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Abstract

Acoustic metamaterials (AM) have emerged as an academic discipline within the last decade. Metamaterials can

exhibit high transmission loss at low frequencies despite having low mass per unit area. This paper investigates

the possibility of using AMs for increasing the sound insulation of finite single leaf walls (SLW), focusing

on the coincidence effect problem. Formulas are derived using a variational technique for the forced sound

transmission of finite SLW with a coupled array of two degree of freedom resonators. An analytical model is

presented and the effects of the band gap in sound transmission and radiation are analyzed and compared to

the single degree of freedom case. Moreover, numerical simulations verify the two degree of freedom model.

Finally, some conclusions are drawn regarding the effectiveness of the proposed model, possible applications,

and future work.
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1 INTRODUCTION

The importance of sound insulation has increased in cities with the ever-growing population. Buildings are in

closer proximity to each other. Also growing number of vehicles has given rise to noise pollution in cities,

which in-turn has necessitated sound insulation in buildings. In offices, it is essential to keep the noise level

at the minimum to enhance employee efficiency [1, 2, 3]. In schools, audio comfort is one of the primary

conditions necessary for an effective learning environment.[4].

Acoustic metamaterials have emerged as an academic discipline within the last decade. The definition may

be broadly interpreted as systems or materials that display (as a whole) extraordinary properties not found in

natural materials with respect to sound and vibration characteristics, such as negative apparent mass and/or bulk

modulus. Metamaterials can show high transmission loss (TL) at low frequencies despite having low mass

per unit area [8]-[11]. They owe this behavior to internal subwavelength periodic structures. One of the most

important characteristics of the AM is the so-called band gaps (BG), a frequency region where wave propagation

is not possible. This property shows great promise to be a good tool to be used in sound insulation, absorption,

and even radiation. Sound insulation of walls in buildings or vehicles is a broadband problem, and for a single

homogeneous structure, the sound insulation is mainly given by the mass per unit area of the wall, which leaves

not much room for improvement [6, 7].

This paper investigates the possibility of using AMs for increasing the sound insulation of single leaf walls,

focusing on the coincidence effect problem. The approach utilized in this paper is the same as Brunskog’s

when investigating the forced sound transmission of single leaf walls using a variational technique [14] and

a continuation of the authors work in [21]. In the present research formulas are derived for the forced sound

transmission of a finite single leaf wall with a coupled array of two degree of freedom resonators. An analytical

model is presented for this case, and the effects of the band gap in sound transmission and radiation are

analyzed. The developed model is restricted to the low frequency range where the wavelengths of the wall is

much longer than the periodic distance of the resonators. Numerical simulations are carried out to check the

analytical model results and also parameter optimization is done. Moreover, a comparison between the SDOF



Figure 1. (a) A finite wall of dimensions a×b coupled with a series of mass-spring resonators located inside a

rigid baffle in the x− y plane, at z = 0. (b) Simplified diagram of a small section

and the 2DOF is presented and conclusions drawn.

2 THEORY

This section will present the theory utilized in this paper. The variational formulation of the problem used

throughout this study is based on Brunskog’s work [14] and is extended for the case described in the following

section.

2.1 Problem description

Consider a finite thin plate with mass per unit area m′′
p lying in the x − y plane coupled with periodically

attached resonators as seen in figure 1a. The plate is located inside a rigid baffle at z = 0. For z < 0 the

acoustic field consists of an incident plane wave, a reflected plane wave, and one scattered field due to the

motion of the finite wall. On the positive side of z only the transmitted wave is present (pt ). The resonators

have mass m′′
r , stiffness s′′, and mass moment of inertia j′′r , all per unit area. Structural damping of the spring is

considered by assigning the inherent losses to the spring element. For harmonic motion this can be represented

by a complex stiffness s′′ = s′′(1+ iηs) where ηs is the damping loss factor and s′′ is the real part of the

complex spring constant. The transverse displacement of the resonators is wr and the plate wp. The distance to

a reference point is lp. It is of interest to analyze the transmission through this structure and the influence of

the resonators.

2.2 Model Development

The following expression can be developed to describe the model

∇
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This modified Helmholtz equation is the same as the one developed for the SDOF resonators case [21] with an

extra term now including the rotation of the mass of the resonators. For simplicity this approximate expression

was developed considering rotation only around the x axis. The natural resonance is ω0 =
√

s′′/m′′ and the

angular resonance is ωθ =
√

l′′2p s′′/ j′′r . From Eq 1, it can be seen that the modified wavenumber is
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2.3 The wall impedance

Re-writing and developing Eq. 1 it is possible to get an expression for the wall impedance. It can be interpreted

as the impedance operator of the plate plus a term controlled by the resonators. Assuming that the traveling

wave is in the form of e−i(kxX+kyY ), kx and ky being wavenumbers, the wall impedance is reduced to
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In order to include the losses in the plate, the loss factor ηp is included as an imaginary part of the Young’s

modulus E −→ E(1+ iηp) and by that also to the bending stiffness B′ −→ B′(1+ iηp).

2.4 Radiation impedance

The formula of the radiation impedance of a finite plate utilized in this paper was derived and explained in a

previous study [14], so here it is only presented for clarity
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where a and b are the dimensions of the plate in the x and y direction, S is the area of the plate (S = ab), k

is the wavenumber on air, µx = sin(θ)cos(ϕ), and µy = sin(θ)sin(ϕ), θ is the evaluation angle and ϕ is the

azimuth angle.

2.5 Effective mass

It is of interest to develop an expression of the effective mass (also referred to as apparent mass) of the proposed

model. It is straightforward to do so from the wall impedance
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An approximate expression can be found if losses in the spring are neglected
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In this form it is much easier to understand the behavior of the effective mass. For low frequencies the mass of

the plate and resonators are added. This means that, in this frequency region, the proposed model is effectively

working as a wall with mass equal to the sum of the plate and resonators. If this frequency region is also

below the angular resonance, the mass moment of inertia is subtracted making the effective mass smaller. This

expression show a complex interaction between the resonances, even in this simplified model.

2.6 Diffuse field transmission

The same approach utilized in Brunskog’s paper [14] will be used in this study. For the sake of simplicity, the

derivation of the equations will not be repeated here. The diffuse field transmission using Paris formula reads
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where ρ is the density of air, c is the speed of sound in air, θ is the incidence angle, ϕ is the azimuth angle,

z f is the radiation impedance and z is the wall impedance, equation 4 and 3 respectively in this paper. It is

assumed that the resonators do not contribute to the sound radiation. In the following sections transmission loss

(TL) will be used to analyze the proposed model. It is defined as

R = 10log
1

τ
(8)

3 RESULTS AND ANALYSIS

A test case will be presented in this section to analyze the analytical model and the sound insulation behavior

of the proposed structure. A brick wall with dimension 2×3×0.05m is used. Material properties are shown in

Table 1. The stiffness of the springs are selected specifically to tune the resonant frequency of the resonators

above the coincidence frequency of the plate. As known from previous research [21], this is the optimized

design in terms of sound insulation. The mass ratio M is one. The mass moment of inertia and the distance to

the reference point are selected to tune the angular resonance below the coincidence frequency.

Table 1. Material properties

Property Value

Young’s modulus 17×109[Pa]
Density 2000[Kg./m3]

Poisson’s ratio 0.2

This case is considering losses in the springs and the plate. Losses are η = 0.03 for both. Results are presented

in Figure 2.

The effect of the angular resonance is barely visible as it has been damped. As expected the general behav-

ior of the structure remains the same as the SDOF model. For frequencies above the band gap the TL of

the metamaterial is lower than the one of just the plate. So there seems to be a trade-off between the two

approaches.

4 NUMERICAL SIMULATION

In order to validate the results of the analytical model a numerical simulation was carried out using Comsol

software. Solving the diffuse case numerically would take a long time and make the simulation harder to set

up, so a single incidence angle of θ = π/6 was chosen (more incident angles were tested but not shown for

the sake of brevity). The case analyzed in this test is a brick wall as used in section 3 but with dimensions

15× 3× 0.04m and losses η = 0.003 in order to be able see the angular resonance. The angular resonance

is tuned below the natural resonant frequency of the system. Results are shown in figure 3. The numerical

result seem to validate the analytical one. The mismatch seen in higher frequencies may be because of meshing

issues. This is going to be investigated further in the future.

5 OPTIMIZATION

The objective of optimization is to find a combination of mass ratio, spring loss factor,spring stiffness, mass

moment of inertia and the distance to the reference point that would provide the best possible sound insulation.



Figure 2. Results for the case considering structural losses of the plate and springs a) wave speed, b) transmis-

sion loss, and c) effective mass. Vertical dashed line indicates BG limits of SDOF case and vertical dashed-dot

line the angular resonant frequency

Figure 3. Analytical and Comsol simulation for incidence angle θ = π/6



Figure 4. Constrained parameter optimization TL results. Vertical dashed line indicates BG limits. Red vertical

dashed-dot line indicates angular resonant frequency

However, defining what is better in terms of sound insulation is not a trivial task. ISO standard 717 [19] defines

single-number quantities for airborne sound insulation of building elements such as walls. This provides a solid

base to compare different solutions, at least if considering building structures.

5.1 Cost function

The weighted sound reduction index Rw [19] is the selected value to judge which solution is better. The cost

function used in this paper is

ϕ =

(

1

Rw

)2

(9)

5.2 Constrained Optimization test case

The developed cost function is used to optimize the case presented in section 3. In order to keep the solutions

confined upper and lower bounds were used. The constraints and optimized values are shown in table 2.

Table 2. Constraints used for optimization and optimized values

Property Lower Bound Upper Bound Optimized Value

M 0.001 1 1

ηs 0.001 0.5 0.4255

s′′ 1×104 1×1010 3.477×109

J′′r 10×10−4 1 0.5976

lp 10×10−3 40×10−3 0.0254

A genetic algorithm was used for the optimization (Matlab’s “ga” function). In this way most permutations are

tested, almost ensuring a good result at the cost of efficiency. At this time, efficiency is not a concern so this

is an acceptable drawback. Figure 4 presents the result of the optimization.



The weighted sound reduction index of the optimized metamaterial solution is Rw = 56dB meanwhile the value

for the wall with equivalent mass is Rw = 46dB. Furthermore, the minimum TL value of the optimized structure

is bigger than the minimum value of just the wall. The optimization process seems to have maximized the

frequency range where the transmission loss of the metamaterial is larger than the wall and tuned the BG above

the coincidence frequency as in the SDOF case. The angular resonance was tuned below the band gap. The

coincidence effect and angular resonance are smoothed by the losses in the springs and overall design. This

result is almost identical to the one reached for the SDOF [21]. In other words, no advantage can be seen in

the usage of this model. The feasibility of the optimized values shown in Table 2 are not explored in this study.

On the other hand, for frequencies above the band gap the TL of the wall is higher than the metamaterial.

6 DISCUSSION

The developed analytical model for sound transmission loss of a finite SLW with a coupled array of two degree

of freedom resonators was tested and analyzed. The behavior of the proposed metamaterial structure is on par

with the SDOF model presented in [21]. Around the frequency of the angular resonance there is a fast decrease

in TL followed by an increase, explained by the effective mass. For frequencies above the BG, the mass of the

resonators and the plate are moving out of phase, while below they are in phase. If the frequency region below

the BG is also below the angular resonance, the mass moment of inertia is subtracted making the effective mass

smaller. This model show a complex interaction between the resonances, even in this simplified model. The

developed model is restricted to the frequency range where the wavelengths of the vibrations traveling through

the wall are much longer than the periodic distance between the resonators. This provides a limitation when

designing these types of structures.

The numerical simulation presented in section 5 is an initial step towards the validation of the analytical result.

Further analysis has to be done, including a comparison with experimental data.

Furthermore, it is of interest to discuss the feasibility of the proposed structure as a tool to increase sound

insulation at constant mass per unit area, paying special attention to the coincidence effect problem. The an-

gular resonance does not seem to provide an advantage in terms of sound insulation. The optimization process

finished with an equivalent result to the one obtained for the SDOF case in [21]. It is worth noting that the ap-

proximation presented in this study is intended to illustrate the behavior and influence of the angular resonance

in sound insulation of this type of structure in an easier manner. The real case would be much more complex

and harder to analyze. In future work it would be interesting to validate the analytical model with experimental

data. In order to create and analyze more complex designs it is pertinent to explore the possibilities brought by

numerical methods techniques.

7 CONCLUSIONS

The analytical model developed in this paper is useful to better understand metamaterials composed of two

degree of freedom resonators and how the different parameters affect their behavior. The proposed structure

is an effective sound insulator but present not perceivable advantage over the SDOF case. The possibility of

using springs with high losses and tuning the band gap above the coincidence frequency still emerges from the

optimization process as a possible solution to this phenomenon, rendering the effect of the angular resonance

almost null.
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