. Finally, subsystem R1 is a closed queueing network consisting of 1) the subnetwork of 

stations, L1, in the original system, and 2) a downstream single-server pseudo-station, denoted 

by Ŝ1, representing the part of the system downstream of L1 in the original system. Note that 

pseudo-station Ŝi in subsystem Ri, i = 1,…, N – 1, is an aggregate representation of subsystem 

Ri+1. 
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Figure 3: Illustration of the decomposition of a 3-stage echelon kanban control system. 
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The number of echelon kanbans of subsystem Ri is Ki. Subsystem RN is synchronized 

with two external arrival processes, one at synchronization station IN receiving parts that 

arrive from subnetwork LN-1, and the other at synchronization station ON receiving customer 

demands. Subsystem Ri, i = 2,…, N – 1, is synchronized with only one external arrival process 

at synchronization station Ii receiving parts that arrive from subnetwork Li-1. Subsystem R1 is 

a closed network; therefore it is not synchronized with any external arrival processes. As can 

be seen from Figure 3, each synchronization station Ji of the original network R, linking stage 

i to stage i+1, is represented only once in the decomposition. 

To completely characterize each subsystem Ri, i = 2,…, N – 1, we assume that each of 

the external arrival processes to Ri is a state-dependent, continuous-time Markov process. Let 

λi(ni) denote the state-dependent arrival rate of stage-i raw parts at the upstream 

synchronization station Ii of subsystem Ri, where ni is the state of subsystem Ri and is defined 

as the number of parts in this subsystem. Let i
uQ  and i

IQ  be the two queues of 

synchronization station Ii, containing i
un  and i

In  customers, respectively, where i
un  is the 

number of finished parts of stage i-1 waiting to enter subnetwork Li, and i
In  is the number of 

free stage-i kanbans waiting to authorize the release of stage-(i-1) finished parts into 

subnetwork Li. Then, it is clear that the only possible states of the synchronization station are 

the states ( i
In , 0), for i

In  = 0,…, Ki, and (0, i
un ), for i

un  = 0,…, Ki-1 – Ki; therefore, the state ni 

of subsystem Ri can be simply obtained from i
un  and i

In  using the following relation: 

if 0,
if 0.

i i
i i I I

i i
i u I

K n n
n

K n n
 − ≠

= 
+ =

 (3) 

The above relation implies that 0 ≤ ni ≤ Ki-1. Also, since the number of raw parts at the 

input of stage i cannot be more than the number of stage-(i-1) kanbans, ( )1 0i
iKλ − = . In 

subsystem RN, besides the arrival rate of stage-N raw parts at IN, λN(nN), there is also the 

external arrival rate of customer demands at ON, λD. Subsystem R1, as was mentioned above, 

is a closed network and therefore has no external arrival processes to define. 

To obtain the performance of the original network R, the following two problems must 

be addressed: 1) How to analyze each subsystem Ri, i = 1,…, N, assuming that the external 

arrival rates are known (except in the case of the first subsystem R1, where there are no 
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external arrivals), and 2) how to determine the unknown external arrival rates. These two 

problems are addressed in Sections 5 and 6, respectively. Once these two problems have been 

solved, the performance of each stage of the original network R can be obtained from the 

performances of subsystems Ri, i = 1,…, N. 

5 Analysis of Each Subsystem in Isolation 

In this section, we describe how to analyze each subsystem in isolation using Marie’s 

approximate analysis of general closed queueing networks [20]. Throughout this analysis, the 

state-dependent rates of the external arrival processes, λi(ni), 0 ≤ ni ≤ Ki-1, i = 2,…, N, are 

assumed to be known. To analyze each subsystem using Marie’s method, we first view the 

subsystem as a closed queueing network. For subsystems Ri, i = 2,…, N, this is done by 

considering the kanbans of stage i as the customers of the closed network, and the parts and 

demands (in the case of the last subsystem RN) as external resources. Note that the queueing 

network associated with subsystem R1 is already being modeled as a closed queueing network 

in the decomposition. Its customers are the kanbans of stage 1. 

The closed queueing network associated with subsystem RN is partitioned into mN + 2 

stations, namely the synchronization stations IN and ON and the mN stations of subnetwork LN. 

Similarly, the closed queueing network associated with each subsystem Ri is partitioned into 

mi + 2 stations, namely the synchronization station Ii, the mi stations of subnetwork Li, and 

station Ŝi. Finally, the closed queueing network associated with subsystem R1 is partitioned 

into m1 + 1 stations, namely the m1 stations of subnetwork L1, and station Ŝ1. Each station is 

approximated by an exponential-service station with load-dependent service rates. The 

resulting network associated with each subsystem is a Gordon-Newell, product-form network 

[17] consisting of Ki customers and mi + 2 stations for subsystem Ri, i = 2,…, N, and m1 + 1 

stations for subsystem R1. The stations within each subsystem Ri, i = 1,…, N, will be denoted 

by the index k ∈ Mi, where M1 = {1,…, m1, Ŝ1}, Mi = {Ii, 1,…, mi, Ŝi} for i = 2,…, N-1, and 

MN = {IN, 1,…, mN, ON}.  

Let ( )i i
k knµ  denote the load-dependent service rate of station k in the product-form 

network of subsystem Ri when there are i
kn  customers in that station. We will show how to 

determine ( )i i
k knµ , 1, ,i

k in K= … , for each station k ∈ Mi within a particular subsystem Ri, i = 

1,…, N. The method for doing this is the same for all subsystems Ri, i = 1,…, N; therefore, for 
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the sake of notational simplicity we will drop index i that denotes variables associated with 

subsystem Ri. 

Let vector n = (n1,…, nk,…, nM) be the state of the closed, product-form network, 

where nk denotes the number of customers present at station k. Then, the probability of being 

in stage n, P(n), is given by the following product-form solution [11]: 

1

1( )
( ) ( )

kn
k

k M n k

VP
G K nµ∈ =

 
=  

 
∏ ∏n , (4) 

where Vk is the average visit ratio of station k in the original system and is given from the 

routing matrix of the original system, and G(K) is the normalization constant. 

 To determine the unknown parameters µk(nk), nk = 1,…, K, in the product-form 

solution (4), each station is analyzed in isolation as an open system with a state-dependent, 

Poisson arrival process, whose rate λk(nk) depends on the total number of customers nk present 

in the station. Let Tk denote this open system. Assume first that the rates λk(nk) are known for 

nk = 1,…, K – 1. The open queueing system Tk can then be analyzed in isolation using any 

appropriate technique to obtain the steady-state probabilities of having nk customers in the 

isolated system, say Pk(nk). The issue of analyzing in isolation each queueing system Tk will 

be discussed immediately after Algorithm 1, below. The conditional throughput of this 

isolated open system when its population is nk, vk(nk), can then be derived using the relation 

[11], 

( 1)( ) ( 1)
( )

k k
k k k k

k k

P nv n n
P n

λ
−

= − , for nk = 1,…, K. (5) 

The load-dependent service rates of the k-th station of the closed product-form 

network are then set equal to the conditional throughputs of the corresponding open station in 

isolation, i.e.: 

µk(nk) = vk(nk), for nk = 1,…, K. (6) 

Once the rates µk(nk) have been obtained, the state-dependent arrival rates λk(nk) can be 

obtained from the generalized, product-form solution as [6], [11]: 

( 1)( )
( )

k k
k k k

k k

G K nn V
G K n

λ
− −

=
−

, for nk = 1,…, K – 1, and λ(Κ) = 0, (7) 
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where Gk(n) is the normalization constant of the closed, product-form network with station k 

removed (complementary network) and population n. Gk(n) is a function of the parameters 

µk'(nk') for all k' ≠ k and nk' = 1,…, K, and can be efficiently computed using any 

computational algorithm for product-form networks [6], [9]. An iterative procedure can then 

be used to determine these unknown quantities. This procedure is described by the following 

algorithm. 

Algorithm 1: Analysis of a Subsystem in Isolation 

Step 0:  (Initialization) Set µk(nk) to some initial value, for k ∈ M and nk = 1,…, K. 

Step 1:  For k ∈ M: 

Calculate the state-dependent arrival rates λk(nk), for nk = 0,…, K – 1, using (7). 

Step 2: For k ∈ M: 

a. Analyze the open queueing system Tk. 

b. Derive the steady state probabilities Pk(nk) of having nk customers, for nk = 1,…, K. 

c. Calculate the conditional throughputs vk(nk), for nk = 1,…, K, using (5). 

Step 3: For k ∈ M: 

Set the load-dependent service rates µk(nk), for nk = 1,…, K, in the closed, product- 

form network using (6). 

Step 4: Go to Step 1 until convergence of the parameters µk(nk). 

Next, we show how to analyze each open queueing system Tk. To do this, we 

reintroduce index i denoting subsystem Ri. Step 2a of Algorithm 1 above requires the analysis 

of the open queueing systems i
kT  for k ∈ Mi and i = 1,…, N. There are four different types of 

queueing systems: 1) the synchronization station ON in subsystem RN, 2) the synchronization 

stations Ii in subsystems Ri, i = 2,…, N, 3) the mi stations in each subnetwork Li, i = 1,…, N, 

and 4) the pseudo-stations Ŝi in subsystems Ri, i = 1,…, N – 1. 

First, consider the analysis of synchronization station ON in subsystem RN. ON is a 

synchronization station fed by a continuous-time Markov arrival process with state-dependent 

rates, ( )N N
O Onλ , 0 N

O Nn K≤ ≤ , and an external Poisson process with fixed rate λD. An exact 

solution for this system is easy to obtain by solving the underlying continuous-time Markov 
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chain. Namely, the steady-state probabilities ( )N N
O OP n  of having N

On  customers in subsystem 

ON can be derived, and the conditional throughput ( )N N
O Ov n  can be estimated using (5) (see 

[10] and Appendix A). 

The synchronization station Ii in each subsystem Ri, i = 2,…, N, is a synchronization 

station fed by two continuous-time Markov arrival processes with state-dependent rates, 

( )i i
I Inλ , 0 i

I in K≤ ≤ , and λi(ni), 0 ≤ ni ≤ Ki-1. An exact solution for this system is also easy to 

obtain by solving the underlying continuous-time Markov chain. (see [14] and Appendix B). 

The analysis in isolation of any station k ∈ {1,…, mi} in each subnetwork Li, i = 1,…, 

N, reduces to the analysis of a ( ) / /1/i i
k k in G Nλ  queue. Classical methods can be used to 

analyze this queue to obtain the steady-state probabilities ( )i i
k kP n . For instance, if the service 

time distribution is Coxian, the algorithms given in [21] may be used. For multiple-server 

stations, we can use the numerical technique presented in [25]. The conditional throughput 

( )i i
k kv n  can then be derived from the state probabilities using (5). In the special case where the 

service time is exponentially distributed, the conditional throughput ( )i i
k kv n  is simply equal to 

the load-dependent service rate ( )i i
k knµ  [11]. 

Finally, as was mentioned earlier, pseudo-station Ŝi in subsystem Ri, i = 1,…, N – 1, is 

an aggregate representation of subsystem Ri+1, which is nested inside subsystem Ri. Therefore, 

the conditional throughput of pseudo-station Ŝi, ˆ ˆ( )i i
S Sv n , is set equal to the conditional 

throughput of subsystem Ri+1. The conditional throughput of any subsystem Ri, i = 2,…, N, is 

denoted by vi(ni) and can be estimated by the following simple expression [3]: 

-1

( ) for 1 ,
( )

(0) for .

i i i
i i I i i

i i
I i i

K n n K
v n

K n K
λ
λ
 − ≤ ≤

= 
≤ ≤

 (8) 

6 Analysis of the Entire Echelon Kanban Control System 

In Section 5 we analyzed each subsystem of the decomposition in isolation, given that 

the arrival rates of the external arrival processes were known. In this section, we show how to 

determine these arrival rates. 
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Consider again the queueing network of the original system, R, which has been 

decomposed into N subsystems (see Figure 3 for N = 3). In each subsystem Ri, i = 2,…, N, the 

unknown parameters involved in the decomposition are the arrival rates of raw parts at each 

upstream synchronization station Ii, λi(ni), 0 ≤ ni ≤ Ki-1. Recall that pseudo-station Ŝi-1 in 

subsystem Ri-1 represents subsystem Ri, i = 2,…, N; therefore, the external arrival process of 

raw parts at synchronization station Ii in subsystem Ri should be identical to the arrival 

process of parts at pseudo-station Ŝi-1 in subsystem Ri-1. The latter process was involved in the 

analysis of subsystem Ri-1 in isolation and was characterized by a state-dependent Poisson 

arrival process with rate 1 1
ˆ ˆ( )i i
S Snλ − − , 1

ˆ 10 i
iSn K−
−≤ ≤ . As a result, the following set of equations 

holds: 

1
ˆ( ) ( )i i i i
Sn nλ λ −=  for 10 i

in K −≤ ≤  and i = 2,…, N. (9) 

Equation (9) implies that the unknown parameters λi(ni) are the solutions of a fixed-

point problem. To determine these quantities we use an iterative procedure. This procedure is 

described in Algorithm 2 below. Algorithm 2 consists of several forward and backward steps. 

A forward step from subsystem Ri-1 to Ri uses new estimates of the arrival rates λi(ni) to the 

upstream synchronization station Ii of subsystem Ri, to resolve Ri using Algorithm 1. A 

backward step from Ri to Ri-1 solves Ri-1 using Algorithm 1, given that the arrival rates λi(ni) to 

the upstream synchronization station Ii of each subsystem Rj, j = i,…, N, have converged. The 

procedure starts with subsystem RN and moves backwards until it reaches subsystem R1. 

Subsystem RN is analyzed first using Algorithm 1 and current estimates of λN(nN). This yields 

the conditional throughput of RN, vN(nN), which is needed to analyze subsystem RN-1, since it 

determines the load-dependent exponential-service rates of pseudo-station ŜN-1. Subsystem  

RN-1 is analyzed next using Algorithm 1 and current estimates of λN-1(nN-1). This yields the 

conditional throughput of RN-1, vN-1(nN-1), and the arrival rates to the pseudo-station ŜN-1, 
1 1

ˆ ˆ( )N N
S Snλ − − . If these arrival rates are not equal to the current estimates of the arrival rates 

λN(nN), then the latter rates have not converged. In this case, the current estimates of λN(nN) are 

updated to 1 1
ˆ ˆ( )N N
S Snλ − −  and subsystem RN is analyzed again using Algorithm 1 with the new 

estimates. Otherwise, the arrival rates λN(nN) have converged and the procedure moves on to 

the analysis of subsystem RN-2 using Algorithm 1, where the load-dependent exponential-

service rates of pseudo-station ŜN-2 are set equal to vN-1(nN-1). This procedure is repeated for 
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subsystems RN-2, RN-3,…, until the first subsystem, R1, is reached and all the arrival rates λi(ni), 

i = 2,..., N, have converged. All the performance parameters of interest can then be derived. 

Algorithm 2: Analysis of a Multi-Stage Echelon Kanban Control System 

Step 0: (Initialization) Set the unknown arrival rates of each subsystem Ri to some initial 

values, e.g. λi(ni) = λD, 0 ≤ ni ≤ Ki-1, and i = 2,…, N. 

Step 1: Computation and convergence of the arrival rates, λi(ni), i = 2,…, N. 

Set i = N  

While i ≥ 1 

If i = N 

Solve subsystem RN using Algorithm 1 and calculate the throughput vN(nN), nN 

= 1,…, KN-1, from (8). 

Set i = i – 1. 

Else 

Solve subsystem Ri using Algorithm 1 and calculate the arrival rate ˆ ˆ( )i i
S Snλ , 

ˆ 0, ,i
iSn K= … , and the throughput vi(ni), ni = 1,…, Ki-1, from (8). 

If 1 1 1
ˆ( ) ( )i i i i
Sn nλ λ+ + += , 1 0, ,i

in K+ = … , 

Set i = i – 1 

Else 

Set 1 1 1
ˆ( ) ( )i i i i
Sn nλ λ+ + += , 1 0, ,i

in K+ = … , and set i = i + 1 

Endif 

Endif 

Endwhile 

In the case of the saturated echelon kanban control system, we can use the same 

algorithm. The only difference is in the analysis of subsystem RN in Algorithm 1, where there 

is no downstream synchronization station ON. As far as the convergence properties of 

Algorithms 1 and 2 are concerned, in all of the numerical examples that we examined (see 
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Section 7), both algorithms converged. The convergence criterion was that the relative 

difference between the values of every unknown parameter at two consecutive iterations 

should be less that 10-4. 

Once Algorithm 2 has converged, all the performance parameters of the system can be 

calculated. Indeed, from the analysis of each subsystem Ri using Algorithm 1, it is possible to 

derive the performance parameters of stage i in the original network R, especially the 

throughput and the average length of each queue, including the queues of the synchronization 

stations. Thus, in the case of the saturated echelon kanban system, we can derive the 

throughput, the average WIP, the average number of finished parts, and the average number 

of free echelon kanbans for each stage. In the case of the echelon kanban control system with 

external demands, some other important performance measures can be derived from the 

analysis of subsystem RN, namely, the proportion of backordered demands, pB, the average 

number of backordered demands, QD, and the average waiting time of backordered demands, 

WB. These performance measures can be derived as follows [10], [14]: 

(0)N
B Op P= ,  1(0)

(0) 1

N
D O N

O

D

Q P
λ
λ

=
−

,  D
B

B D

QW
p λ

= , 

where (0)N
Oλ  is the arrival rate of finished parts at synchronization station ON when there are 

no finished parts at that station and (0)N
OP  is the steady-state probability of having no finished 

parts at synchronization station ON. 

7 Numerical Results 

In this section, we test the approximation method for the performance evaluation of 

the echelon kanban control system that we developed in Sections 4-6 on several numerical 

examples. The approximation method was implemented on an Intel Celeron PC @ 433 MHz, 

and its results are compared to simulation results obtained using the simulation software 

ARENA on an AMD Athlon PC @ 1400 MHz. For each simulation experiment we run a 

single replication. The length of this replication was set equal to the time needed for the 

system to produce 68 million parts. The initial condition of the system at the beginning of the 

replication was set to a typical regenerative state, namely the state where all customer 

demands and demands for the production of new parts at all stages have been satisfied. This 
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permitted us to set the warm-up period at the beginning of the replication equal to zero. In all 

simulation experiments we used 95% confidence intervals. The numerical examples are 

organized into Sections 7.1 and 7.2. In Section 7.1, we study the accuracy and rapidity of the 

approximation method as well as the influence of some key parameters of the echelon kanban 

control system on system performance. In Section 7.2, we use the approximation method to 

optimize the design parameters (echelon kanbans) of the system. 

7.1 Influence of Parameters 

In this section, we test the accuracy and rapidity of the approximation method with 

two numerical examples in which we vary the number of stages, the number of kanbans in 

each stage, and the service-time distributions of the manufacturing process of each stage. For 

each example, we consider first the case of the saturated system and then the case of the 

system with external demands. In each example, we compare the performance of the system 

obtained by the approximation method to that obtained by simulation. We also compare the 

performance of the echelon kanban control system obtained by the approximation method and 

by simulation to the performance of the conventional or installation kanban control system 

obtained by a similar approximation method developed in [14] and by simulation. 

Example 1 

In Example 1, we consider an echelon kanban system composed of N identical stages, 

where each stage contains a single machine with exponentially distributed service times with 

mean equal to 1. In order to compare the echelon kanban control system to the conventional 

kanban control system, we first set the number of installation kanbans of each stage i in the 

conventional kanban control system, say c
iK , equal to some constant K, i.e. c

iK K= . Then, 

we set the number of echelon kanbans of each stage i in the echelon kanban control system, 

say e
iK , equal to the sum of the installation kanbans of stages i,…, N, in the conventional 

kanban control system, i.e. ( 1 )Ne c
i jj i

K K N i K
=

= = + −∑ . 

For the case of the saturated system, the main performance parameter of interest is the 

throughput of the system, which determines the production capacity of the system. Table 1 

shows the throughput of the saturated echelon kanban control system obtained by the 

approximation method and by simulation, for different values of N and K. The same table also 
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shows the 95% confidence interval for the simulation results, the percentage of relative error 

of the approximation method with respect to simulation, and the number of iterations of 

Algorithm 2 that are needed to reach convergence. Table 2 shows the same results for the 

conventional kanban control system obtained in [14]. 

Simulation Approximation  
Configuration Production 

Capacity 
Confidence 

Interval 
Production 
Capacity 

Relative 
Error 

Iterations

1.1: N = 3; K = 1 0.581 ±0.1% 0.571 - 1.8% 7 
1.2: N = 3; K = 3 0.809 ±0.1% 0.804 - 0.6% 7 
1.3: N = 3; K = 5 0,877 ±0.2% 0.873 - 0.5% 7 
1.4: N = 3; K = 10 0.934 ±0.5% 0.933 - 0.1% 7 
1.5: N = 3; K = 15 0.955 ±0.6% 0.954 - 0.1% 7 
1.6: N = 5; K = 1 0.522 ±0.0009% 0.502 - 4% 16 
1.7: N = 5; K = 3 0,772 ±0.1% 0.761 - 1.4% 16 
1.8: N = 5; K = 5 0.85 ±0.1% 0.843 - 0.8% 16 
1.9: N = 5; K = 10 0.919 ±0.2% 0.916 - 0.3% 16 
1.10: N = 5; K = 15 0.945 ±0.0009% 0.942 - 0.3% 16 
1.11: N = 10; K = 1 0.485 ±0.0007% 0.456 - 6.4% 56 
1.12: N = 10; K = 3 0.745 ±0.5% 0.730 - 2.1% 56 
1.13: N = 10; K = 5 0,831 ±0.7% 0.820 - 1.3% 56 
1.14: N = 10; K = 10 0.908 ±0.1% 0.902 - 0.7% 56 
1.15: N = 10; K = 15 0.937 ±0.1% 0.933 - 0.4% 56 

Table 1: Production capacity of the saturated echelon kanban control system (Example 1). 

From the results in Table 1, we note that the number of iterations of Algorithm 2 of 

the approximation method increases with the number of stages, as is expected. Specifically, 

for N = 3, 5 and 10, we have 7, 16, and 56 iterations of Algorithm 2, respectively. As far as 

the convergence of Algorithm 1 is concerned, we also note that subsystem RN requires two 

iterations of Algorithm 1, subsystem R1 requires one iteration, and all other subsystems 

require three iterations, irrespectively of the number of stages N, for all the configurations 

tested. The simulation time is extremely long (over two hours) compared to the time required 

for the approximation method, which is approximately 1-10 seconds. From Table 1 we note 

that as the number of echelon kanbans increases, for a given number of stages N, the 

throughput also increases and asymptotically tends to the production rate of each machine in 

isolation. Moreover, the throughput seems to be decreasing in the number of stages. The 

results obtained by the approximation method are fairly accurate when compared to the 

simulation results. The relative error is very small in general except for the cases where K = 1, 
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where we observe somewhat significant errors. This happens because when the number of 

echelon kanbans is small, there are strong dependence phenomena among stations and these 

phenomena are not well captured by the state-dependent, continuous-time, Markov arrival 

processes assumed in the decomposition method. Comparing the results between Tables 1 and 

2, we note that the production capacity of the echelon kanban control system is always higher 

than that of the conventional kanban control system, given that the two systems have the same 

value of K. 

Simulation Approximation  
Configuration Production 

Capacity 
Confidence 

Interval 
Production 
Capacity 

Relative 
Error 

Iterations

1.1: N = 3; K = 1 0.562 ±0.5% 0.547 - 2.7% 2 
1.2: N = 3; K = 3 0.800 ±0.7% 0.792 - 1.0% 2 
1.3: N = 3; K = 5 0.869 ±1.3% 0.865 - 0.5% 2 
1.4: N = 3; K = 10 0.926 ±0.8% 0.928 + 0.2% 2 
1.5: N = 3; K = 15 0.952 ±1.2% 0.951 - 0.1% 2 
1.6: N = 5; K = 1 0.484 ±0.6% 0.449 - 7.0% 4 
1.7: N = 5; K = 3 0.746 ±0.8% 0.731 - 2.0% 4 
1.8: N = 5; K = 5 0.833 ±0.8% 0.822 - 1.3% 4 
1.9: N = 5; K = 10 0.901 ±1.2% 0.904 + 0.3% 4 
1.10: N = 5; K = 15 0.943 ±1.1% 0.934 - 0.9% 4 
1.11: N = 10; K = 1 0.429 ±0.5% 0.379 - 11.6% 7 
1.12: N = 10; K = 3 0.704 ±0.7% 0.680 - 3.4% 6 
1.13: N = 10; K = 5 0.806 ±0.9% 0.786 - 2.6% 5 
1.14: N = 10; K = 10 0.855 ±0.5% 0.883 - 3.2% 5 
1.15: N = 10; K = 15 0.917 ±1.3% 0.919 + 0.2% 5 

Table 2: Production capacity of the saturated conventional kanban control system      

(Example 1). 

For the system with backordered demands, the main performance parameters of 

interest are the proportion of backordered demands, pB, the average number of backordered 

demands, QD, and the average waiting time of backordered demands, WB, as defined at the 

end of Section 6. Table 3 shows these performance parameters obtained by the approximation 

method and by simulation, for the configurations of parameters 1.3, 1.8, and 1.13 of Table 1, 

i.e. for K = 5, and different values of the customer demand rate, λD. The same table also shows 

the 95% confidence interval for the simulation results and the number of iterations of 

Algorithm 2 that are needed to reach convergence. Table 4 shows the same results for the 

conventional kanban control system obtained in [14]. 
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Configuration QD WB PB 
(%) 

Iterations 

1.16: N = 3; K = 5; λD = 0.1 
Approximation 
Simulation 

 
0.0 
0.0 

 
0.0 
0.0 

 
0.0 
0.0 

 
6 

1.17: N = 3; K = 5; λD = 0.5 
Approximation 
Simulation 

 
0.035 
0.034 (±0.9%) 

 
4.069 
2.066 (±1.2%) 

 
1.729 
3.337 

 
7 

1.18: N = 3; K = 5; λD = 0.625 
Approximation 
Simulation 

 
0.221 
0.213 (±0.1%) 

 
4.594 
3.014 (±14.2%) 

 
7.687 
11.32 

 
7 

1.19: N = 3; K = 5; λD = 0.8 
Approximation 
Simulation 

 
4.176 
4.095 (±3.6%) 

 
10.791 
9.755 (±7%) 

 
48.38 
52.47 

 
8 

1.20: N = 5; K = 5; λD = 0.1 
Approximation 
Simulation 

 
0.0 
0.0 

 
0.0 
0.0 

 
0.0 
0.0 

 
16 

1.21: N = 5; K = 5; λD = 0.5 
Approximation 
Simulation 

 
0.035 
0.032 (±0.007%) 

 
4.070 
3.189 (±0.003%) 

 
1.71 
2.03 

 
16 

1.22: N = 5; K = 5; λD = 0.8 
Approximation 
Simulation 

 
6.774 
6.5686 (±0.08%) 

 
14.440 
12.895 (±0.02%) 

 
58.69 
63.67 
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1.23: N = 10; K = 5; λD = 0.1 
Approximation 
Simulation 

 
0.0 
0.0 

 
0.0 
0.0 

 
0.0 
0.0 

 
20 

1.24: N = 10; K = 5; λD = 0.5 
Approximation 
Simulation 

 
0.035 
0.023 (±0.005%) 

 
4.070 
3.512 (±0.002%) 

 
1.72 
1.28 

 
39 

1.25: N = 10; K = 5; λD = 0.77 
Approximation 
Simulation 

 
3.817 
3.131 (±0.003%) 

 
10.709 
9.064 (±0.001%) 

 
46.3 
49.3 

 
61 

Table 3: Average number of backordered demands, average waiting time of backordered 

demands and proportion of backordered demands for the echelon kanban control system 

(Example 1). 

From the results in Table 3 we note that as the customer demand arrival rate increases, 

the number of iterations of Algorithm 2 also increases, though not dramatically. As far as the 

average number of backordered demands, QD, is concerned, we note that the analytical 

method is fairly accurate. This is not true for the average waiting time of backordered 

demands, WB, where in some cases the difference between the approximation method and 

simulation are significant. Comparing the results between Tables 3 and 4, we note that the 

echelon kanban control system always has a smaller average number of backordered 
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demands, QD, than the conventional kanban control system, given that the two systems have 

the same value of K. The difference in the average number of backordered demands is more 

pronounced when the two systems are highly loaded, i.e. when λD is close to the production 

capacity. 

Configuration QD WB PB (%) Iterations 
1.16: N = 3; K = 5; λD = 0.1 
Approximation 
Simulation 

 
0.0 
0.0 

 
0.0 
0.0 

 
0.0 
0.0 

 
1 

1.17: N = 3; K = 5; λD = 0.5 
Approximation 
Simulation 

 
0.035 
0.033 (±30%) 

 
2.06 
2.16 (±17%) 

 
3.4 
3.1 

 
2 

1.18: N = 3; K = 5; λD = 0.625 
Approximation 
Simulation 

 
0.222 
0.230 (±17%) 

 
3.00 
3.26 (±15%) 

 
11.82 
11.78 

 
3 

1.19: N = 3; K = 5; λD = 0.8 
Approximation 
Simulation 

 
4.56 
4.26 (±19%) 

 
10.1 
10.3(±13%) 

 
56.3 
52.1 

 
4 

1.20: N = 5; K = 5; λD = 0.1 
Approximation 
Simulation 

 
0.0 
0.0 

 
0.0 
0.0 

 
0.0 
0.0 

 
1 

1.21: N = 5; K = 5; λD = 0.5 
Approximation 
Simulation 

 
0.0353 
0.038 (±30%) 

 
2.07 
2.16 (±9%) 

 
3.40 
3.58 

 
2 

1.22: N = 5; K = 5; λD = 0.8 
Approximation 
Simulation 

 
11.26 
8.93 (±22%) 

 
19.3 
17.2 (±15%) 

 
73.0 
65.2 

 
7 

1.23: N = 10; K = 5; λD = 0.1 
Approximation 
Simulation 

 
0.0 
0.0 

 
0.0 
0.0 

 
0.0 
0.0 

 
1 

1.24: N = 10; K = 5; λD = 0.5 
Approximation 
Simulation 

 
0.0353 
0.0368 (±30%) 

 
2.07 
2.18 (±17%) 

 
3.40 
3.38 

 
2 

1.25: N = 10; K = 5; λD = 0.77 
Approximation 
Simulation 

 
6.89 
5.95 (±22%) 

 
13.9 
13.7 (±14%) 

 
64.2 
56.9 

 
11 

Table 4: Average number of backordered demands, average waiting time of backordered 

demands and proportion of backordered demands for the conventional kanban control system 

(Example 1). 

Table 5 shows the results for the average number of finished parts (FP) and the 

average work-in-process (WIP) at each stage for the configurations of parameters 1.17 and 

1.19 in Table 3. Table 6 shows the same results for the conventional kanban control system. 
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Stage 1 Stage 2 Stage 3 Configuration 
WIP FP WIP FP WIP FP 

1.17: N = 3; K = 5; 
λD = 0.5 
Simulation 
 
Approximation 
Error 

 
 
0.988 
(±0.1%) 
0.999 
+ 1.1% 

 
 
4.039 
(±0.09%) 
4.031 
- 0.2% 

 
 
0.978 
(±0.1%) 
0.995 
+ 1.7% 

 
 
4.022 
(±0.1%) 
4.005 
- 0.4% 

 
 
0.961 
(±0.1%) 
0.969 
+ 0.8% 

 
 
4.011 
(±0.1%) 
4.000 
- 0.3% 

1.19: N = 3; K = 5; 
λD = 0.8 
Simulation 
 
Approximation 
Error 

 
 
3.363 
(±0.5%) 
3.479 
+ 3.3% 

 
 
2.392 
(±0.3%) 
2.349 
- 1.8% 

 
 
3.068 
(±0.3%) 
3.159 
+ 2.9% 

 
 
2.018 
(±0.3%) 
1.902 
- 6.1% 

 
 
2.589 
(±0.3%) 
2.655 
+ 2.5% 

 
 
1.569 
(±0.5%) 
1.455 
- 7.8% 

Table 5: Average work in process (WIP) and average number of finished parts (FP) in each 

stage for the echelon kanban control system (Example 1). 

Stage 1 Stage 2 Stage 3 Configuration 
WIP FP WIP FP WIP FP 

1.17: N = 3; K = 5; 
λD = 0.5 
Simulation 
 
Approximation 
Error 

 
 
0.94 
(±3.2%) 
0.97 
+ 3% 

 
 
4.06 
(±0.7%) 
4.03 
- 0.7% 

 
 
0.95 
(±3.1%) 
0.97  
+ 2% 

 
 
4.02 
(±0.7%) 
4.01 
- 0.2% 

 
 
0.94 
(±3.2%) 
0.97 
+ 3% 

 
 
4.04 
(±0.8%) 
4.00 
- 1% 

1.19: N = 3; K = 5; 
λD = 0.8 
Simulation 
 
Approximation 
Error 

 
 
2.54 
(±3.0%) 
2.61 
+ 2.7% 

 
 
2.47 
(±4.0%) 
2.38 
- 3.6% 

 
 
2.52 
(±3.2%) 
2.58 
+ 2.4% 

 
 
1.98 
(±5.0%) 
1.85 
- 6.5% 

 
 
2.55 
(±3.1%) 
2.66 
+ 4% 

 
 
1.58 
(±6.3%) 
1.40 
- 11% 

Table 6: Average work in process (WIP) and average number of finished products (FP) in 

each stage for the conventional kanban control system (Example 1). 

Comparing the results between Tables 5 and 6, we note that the echelon kanban 

control system has slightly higher average WIP and lower FP than the conventional kanban 

control system, when the two systems are highly loaded (i.e. λD is close to Ps), and given that 

the two systems have the same value of K. When the two systems are not highly loaded, the 

difference in average WIP and FP between the two systems is very small. Finally, it appears 

that the difference in average WIP and FP between the echelon kanban control system and the 

conventional kanban control system is higher in upstream stages than in downstream stages. 
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Although the above observations hold for the particular configuration of parameters 

examined, we expect that they should also hold for the other configurations of Table 1 and 

different values of the customer demand rate, λD, because to a large extent they are due to the 

fact that the echelon kanban control system always responds faster to customer demands than 

the conventional kanban control system, given that the two systems have the same value of K. 

Finally, we should note that the approximation method for the performance evaluation 

of the conventional kanban control system developed in [14] is also based on decomposing a 

system of N stages into N subsystems. The total number of the unknown parameter sets (the 

arrival rates of the external arrival processes to the subsystems) that must be determined for 

the conventional kanban control system, however, is twice as big as that which must be 

determined for the echelon kanban control system (i.e. 2(N – 1) instead of N – 1 external 

arrival rates). Yet, for both examples examined, the number of iterations needed for the 

convergence of the parameters is significantly lower for the conventional kanban control 

system than for the echelon kanban control system, given the same convergence criterion for 

the two systems, as can be seen from Tables 1-4. This is due to the fact that the coordination 

of production is decentralized in the conventional kanban control system, whereas it is 

centralized in the echelon kanban control system. Nonetheless, this does not seem to 

constitute a noticeable disadvantage of the approximation method for the echelon kanban 

control system, since for all the cases examined, the method converges in a matter of 1-10 

seconds. 

Example 2 

In Example 2, we consider an echelon kanban control system consisting of N = 3 

identical stages, where each stage contains a single machine with identical service-time 

distribution with mean equal to 1. The number of echelon kanbans at each stage is K1 = 15,  

K2 = 10, and K3 = 5. Our goal is to investigate the influence of the variability of the service 

time on the performance of the above system. To this end, we consider three different 

distributions: a Coxian-2 distribution with squared coefficient of variation cv2 = 2.0, an 

Erlang-2 distribution with cv2 = 0.5, and an exponential distribution with cv2 = 1.0. Table 7 

shows the production capacity for the saturated echelon kanban control system obtained by 

the approximation method and by simulation, for the three different distributions. Table 8 

shows the same results for the conventional kanban control system obtained in [14]. 
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Simulation Approximation  
Configuration Production 

Capacity 
Confidence 

Interval 
Production 
Capacity 

Relative 
Error 

Iterations

2.1: N = 3; K = 5; cv2 = 0.5 0.929 ±0.1% 0.934 + 0.5% 11 
2.2: N = 3; K = 5; cv2 = 1 0.876 ±0.2% 0.873 - 0.3% 7 
2.3: N = 3; K = 5; cv2 = 2 0.813 ±0.3% 0.808 - 0.6% 13 

Table 7: Production capacity of the echelon kanban control system (Example 2). 

Simulation Approximation  
Configuration Production 

Capacity 
Confidence 

Interval 
Production 
Capacity 

Relative 
Error 

Iterations

2.1: N = 3; K = 5; cv2 = 0.5 0.926 ±0.2% 0.932 + 0.6% 2 
2.2: N = 3; K = 5; cv2 = 1 0.870 ±0.1% 0.865 - 0.6% 2 
2.3: N = 3; K = 5; cv2 = 2 0.787 ±0.5% 0.786 - 0.2% 2 

Table 8: Production capacity of the conventional kanban control system (Example 2). 
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Figure 4: Proportion of backordered demands versus the average arrival rate of demands for 

different values of the squared coefficient of variation (Example 2). 

From the results in Table 7, we note that when the variability of the service time 

distribution increases, the production capacity decreases, as is expected. The results obtained 

by the approximation method are fairly accurate when compared to the simulation results. 

Comparing the results between Tables 7 and 8, we note that for all the service-time 

distributions, the production capacity of the echelon kanban control system is higher than that 

of the conventional kanban control system. The results for the analytical solution and 
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simulation for the case of the echelon kanban system with backordered demands is shown in 

Figure 4. More specifically, Figure 4 depicts the proportion of backordered demands pB as a 

function of the arrival rate of demands λD for the three different service time distributions. It 

appears that as the cv2 of the service time distribution increases, the difference between 

simulation and analytical results tends to increase. 

7.2 Optimization of Parameters 

The main reason for developing an approximation method for the performance 

evaluation of the echelon kanban control system is to use it to optimize the design parameters 

of the system. The design parameters of the echelon kanban control system are the number of 

echelon kanbans for each stage. In order to optimize these parameters, we must define a 

performance measure of the system. Typical performance measures are those that include the 

cost of not being able to satisfy the demands on time (i.e. quality of service) and the cost of 

producing parts ahead of time and, therefore, building up inventory (inventory holding cost). 

In this paper, we consider an optimization problem where the objective is to meet a certain 

quality of service constraint with minimum inventory holding cost. 

We examine two quality-of-service measures as in [15]. The first measure is the 

probability that when a customer demand arrives, it is backordered, and the second measure is 

the probability that when a customer demand arrives, it sees more than n waiting demands, 

excluding itself. The first measure is denoted by Prupt and concerns the situation where the 

demands must be immediately satisfied. The second measure is denoted by P(Q > n) and 

concerns the situation where we have the prerogative to introduce a delay in filling orders, 

which is equivalent to authorizing demands to wait. Specifically, Prupt is the stationary 

probability of having no finished parts in the last synchronization station, and can be 

computed as the marginal distribution of having no finished parts in that station, which is 

given by (18) in Appendix A. Similarly, P(Q > n) is the stationary probability of having more 

than n customers waiting and can be computed from the following expression: 

1 0

( ) ( ) 1 ( )
n

x n y

P Q n P Q x P Q y
∞

= + =

> = = = − =∑ ∑  (10) 

where P(Q = n) is given by (see Appendix A): 
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The stationary distribution (0,0)N
Op  that is needed to evaluate both Prupt and P(Q > n) is given 

by the following expression: 

1

1 0

1(0,0)
1 1( ( ))

1
(0)

N

N
O K x

N
Ox

D x iD
N

O

p
iλλ λ

λ

−

= =

=
+

−
∑ ∏

. (12) 

The cost function that we want to minimize is the long-run, expected, average cost of 

holding inventory, 

[ ]
1

N

total i i i
i

C h E WIP FP
=

= +∑  (13) 

where hi is the unit cost of holding WIPi + FPi inventory per unit time in stage i. 

In the remaining of this section, we optimize the echelon kanbans of an echelon 

kanban control system made up of N = 5 stages, where each stage contains a single machine 

with exponentially distributed service times with mean equal to 1, for different combinations 

of inventory holding cost rates hi, i = 1,…, 5, and demand arrival rate λD = 0.5. In all cases we 

assume that there is value added to the parts at every stage so that the inventory holding cost 

increases as the stage increases i.e. h1 < h2 < … < h5. If this were not the case, i.e. if h1 = h2 = 

… = h5, then clearly it would make no sense to block the passage of parts from one stage to 

another via the use of echelon kanbans, because this would not lower the inventory holding 

cost but would worsen the quality of service. This implies that if h1 = h2 = … = h5, the optimal 

echelon kanbans satisfy K1 ≤ Ki, i = 2,…, 5, in which case the echelon kanban control system 

is equivalent to the make-to-stock CONWIP system [23] with a WIP-cap on the total number 

of parts in the system equal to K1. 

Table 9 shows the optimal design parameters (K1,…, K5) and associated minimum, 

long-run, expected, average cost of holding inventory, for λD = 0.5 and different quality of 

service constraints and inventory holding cost rates h1,…, h5, where h1 < h2 < … < h5. The 

quality of service constraints that we use are Prupt ≤ 0.02 and P(Q > n) ≤ 0.02, for n = 2, 5, and 

10. 
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Design criterion K1 K2 K3 K4 K5 Cost 
h1 = 1,   h2 = 2,   h3 = 3,   h4 = 4,   h5 = 5 

Prupt ≤ 0.02 15 13 12 10 8 55.885 
P(Q > 2) ≤ 0.02 13 11 10 8 7 46.555 
P(Q > 5) ≤ 0.02 10 8 7 6 2 31.120 
P(Q > 10) ≤ 0.02 7 6 5 3 1 20.253 

h1 = 3,   h2 = 8,   h3 = 9,   h4 = 10,   h5 = 12 
Prupt ≤ 0.02 15 13 12 10 8 144.314 

P(Q > 2) ≤ 0.02 13 11 10 9 6 121.161 
P(Q > 5) ≤ 0.02 10 8 7 6 2 84.074 
P(Q > 10) ≤ 0.02 7 6 5 3 1 57.360 

h1 = 1,   h2 = 2,   h3 = 4,   h4 = 11,   h5 = 12 
Prupt ≤ 0.02 15 14 13 9 8 121.288 

P(Q > 2) ≤ 0.02 14 13 10 7 6 98.890 
P(Q > 5) ≤ 0.02 10 9 8 5 2 67.383 
P(Q > 10) ≤ 0.02 8 6 4 3 1 39.483 

h1 = 1,   h2 = 6,   h3 = 11,   h4 = 16,   h5 = 21 
Prupt ≤ 0.02 17 13 11 10 8 218.702 

P(Q > 2) ≤ 0.02 15 11 10 8 5 178.162 
P(Q > 5) ≤ 0.02 10 8 7 6 2 115.601 
P(Q > 10) ≤ 0.02 8 6 5 3 1 76.523 

h1 = 1,   h2 = 11,   h3 = 21,   h4 = 31,   h5 = 41 
Prupt ≤ 0.02 17 13 11 10 8 420.405 

P(Q > 2) ≤ 0.02 15 11 10 8 5 341.324 
P(Q > 5) ≤ 0.02 10 8 7 6 2 221.203 
P(Q > 10) ≤ 0.02 8 6 5 3 1 145.047 

h1 = 1,   h2 = 2,   h3 = 4,   h4 = 8,   h5 = 16 
Prupt ≤ 0.02 17 15 12 9 7 143.879 

P(Q > 2) ≤ 0.02 14 13 11 7 5 112.442 
P(Q > 5) ≤ 0.02 10 8 7 6 2 65.843 
P(Q > 10) ≤ 0.02 8 6 5 3 1 39.934 

h1 = 1,   h2 = 3,   h3 = 9,   h4 = 27,   h5 = 81 
Prupt ≤ 0.02 19 17 14 10 6 633.178 

P(Q > 2) ≤ 0.02 17 15 12 8 4 471.867 
P(Q > 5) ≤ 0.02 12 10 8 6 1 231.446 
P(Q > 10) ≤ 0.02 8 6 5 3 1 139.066 

Table 9: Optimal configuration and associated costs for λD = 0.5 and different values of h1,…, 

h5, for the echelon kanban control system. 

From the results in Table 9, we note that the higher the number of backordered 

demands, n, the lower the optimal number of echelon kanbans, and hence the inventory 

holding cost. As the difference between the holding cost rates hi, i = 1,…, 5, increases, the 

difference between the optimal values of Ki, i = 1,…, 5, also increases, since the behavior of 



29 

the echelon kanban control system diverts from that of the make-to-stock CONWIP system. 

When the difference between the holding cost rates hi, i = 1,…, 5, is low, the behavior of the 

echelon kanban control system tends to that of the make-to-stock CONWIP system. 

Table 10 shows the optimal design parameter K1 and associated minimum inventory 

holding cost for λD = 0.5 and different quality of service constraints and inventory holding 

cost rates h1,…, h5, for the make-to-stock CONWIP system. Comparing the results between 

Tables 9 and 10, we note that the make-to-stock CONWIP system performs considerably 

worse than the echelon kanban control system. 

Design criterion K1 Cost 
h1 = 1,   h2 = 6,   h3 = 11,   h4 = 16,   h5 = 21 

Prupt  ≤ 0.02 14 244.163 
P(Q > 2) ≤ 0.02 12 202.415 
P(Q > 5) ≤ 0.02 10 161.006 
P(Q > 10) ≤ 0.02 8 120.307 

h1 = 1,   h2 = 11,   h3 = 21,   h4 = 31,   h5 = 41 
Prupt ≤ 0.02 14 474.326 

P(Q > 2) ≤ 0.02 12 392.830 
P(Q > 5) ≤ 0.02 10 312.012 
P(Q > 10) ≤ 0.02 8 232.613 

h1 = 1,   h2 = 2,   h3 = 4,   h4 = 8,   h5 = 16 
Prupt ≤ 0.02 14 175.160 

P(Q > 2) ≤ 0.02 12 143.407 
P(Q > 5) ≤ 0.02 10 111.986 
P(Q > 10) ≤ 0.02 8 81.260 

h1 = 1,   h2 = 3,   h3 = 9,   h4 = 27,   h5 = 81 
Prupt ≤ 0.02 14 850.927 

P(Q > 2) ≤ 0.02 12 690.358 
P(Q > 5) ≤ 0.02 10 531.715 
P(Q > 10) ≤ 0.02 8 377.102 

Table 10: Optimal configuration and associated costs for λD = 0.5 and different values of 

h1,…, h5, for the CONWIP system. 

8 Conclusions 

We developed an analytical, decomposition-based approximation method for the 

performance evaluation of the echelon kanban control system and tested it on several 

numerical examples. The numerical examples showed that the method is quite accurate in 

most cases. They also showed that the echelon kanban control system has some advantages 
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over the conventional kanban control system. Specifically, when the two systems have the 

same value of K, the production capacity of the echelon kanban control system has higher 

production capacity, lower average number of backordered demands, but only slightly higher 

average WIP and either slightly higher or slightly lower FP than the conventional kanban 

control system. The numerical results also showed that as the variability of the service time 

distribution increases, the production capacity of the echelon kanban control system and the 

accuracy of the approximation method decrease. Finally, we know that the optimized echelon 

kanban control system always performs at least as well as the optimized make-to-stock 

CONWIP system since the latter system is a special case of the first system. The numerical 

results showed that in fact the superiority in performance of the echelon kanban control 

system over that of the make-to-stock CONWIP system can be quite significant, particularly 

when the increase in inventory holding costs from one stage to its downstream stage becomes 

large. 
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Appendix A - Analysis of synchronization station ON 

ON is a synchronization station fed by a continuous-time Markov arrival process with 

state-dependent arrival rate ( )N N
O Onλ , 0 N

O Nn K≤ < , and an external Poisson process with rate 

λD. The underlying continuous-time Markov chain is shown in Figure 5. The state of this 

Markov chain is ( , )N
O Dn n , where N

On  is the number of engaged kanbans and nD, nD ≥ 0, is the 

number of external resources (customer demands) currently present in subsystem ON. Let 

( , )N N
O O Dp n n  be the steady-state probabilities of the Markov chain. These probabilities are 

solution of the following balance equations: 
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Figure 5: Continuous-time Markov chain describing the state 0( , )N
Dn n  of synchronization 

station ON. 

( ,0) ( 1,0) ( 1) for 1,...,N N N N N N N
O O D O O O O O Np n p n n n Kλ λ= − − = , (14) 

(0, ) (0) (0, 1) for 0N N N
O D O O D D Dp n p n nλ λ= − > . (15) 

The marginal probabilities ( )N N
O OP n  are then simply given by 

( ) ( ,0) for 1,...,N N N N N
O O O O O NP n p n n K= = , (16) 

0
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From (15) and (17) we get 
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The conditional throughputs of subsystem ON are obtained from (5), (14) and (16), as 

follows: 

( ) for 2,...,N N N
O O D O Nv n n Kλ= =  (19) 

From (5), (14), (16) and (18), we also get 
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Appendix B - Analysis of synchronization station Ii  

Ii, i = 2,…, N, is a synchronization station fed by two continuous-time Markov arrival 

processes with state-dependent arrival rates: ( )i i
I Inλ , 0 i

I in K≤ ≤ , and λi(ni), 0 ≤ ni ≤ Ki-1. The 

underlying continuous-time Markov chain is shown in Figure 6. The state of this Markov 

chain is ( , )i i
I un n , where i

In  is the number of free kanbans and i
un  is the number of external 

resources (finished parts of stage i-1) currently present in subsystem Ii. Recall that ni can be 

obtained from i
un  and i

In  using (3). The steady-state probabilities ( , )i i i
I I up n n  can be derived as 

solutions of the underlying balance equations and are given by: 
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The marginal probabilities, ( )i i
I IP n , can then be derived by summing up the 

probabilities above as follows: 
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The estimation of the conditional throughputs of subsystem Ii can then be obtained by 

substituting the above probabilities into (5), as follows: 

( ) ( ) for 2,..., ,i i i i i
I I i I I iv n K n n Kλ= − =  (25) 
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Figure 6: Continuous-time Markov chain describing the state ( , )i i
I un n  of queueing network Ii. 
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Appendix C – Table of Notation  

N Number of stages 

Ki Number of echelon kanbans of stage i 

Li Subnetwork associated with the manufacturing process of stage i 

mi Number of stations of subnetwork Li 

Ji Synchronization station at the output of stage i 

λD Average arrival rate of external customer demands in the unsaturated system 

Pr Maximum rate at which customer demands can be satisfied 

R Queueing network of the echelon kanban control system 
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Ri Subsystem associated with stage i 

Ii Upstream synchronization station of subsystem Ri 

ON Downstream synchronization station of subsystem RN 

Ŝi Downstream single-server pseudo-station of subsystem Ri 

ni State of subsystem Ri 

λi(ni) State-dependent arrival rate of stage-i raw parts at the upstream synchronization 

station Ii of subsystem Ri 

vi(ni) Conditional throughput of subsystem Ri 

k ∈ Mi Index denoting the stations within subsystem Ri, where M1 = {1,…, m1, Ŝ1}, Mi = {Ii, 

1,…, mi, Ŝi} for i = 2,…, N-1, and MN = {IN, 1,…, mN, ON} 

i
kn  State of station k in subsystem Ri 

( )i i
k knµ  Load-dependent service rate of station k in subsystem Ri 

µk(nk) Same as ( )i i
k knµ  with index i dropped 

i
kT  Open system representing station k in subsystem Ri 

Tk Same as i
kT  with index i dropped 

( )i i
k knλ  Rate of state-dependent Poisson arrival process at i

kT  

λk(nk) Same as ( )i i
k knλ  with index i dropped 

( )i i
k kv n  Conditional throughput of i

kT  

vk(nk) Same as ( )i i
k kv n  with index i dropped 

( )i i
k kP n  Steady-state probability of i

kT  

pB Proportion of backordered demands 

QD Average number of backordered demands 

WB Average waiting time of backordered demands 


