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This paper studies the real-time gait planning for a humanoid robot. By simultaneously
planning the trajectories of the COG(Center of Gravity) and the ZMP(Zero Moment
Point), the fast and smooth change of gait can be realized. The change of gait is also
realized by connecting the newly calculated trajectories to the current ones. While we
propose two methods for connecting two trajectories, i.e. the real-time method and the
quasi-real-time one, we show that the stable change of gait can be realized by using
the quasi-real-time method even if the change of the step position is significant. The
effectiveness of the proposed methods are confirmed by simulation and experiment.

1. Introduction

The ultimate goal of research on a biped walking robot is to realize the adaptive and
robust gait like a human. For example, when a biped robot moves in an environment
including many obstacles, the robot has to detect the obstacles and change the
walking direction in real-time to avoid an obstacle. However, the walking motion
of a biped robot has been realized by replaying the pre-planned trajectories, and it
has been difficult to change the position of the step in real-time. On the other hand,
while there have been a few researches on the real-time gait planning of a biped
walking robot, this research provides an analytical method which is very simple and
effective.

Now, let us consider what makes the real-time planning of a humanoid robot’s
gait difficult. Fig.1 shows a situation where a humanoid robot is changing the walk-
ing direction to the left. It would be desirable if the humanoid robot can change
the position of the step as soon as possible. However, as shown in the figure, when
a humanoid robot changes the position of the next step, the humanoid robot has to
move quickly to compensate for the difference between the pre-planned position of
the next step and the newly-planned one. If the difference becomes very significant,
it will become difficult for a humanoid robot to keep balance. Now, for the purpose
of realizing the adaptive and robust gait of a humanoid robot, we have to examine
how quick the change of gait can be realized.

Secondly, in most of the previous research on gait generation, the gait has been
calculated numerically. As for the numerical method, since it becomes difficult to

1



October 8, 2004 18:22 WSPC/INSTRUCTION FILE ws-ijhr

2 Harada, Kajita, Kaneko, and Hirukawa

Step 1

Step 5

Fig. 1. Explanation of Gait Planning

calculate the gait within one sampling-time, the quick change of gait is difficult.
Thirdly, for changing the position of the step in real-time, let us consider newly

calculating the trajectories of the robot’s motion and connecting them to the cur-
rent ones. Here, since the trajectories of the robot’s motion are calculated by solving
the two-point boundary value problem of the ordinary differential equation, it be-
comes impossible to specify the initial and the final velocities of the generalized
coordinates. Thus, when connecting trajectories, it becomes difficult to ensure the
continuity between two trajectories.

To cope with such problems in the real-time gait planning, we propose an
analytical-solution based framework. Since our method does not require the numer-
ical iterations, the gait can be calculated very fast. Also, to ensure the continuity
between two trajectories of robot’s motion, we consider simultaneously planning
both the COG(Center of Gravity) and the ZMP(Zero-Moment Point) trajectories
in real-time. By using this simultaneous planning method, we show that the smooth
real-time change of gait can be realized. We further propose two methods for con-
necting the newly calculated trajectories to the current ones, i.e., the real-time
connection method and the quasi-real-time connection method. While the quick
change of gait can be realized by using the real-time method, the significant change
of the position of step is difficult. On the other hand, while the quick-change of
gait is difficult by using the quasi-real-time method, the significant change of the
position of step is expected to realize.

This paper is organized as follows: After discussing the previous works in Section
2, we show the overview of the analytical method of gait planning in Section 3. In
Section 4, we discuss a method for real-time planning of the gait. In Section 5, we
study the time for changing the gait. Lastly, in Section 6, we show simulation and
experimental results.
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2. Related Works

In most of the research on a biped robot, the walking pattern has been generated
before the robot actually moves. Takanishi et al.2 proposed a method for generating
the trunk motion of a humanoid robot by transforming the trajectory of the ZMP1

into the fourier series. Kajita et al.5 realized the dynamic walking of a biped robot
based on the linear inverted pendulum mode. Nagasaka et al.3 proposed a method
based on the optimal gradient method. Kagami et al.4 generated the gait by de-
scretizing the differential equation expressing the relationship between the robot’s
motion and the ZMP. Kurazume et al.7 generated the gait based on the analytical
solution of the differential equation.

Recently, some researches have been done on the real-time planning of a hu-
manoid robot’s gait. The famous one is the ”i-walk” by Honda motors. Takenaka10,11

realized the on-line planning of a humanoid robot’s gait by connecting the unit gaits
including two steps of a humanoid robot. They realized the smooth connection of
the unit gaits by considering the additional dynamics of the inverted pendulum. Lim
et al.8 also considered combining the unit gait patterns generated offline. Nishiwaki
et al.9 proposed a method for modifying the gait pattern on-line. They used the
ZMP trajectory with three steps, and the change of gait is realized by connecting
the newly calculated trajectories to the current ones. Kajita et al.6 proposed the
gait planning by using the preview control of the ZMP.

On the other hand, our method follows the one proposed by Nishiwaki et al.9.
Here, different from their method, the analytical solution of the differential equation
is used where the solution can be calculated very fast. Also, the smooth connection
of the trajectories can be realized by simultaneously calculating the ZMP and the
COG trajectories.

3. Basic Idea of Gait Generation

Let us consider the humanoid robot walking on the flat floor. While we focus on
the motion of a humanoid robot within the sagittal (x − z) plane, the motion in
the lateral (y − z) plane can also be treated in the same fashion. Let us assume
that the ZMP trajectory of a humanoid robot is given by a spline function. Let
p

(j)
zmp = [x(j)

zmp y
(j)
zmp z

(j)
zmp]T be the trajectory of the ZMP belonging to the j-th

segment of time. The trajectory of ZMP in the sagittal plane can be expressed as:

x(j)
zmp =

n∑
i=0

a
(j)
i (t − tj−1)i, (1)

tj−1 ≤ t ≤ tj , j = 1, · · · , m

where a
(j)
i (i = 1, · · · , m, j = 1, · · · , m) are scalar coefficients. An example of the

ZMP trajectory is shown in Fig.2. As shown in the figure, the robot begins to step
at t = t0. After finished stepping at t = t1, the robot stands on two legs until t = t2.
Then, the robot begins to step at t = t2.
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Let p
(j)
G = [x(j)

G y
(j)
G z

(j)
G ]T be the trajectory of the COG(Center of Gravity)

corresponding to the ZMP trajectory belonging to the j-th segment of time. Also,
let L(j) = [L(j)

x L(j)
y L(j)

z ]T be the angular momentum of the robot about the
COG. The relationship between the ZMP and the COG within the sagittal plane
is expressed by the following ordinary differential equation:

x(j)
zmp =

−L̇
(j)
y + Mx

(j)
G (¨̄z(j)

G + g) − (z̄(j)
G − z

(j)
zmp)¨̄x

(j)
G

M(¨̄z(j)
G + g)

. (2)

Next, we assume that the motion of the COG in the vertical direction is small
enough. By setting x̄

(j)
G = x

(j)
G + ∆x

(j)
G , eq.(2) can be split into the following two

equations:

x(j)
zmp = x

(j)
G − z

(j)
G − z

(j)
zmp

g
ẍ

(j)
G (3)

L̇(j)
y

Mg
= ∆x

(j)
G − z

(j)
G − z

(j)
zmp

g
∆ẍ

(j)
G (4)

In this research, we assume that the effect of eq.(4) is small and can be compen-
sated by the stabilizing controller installed in our experimental setup. However, it
is possible to consider the effect of eq.(4), and the meheod is shown in the ap-
pendix. Substituting eq.(1) into eq.(3) and solving with respect to x

(j)
G , we obtain

the analytical solution of the position of the COG as

x
(j)
G = V (j) cosh(Tc(t − tj−1)) + W (j) sinh(Tc(t − tj−1))

+
n∑

i=0

A
(j)
i (t − tj−1)i, j = 1, · · · , m (5)

a
(j)
i = A

(j)
i − 1

T 2
c

(i + 1)(i + 2)Ai+2, i = 0, · · · , n − 2 (6)

a
(j)
i = A

(j)
i , i = n − 1, n (7)

where Tc =
√

g/(zG − zzmp), and V (j) and W (j) (j = 1, · · · , m) denote the scalar
coefficients.

Here, eq.(5) includes sinh and cosh in its homogenous part. To prevent the
solution of eq.(5) to diverge as time goes by, V (j) and W (j) (j = 1, · · · , m) should
be determined by using the two-point boundary value problem where both the
initial and the final position of the COG are specified. On the other hand, since the
initial velocity of the COG cannot be specified, it becomes difficult to ensure the
continuity between two COG trajectories. For planning the gait in real-time, the
newly calculated trajectories of the COG are connected to the current ones. Here,
the continuity of the velocity is guaranteed by using the method shown in the next
section.

There are 2m unknowns in eq.(5), i.e., V (j) and W (j) (j = 1, · · · , m). To deter-
mine these unknowns, we set the following 2m boundary conditions:
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Fig. 2. ZMP Trajectory

Initial Condition (Position of COG)

x
(1)
G (t0) = V (1) + A

(1)
0 (8)

Connection of two Segments (Position/Velocity of COG)

j = 1, · · · , m − 1

V (j) cosh(Tc(tj − tj−1)) + W (j) sinh(Tc(tj − tj−1))

+
n∑

i=0

A
(j)
i (tj − tj−1)i = V (j+1) + A

(j+1)
0 (9)

V (j)Tc sinh(Tc(tj − tj−1)) + W (j)Tc cosh(Tc(tj − tj−1))

+
n∑

i=1

iA
(j)
i (tj − tj−1)i−1 = W (j+1)Tc + A

(j+1)
1 (10)

Terminal Condition (Position of COG)

x̄
(m)
G (tf ) = Ṽ (m) cosh(Tc(tf − tm−1))

+ W̃ (m) sinh(Tc(tf − tm−1)) +
n∑

i=0

Ã
(m)
i (tf − tm−1)i (11)

By using eqs.(8), (9), (10), and (11), 2m unknowns V (j), W (j) (j = 1, · · · , m) can
be determined as

y = Z−1w, (12)
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where

y = [V (1) W (1) · · · V (m) W (m)]T ,

Z =




z0 0 · · · 0
Z1 0 · · · 0

0
. . .

...
... Zj

. . . 0
0 · · · 0 Zm−1

0 · · · 0 zm−1




,

z0 = [1 0 0 0],

Zj =
[

cosh(Tc(tj − tj−1)) sinh(Tc(tj − tj−1)) −1 0
Tc sinh(Tc(tj − tj−1)) Tc cosh(Tc(tj − tj−1)) 0 −Tc

]

zm−1 = [0 0 cosh(Tc(tf − tm−1)) sinh(Tc(tf − tm−1))]

w = [x̄(1)
G (t0) − A

(1)
0 · · · A

(j+1)
0 −

n∑
i=0

Ai(tj − tj−1)i

A
(j+1)
1 −

n∑
i=0

iAi(tj − tj−1)i−1 · · · x̄(m)
G (tf ) −

n∑
i=0

A
(m)
i (tf − tm−1)i]T ,

where we can confirm that the matrix Z is invertible by observing the position of
Zj (j = 1, · · · , m − 1) included in Z and rankZj = 2 (j = 1, · · · , m − 1).

Substituting V (j) and W (j) (j = 1, · · · , m) obtained by eq.(12) into eq.(5), we
obtain the trajectory of the COG for a given ZMP trajectory satisfying the initial
and terminal condition for the position of the COG.

4. Real-Time Gait Planning

4.1. Trajectory Connection

We will explain the method for planning the gait in real-time by using Fig.3. Fig.3(a)
and (b) show the trajectories of the ZMP and the COG, respectively, within the
sagittal plane. Let us consider changing the step length from l2 to lnew between
t = t2 and tf . The change of the step length is realized by connecting the newly
calculated trajectories of both the ZMP and the COG to the current ones. While we
can consider several methods for connecting two trajectories, we show two of them
in the following. In both cases, we assume that the new trajectories are connected
to the current ones just when the double-support phase begins.
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4.1.1. Real-Time Trajectory Connection

As for the real-time trajectory connection, the new trajectories are connected to
the current ones at t = t2 as shown in Fig.3(c). It means that the trajectories are
connected just before the step length changes to the new one. By using this method,
the new step length has to be determined before t = t1 since the robot begins to
step at t = t1. Here, if the difference between l2 and lnew is large, the robot has
to move quickly to compensate for the difference. Thus, this method is considered
to be effective when the time for the double-support phase is long or when the
difference between l2 and lnew is small as shown in the next section.

4.1.2. Quasi-Real-Time Trajectory Connection

As for the quasi-real-time trajectory connection, the new trajectories are connected
to the current ones at t = t0 as shown in Fig.3(d). By using this method, the new
step length has to be determined before t = t0. In the new trajectory, the length
of the first step is same as that of the current one while the step length changes to
the new one in the second step. While the new step length has to be determined
earlier than that of the real-time method, we can expect that the motion of the
robot compensating the difference of the step length is not so quick since the length
of the first step is same. Thus, we can also expect that this method is effective when
the time for the double-support phase is short or when the difference between l2
and lnew is large.

4.2. Simultaneous COG and ZMP Planning

In this subsection, we consider the method for smoothly connecting the new trajec-
tories to the current ones.

As shown in the previous section, since the differential equation expressing the
relationship between the ZMP and the COG has been solved by using the two-
point boundary value problem, the initial velocity of the COG cannot be taken into
consideration. Thus, if we simply connect the new trajectories to the current ones,
the discontinuity of the velocity of the COG occurs. In this research, to ensure the
continuity of the velocity of the COG, the parameters defining the ZMP belonging
to the first segment of time is also set to be unknowns and is calculated smoothly
connecting to the current one. By setting A

(1)
i (i = 0, · · · , n) of the new trajectories

as unknown constants, the following boundary conditions in addition to eqs.(8), (9),
(10), and (11) are considered:
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Fig. 3. Overview of Trajectory Connection

Initial Condition (Position of ZMP)

x(1)
zmp(t0) = a

(1)
0 (13)

Terminal Condition for the 1st Section (Position of ZMP)

x(2)
zmp(t1) =

n∑
i=0

a
(1)
i (t1 − t0)i (14)

Initial Condition (Velocity of COG)

ẋ
(1)
G (t0) = W (1)Tc + A

(1)
1 (15)

When n = 2 for the first section, the 2m + n + 1 unknowns (A(1)
0 , · · · , A

(1)
n ,

V (1), W (1), · · · , V (m), W (m)) can be determined by using eqs.(8), (9), (10), (11),
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(13), (14), and (15) as follows:

ỹ = Z̃
−1

w̃, (16)

where

ỹ = [A(1)
0 A

(1)
1 A

(1)
2 V (1) W (1) · · · V (m) W (m)]T

Z̃ =




Z0 0 0 · · · 0
Z11 Z12 0 · · · 0
0 0 Z2 0 · · · 0

0
. . .

...
...

... Zj

. . . 0
0 0 · · · 0 Zm−1

0 0 · · · 0 zm−1




Z0 =
[

1 0 −2/T 2
c

1 t1 − t0 (t1 − t0)2 − 2/T 2
c

]

Z11 =




1 0 0
0 1 0
1 (t1 − t0) (t1 − t0)2

0 1 2(t1 − t0)




Z12 =




1 0 0 0
0 Tc 0 0

cosh(Tc(t1 − t0)) sinh(Tc(t1 − t0)) −1 0
Tc sinh(Tc(t1 − t0)) Tc cosh(Tc(t1 − t0)) 0 −Tc




w̃ = [x(1)
zmp(t0) x(2)

zmp(t1) x
(1)
G (t0) ˙̄x(1)

G (t0)

A
(2)
0 A

(2)
1 · · ·A(j+1)

0 −
n∑

i=0

A
(j)
i (tj − tj−1)i

A
(j+1)
1 −

n∑
i=1

iA
(j)
i (tj − tj−1)i−1 · · ·x(m)

G (tf ) −
n∑

i=0

A
(m)
i (tf − tm−1)i]T

Here, we numerically confirmed that the matrix Z̃ in eq.(16) is invertible.

4.3. Discussion

We first note that, by using the proposed method, the COG trajectory can be
calculated very fast since the analytical solution is used. Only the time-consuming
calculation is the inverse of the matrix Z̃. Assuming the ZMP trajectory for 3 steps
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and m = 9, the size of the matrix Z̃ becomes 20 × 20, we confirmed that the
calculation time is short enough. Also, we note that, since the element of Z̃ does
not include the step length, the inverse of the matrix Z̃ can be calculated off-line.
Also, in the simulation and the experiment, in addition to the initial condition for
the position of the ZMP (eq.(13)) and the terminal condition for the position of
the ZMP in the first section (eq.(14)), we also took the initial condition for the
velocity of the ZMP and the terminal condition for the velocity of the ZMP in the
first segment of time into consideration.

We also note that, while we explained the proposed method by using the motion
within the sagittal plane, we can easily extend the method to the 3D cases. As for
the 3D motion of the robot, we can find one of the features of our proposed method.
In our method, the ZMP trajectory of the first section is calculated along with the
COG trajectory. When the robot is tracking the trajectory of the first section, the
robot is in the double support phase. Thus, in our method, the ZMP trajectory in
the double support phase is deviated from a line including two positions of steps.
When the position of the step is changed, the motion of the robot is compensated
since the ZMP trajectory is deviated as shown in the next section.

5. Simulation

We performed simulation by using the OpenHRP12,13. We calculated the ZMP
and the COG trajectories by using the proposed method. These trajectories are
transformed to the trajectories of each joint by using the Resolved Momentum
Control14, and the humanoid robot is driven by the joint angle command. As a
model of a humanoid robot, we used the HRP-2 15 whose height and weight are h =
1.57[m] and m = 57[kg], respectively. In the simulation, the humanoid robot walks
for 10 steps. At the beginning of the double support phase of the first eight steps,
the new trajectories are connected. Among these steps, the step length changes in
the fifth step.

First, we show the simulation result of the real-time trajectory connection
method. The results of simulation are shown in Figs. 4, 5, 6, and 7. In the sim-
ulation shown in Fig.4, the time for the single and the double support phases are
set as Ts = 0.8[sec] and Tdbl = 0.2[sec], respectively. In the fifth step, the step length
changes from l = 0.05[m] to lnew = 0.15[m]. In the fifth step, the ZMP trajectory
deviates from a line(Fig.4(e)). This is because, since the step length becomes larger,
the COG has to be accelerated. To accelerate the COG, the ZMP shifts backward.
Since the amount of deviation is large, the robot falls down as shown in Fig.5.

On the other hand, in the simulation shown in Fig.6, the step length changes
from l = 0.11[m] to lnew = 0.12[m]. Since the amount of change of the step length
is small, the deviation of the ZMP position is also small.

In the simulation shown in Fig.7, the time for the double support phase is
Tdbl = 1.5[sec]. Since the time for the double support phase is long, the deviation
of the ZMP position in the fifth step is small. Thus, we can see that the real-time
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(a ) ZMP in the  sagitta l plane (b) COG in the  sagitta l plane
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(d) COG in the  fronta l plane
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(f) COG in the  sagitta l-fronta l planes
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(c) ZMP in the  fronta l plane

(e ) ZMP in the  sagitta l-fronta l planes
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Fig. 4. Real-time trajectory connection where the step length of the 5th step changes from 0.05[m]
to 0.15[m](Ts = 0.8[sec], Tdbl = 0.2[sec])

(a) �=1.0 [sec] (b) �=3.5 [sec] (c) �=6.0 [sec]

(d) �=8.5 [sec] (e) �=9.2 [sec] (f) �=10.0 [sec]

Fig. 5. Snapshot of the Real-Time Trajectory Connection

trajectory connection method is effective when the amount of change of the step
position is small or when the time for the double support phase is long. We note



October 8, 2004 18:22 WSPC/INSTRUCTION FILE ws-ijhr

12 Harada, Kajita, Kaneko, and Hirukawa

(a ) ZMP in the  sagitta l plane (b) COG in the  sagitta l plane
time[sec]

x[m]

2 4 6 8 10 12 14
0

0.2
0.4
0.6
0.8

1

y[m]

time[sec]
2 4 6 8 10 12 14

-0.1

-0.05

0

0.05

0.1

(d) COG in the  fronta l plane
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(f) COG in the  sagitta l-fronta l planes
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(c) ZMP in the  fronta l plane

(e ) ZMP in the  sagitta l-fronta l planes
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Fig. 6. Real-time trajectory connection where the step length of the 5th step changes from 0.11[m]
to 0.12[m](Ts = 0.8[sec], Tdbl = 0.2[sec])

that, in our previous paper, we used the real-time trajectory connection method
and the pushing manipulation of a large object was realized stably regardless of the
mass of the object16.

The simulation result of the quasi-real-time trajectory connection method is
shown in Figs.8 and 9. While the step length changes from l = 0.05[m] to lnew =
0.15[m] in the fifth step, the robot can keep balance as shown in Fig.9. As for
the quasi-real-time trajectory connection method, the new step length has to be
determined earlier than that of the real-time trajectory connection method. The
difference of time is same as the time for the double support phase. Thus the quasi-
real-time method is considered to be effective when the time for the double support
phase is short.

6. Experiment

Then we performed experiment using the humanoid robot HRP-215. In the experi-
ment, the operator holds a hand of the HRP-2. The force/torque sensor is attached
at the wrist of the HRP-2, and the position of the step is changed depending on
the information from the force/torque sensor. The quasi-real-time trajectory con-
nection method was used. The time for the single and double support phases are set
as Ts = 0.7[sec] and Tdbl = 0.1[sec], respectively. The experimental result is shown
in Fig.10. It is just like navigating a blind person by holding his/her hand.
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(a ) ZMP in the  sagitta l plane (b) COG in the  sagitta l plane
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(f) COG in the  sagitta l-fronta l planes
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(e ) ZMP in the  sagitta l-fronta l planes
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Fig. 7. Real-time trajectory connection where the step length of the 5th step changes from 0.05[m]
to 0.15[m](Ts = 0.8[sec], Tdbl = 1.5[sec])
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Fig. 8. Quasi-real-time trajectory connection where the step length of the 5th step changes from
0.05[m] to 0.15[m](Ts = 0.7[sec], Tdbl = 0.1[sec])
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(a) �=2.5 [sec] (b) �=5.0 [sec] (c) �=7.5 [sec]

(d) �=10.0 [sec] (e) �=12.5 [sec] (f) �=15.0 [sec]

Fig. 9. Snapshot of the Quasi-Real-Time Trajectory Connection

7. Conclusion

In this paper, we proposed a new style of real-time gait planning by a humanoid
robot. In our proposed method, the ZMP and COG trajectories are simultaneously
planned. Also, for planning the gait in real-time, two methods for connection of
trajectories are considered. The effectiveness of the proposed method is confirmed
by simulation and experimental results.

As a future research, we plan to include the visual feedback for the motion of a
humanoid robot. Finally, we would like to express our sincere gratitude for Dr.Fumio
Kanehiro, Mr. Kiyoshi Fujiwara, Mr. Hajime Saito, Dr. Mitsuharu Morisawa, and
Dr. Kazuhito Yokoi who are the humanoid robotics researchers in AIST for their
valuable discussions.
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Appendix A. Compensation of Angular Momentum

In Section 3, we split eq.(2) into eqs. (3) and (4), and gait planning was performed
based on eq.(3). Here, the effect of eq.(4) is assumed to be small and is omit. In
this section, we consider the effect of eq.(4).

In most cases, since the left-hand side of eq.(4) is complex, we cannot solve
analytically for ∆x

(j)
G in its original form. Thus, we consider expressing the left-

hand side of eq.(4) by the fourier series2:

L̇(j)
y

Mg
=

c
(j)
0

2
+

∞∑
i=1

c
(j)
i cos

(
2πi(t − tj−1)

tj − tj−1

)

+
∞∑

i=1

d
(j)
i sin

(
2πi(t − tj−1)

tj − tj−1

)
, (A.1)

where

c
(j)
i =

2
T

∫ tj

tj−1

L̇(j)
y

Mg
cos
(

2πi(t − tj−1)
tj − tj−1

)
dt, (A.2)

d
(j)
i =

2
T

∫ tj

tj−1

L̇(j)
y

Mg
sin
(

2πi(t − tj−1)
tj − tj−1

)
dt. (A.3)
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Substituting eq.(A.1) into eq.(4) and solving with respect to ∆x
(j)
G , we obtain

∆x
(j)
G =

C
(j)
0

2
+

∞∑
i=1

C
(j)
i cos

(
2πi(t − tj−1)

tj − tj−1

)

+
∞∑

i=1

D
(j)
i sin

(
2πi(t − tj−1)

tj − tj−1

)

+∆V (j) cosh(Tc(t − tj−1)) + ∆W (j) sinh(Tc(t − tj−1)), (A.4)

where

Ci = ci

/(
1 +

(
2πi

Tc(tj − tj−1)

)2
)

, (A.5)

Di = di

/(
1 +

(
2πi

Tc(tj − tj−1)

)2
)

. (A.6)

While eq.(A.4) includes infinite series, we consider approximating them by cutting
at the certain order. For example, approximating them by the n-th order series,
we can determine the unknown parameters ∆V (j), ∆V (j), C

(j)
i (i = 0, · · · , n), D

(j)
i

(i = 1, · · · , n) by using the method shown in Section 3.
The result of simulation is shown in Fig.11. In this simulation, the humanoid

robot HRP2 walks for three steps without going forward. The ZMP trajectory
within the lateral plane is shown in Fig.11(a),(b), and the error between the desired
and the actual ZMP trajectories is shown in Fig.11(c),(d). Although we roughly
approximate by setting n = 3, the error of the ZMP trajectory is small. This is
because the error itself was not large before it is compensated.
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(a)ZMP trajectory with compensation of
    angular momentum

(b)ZMP trajectory without compensation of
    angular momentum

(c)ZMP error with compensation of
    angular momentum

(d)ZMP error without compensation of
    angular momentum
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Fig. 11. Simulation Result of Angular Momentum Compensation


