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Abstract—This paper investigates the problem of deriv-
ing a white box performance model of Hardware Trans-
actional Memory (HTM) systems. The proposed model
targets TSX, a popular implementation of HTM integrated
in Intel processors starting with the Haswell family in 2013.

An inherent difficulty with building white-box models of
commercially available HTM systems is that their internals
are either vaguely documented or undisclosed by their
manufacturers. We tackle this challenge by designing a set
of experiments that allow us to shed lights on the internal
mechanisms used in TSX to manage conflicts among
transactions and to track their readsets and writesets.

We exploit the information inferred from this exper-
imental study to build an analytical model of TSX fo-
cused on capturing the impact on performance of two
key mechanisms: the concurrency control scheme and the
management of transactional meta-data in the processor’s
caches. We validate the proposed model by means of an
extensive experimental study encompassing a broad range
of workloads executed on a real system.

I. INTRODUCTION

One of the main sources of complexity in parallel pro-

gramming stems from the need to properly synchronize

accesses to shared memory regions. The traditional, lock-

based approach is well-known to be error-prone, even for

experienced programmers [23]. Transactional Memory

(TM) [22] has emerged as a simpler, and hence more

attractive, alternative to lock-based synchronization.

Over the last two decades, the research on TM has led

to many different designs and implementations, either in

software [18], [17], [7], hardware [24], [30], or combi-

nations of both [6]. Software-based TM (STM) systems

rely on software instrumentation to trace memory ac-

cesses and detect the concurrent execution of conflicting

transactions. STM supports a broad range of concurrency

control algorithms, but the overheads resulting from

software-based tracking of transactions’ data accesses

can severely hinder application performance [4]. These

overheads can be avoided by delegating the implementa-

tion of the TM abstraction to hardware mechanisms, an

approach that goes under the name of hardware trans-

actional memory (HTM). While a number of alternative

HTM designs have been proposed in the literature, the

HTM implementations that are currently commercially

available [24], [30] are built as relatively non-intrusive

extensions of the cache coherency algorithm and, as

such, suffer from several restrictions [16], [20]. Overall,

make the performance of HTM is much dependent on a

number of workload parameters and architectural design

choices [16], [20], [28], [15], [10] — which makes the

problem of predicting the performance achievable by

HTM-based applications a very challenging task.

This paper takes a step towards clarifying our under-

standing of HTM’s performance by developing what is,

to the best of our knowledge, the first analytical model

of an HTM system ever published in the literature. The

presented model targets a popular implementation of

HTM, which has been integrated in mainstream Intel

processors since 2013 and goes under the name of

Transactional Synchronization Extensions (TSX).

The first challenge we had to face in order to enable

the construction of an analytical model of TSX was to

obtain information on some key internal mechanisms,

which are undocumented by Intel and undisclosed by

previous literature. We addressed this issue by designing

a set of experiments that allowed us to gain insights

on how TSX resolves conflicts between transactions and

tracks memory accesses across the cache hierarchy.

Based on our experimental findings, we develop an

analytical model focused on capturing the dynamics

of two mechanisms that have a crucial impact on the

performance of HTM systems: the schemes employed to

manage conflicts among concurrent transactions and to

track the memory regions accessed by transactions. The

model allows us to gain a deeper understanding of the

effect that design choices, parameterization and work-

load characteristics have on performance. Moreover, the

model may serve as a building block to implement

performance prediction and optimization schemes for

applications that are built on top of TSX.

We validate the proposed model using a real system

and a set of synthetic micro-benchmarks. The exper-

imental results show that the model can predict the

application’s throughput and abort rate with < 10% error

for a broad range of workload settings.
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II. BACKGROUND

HTM applications use compiler directives to demar-

cate the begin and end (commit) transactions. The code

enclosed between these two directives is executed atom-

ically and in isolation, as if it was protected by a mutex

lock. The TM runtime executes the code speculatively

and leverages the underlying cache coherence protocol

to detect and resolve conflicting accesses to memory.

Current HTM systems provide a best-effort imple-

mentation of the TM abstraction, in the sense that

transactions are not guaranteed to commit even if they

run in absence of concurrency. This is due to the fact

that existing HTM systems use the processor’s cache

hierarchy to track transactional accesses, and rely on

the cache coherence protocol to detect conflicts. As a

consequence, transactions whose footprint exceeds the

processor’s cache capacity are subject to capacity aborts.

A transaction can also experience other types of spurious

aborts (i.e., aborts not imputable to conflicting accesses),

because of external events like page faults, context

switches and system calls.

HTM-based applications must, thus, rely on a fall-

back mechanism to guarantee that a transaction eventu-

ally commits. The default approach is to allow transac-

tions to execute in a software fall-back execution path,

guarded by a Single Global Lock (SGL). When a hard-

ware transaction aborts, it can acquire the SGL instead

of retrying its execution in hardware. The SGL is also

read by each transaction upon its start. Therefore, when

a transaction activates the fall-back path by acquiring the

SGL, any concurrent hardware transaction is aborted,

and only restarted when the lock becomes free again.

This approach ensures that a transaction that acquires

the SGL executes in isolation from other transactions.

The downside is that it serializes the execution of trans-

actions, which can severely decrease performance.

The policy governing the retry logic of a transaction

(upon an abort event) can be implemented either in

hardware or in software. The latter approach provides

more flexibility, allowing for tuning not only the max-

imum number of hardware attempts, which we call the

budget, but also how such budget should be consumed

in presence of different abort types [16].

III. DISSECTING INTEL’S HTM IMPLEMENTATION

We investigate two key aspects of TSX’s HTM imple-

mentation: i) how it manages conflict among concurrent

transactions, and ii) how a transaction’s metadata are

maintained in the cache hierarchy and what impact this

has on its capacity limitations.

Intel has disclosed limited information on the internal

mechanisms employed by its HTM implementation. The

information reported in the rest of this section is either

based on previous external studies [28], [29], or inferred
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Figure 1: Probability of capacity abort when accessing a

different number of cache lines. Comparing a real system

(HAR) vs a simulator modelling only L1 (SIM).

via experiments designed explicitly to shed light on the

internals of Intel’s HTM implementation. The results

reported in this section and in the remainder of this paper

are based on a i7-5960X eight-core processor running at

3.0GhZ, equipped with 32 GB RAM and Ubuntu 15.04.

A. Conflict detection and resolution.

Existing literature [28], [29] has already pointed out

that Intel’s HTM implementation relies on an eager

conflict detection scheme, i.e., when a conflict arises

between two transactions, one of the two transactions

is immediately aborted. Another relevant aspect of the

conflict detection schemes in existing HTM implemen-

tations is that, since they are built on top of a pre-

existing cache coherency protocol, the conflict detection

granularity is equal to the cache line size, which is, for

our target Intel CPU, 64 bytes. The conflict resolution

policy used by TSX, i.e., which transaction is aborted in

the presence of a conflict, is an aspect that, to the best

of our knowledge, has not been documented by Intel

and has not been systematically investigated by previous

studies. We tackled this issued by designing an exper-

iment that forces two transactions to issue conflicting

memory accesses (load or store of one memory word)

in different orders, by injecting properly tuned delays

during transaction’s execution. This experiment revealed

that TSX uses a a “last requester wins” policy, i.e., if

two concurrent transactions conflict (i.e., they access the

same memory word and at least one is a write), the first

transaction to have performed the access is aborted.

B. Capacity limitations.

Intel has not disclosed how transactional metadata are

maintained by its HTM implementation, but previous

studies [28], [29] have already partially answered this

question, reaching the following conclusions:

• Writes issued in a transaction are stored in the L1 data

cache. However, the maximum number of writes that

can be executed by a transaction is smaller than what
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could be accommodated by the entire L1 data cache,

around 450 cache lines vs a total of 512. Nguyen [29]

hypothesized that this reduction of the effective capacity

of the L1 cache could be explained by considering that a

transaction must also have sufficient space to store other

program metadata, like the head of the program stack.

• Read-only transactions can perform a much larger

number of reads than the L1 and L2 caches can possibly

store, and the maximum read capacity is around half of

the total L3 cache size. In the light of these observations,

Nguyen [29] therefore hypothesised that the transactional

reads are maintained in L3. Unlike L1, L3 is shared

among all the cores of the same processor, as well as

by programs code and data — which may explain why

a transaction’s read capacity is smaller than the size of

the entire L3 cache.

In this study, we address two questions that are still

unanswered by previous studies: i) how many cache

lines in L1 are occupied by additional metadata main-

tained by transactions (i.e., metadata not used to track

the transaction readset and writeset)? and ii) what is the

effective capacity of transactions that execute a mix of

read and write operations?

To answer these questions we built a simulator of an

L1 cache that uses the same geometry of our reference

processor (8-way associative, 64 sets, 64-bytes cache

lines, 32KB capacity) and implements a Least Recently

Used (LRU) eviction policy. To validate our assumptions

on the internal mechanisms employed in the considered

HTM implementation, we compare the output produced

by the execution of synthetic programs running on the

real system with the output generated by simulating the

execution of the same programs.

Size of additional transactional metadata in L1. To

determine the size of the additional metadata stored by

transactions, we designed the following experiment. We

occupy P cache lines, chosen uniformly at random in the

simulated cache, to emulate the insertion of additional

transactional metadata upon the start of a transaction.

Then we simulate random writes to memory using the

granularity of a cache line. We report a capacity event

in the simulation when we evict one of the cache lines

storing one of the addresses written by the transaction

or one of the additional transactional metadata. We

varied the value of P∈[0,512] and compared the average

number of writes that a transaction could successfully

execute in 50000 simulated and real runs. The value

of P that produces the best match is 3, a value that

appears reasonable especially if one considers that the

transactional metadata may not be cache line aligned and

hence may span multiple cache lines.

Capacity with mixes of read/write operations. Pre-

vious works on the capacity of HTM implementations,

e.g., [29], [28], have considered workloads composed

solely of read-only or write-only transactions. We report

in Figure 1 the probability for a transaction to incur a

capacity exception when attempting to access i distinct

cache-aligned addresses selected uniformly at random,

where each access has probability PW of being a write.

Figure 1 reveals that halving the number of writes

issued by a transaction (PW =0.5) does not lead to a dou-

bling of the effective capacity of transactions, but yields

only a modest increase of the transaction’s capacity —

whose median moves from around 220 to 250 accesses.

We argue that this phenomenon is not imputable to

evictions of (read) cache lines in the L3 cache, which

has a 8MB capacity and can accommodate thousands

of random reads with high probability. We hypothesize,

conversely, that, given the large relative difference in size

between L1 and L3 (32KB vs 8MB), the transaction

capacity is, for non-negligible values of PW , largely

dependent on dynamics taking place at the L1 cache.

In fact, whenever a transaction issues a read access, the

corresponding cache line has to be loaded in the L1

cache. This may cause the eviction from L1 of cache

lines that had been previously accessed by the same

transaction. If the evicted cache line had been written

by the transaction, a capacity exception is triggered. If

the evicted cache line had been read, the transaction does

not have to abort, since the corresponding metadata are

still stored in L3.

We tested our hypothesis using the same L1 simulator

mentioned above, and, as can be observed in Figure 1,

we obtain a very close match for PW values as small

as 1%. Below this value, as expected, the likelihood

of incurring evictions of cache lines in the transaction’s

readset (stored in L3) becomes non-negligible.

Overall, this study confirms that, for a broad range

of PW values ([1.0 - 0.01]), it is possible to predict the

probability of capacity aborts quite accurately via models

that capture exclusively the behavior of L1 and neglect

the dynamics affecting L3 — which are inherently more

complex given the typically shared nature of L3.

IV. ANALYTICAL MODEL

This section presents an analytical model of Intel’s

TSX. Section IV-A presents the model’s key parameters

and assumptions. Section IV-B illustrates the methodol-

ogy adopted to derive the model. Sections IV-C and IV-D

present a first version of the model that, for the sake

of presentation, does not consider capacity exceptions.

Then, in Section IV-E, we discuss how to extend the

model to encompass also these sources of transaction

aborts. Finally, Section IV-F details how to solve the

model and obtain the predicted KPIs.

A. Key parameters and assumptions

We consider an HTM system with θ threads that, in

a closed loop, execute either a transactional code block
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(TCB) or a non-transactional code block (NTCB). Intel

CPUs support simultaneous multi-threading (SMT) of up

to two threads in the same physical core. When multiple

threads run on the same physical core, they contend for

the core’s hardware resources, including its cache. For

the purpose of this work, we do not model the effects

of SMT. When a thread completes a code block, it starts

a new TCB with probability pt and a new NTCB with

probability 1− pt. A TCB has an average service time,

i.e., CPU demand, of C time units, and a NTCB has an

average service time Cn. The time to complete a TCB

is assumed to be the same, independently of whether

it is executed using HTM or using the software fall-

back path. However, the HTM path has additional costs

for starting (TB) and committing (TC) a transaction.

Likewise, the software fall-back path incurs costs for

acquiring (T l
B) and releasing (T l

C) the SGL.

We model the following retry policy to deal with

transaction aborts: transactions are initially assigned a

budget of B retries; upon an aborts, the transaction’s

budget is decremented by one; if the budget is exhausted,

the transaction is executed using the software fall-back.

A transaction accesses on average L distinct cache

lines, or granules. The timing of such accesses is spread

uniformly at random during a transaction’s lifetime. In

other words, a transaction performs a memory access, on

average, every C/L time units. The granule accessed at

each iteration is chosen uniformly at random over a set

of cardinality D. The probability that a memory access

is a write is denoted PW .

The model assumes that memory accesses issued by

threads running NTCBs do not interfere with the execu-

tion of transactional threads — an assumption that is met,

for instance, by the C++11 data-race-free model [3]. The

model also does not consider aborts caused by interrupts

or page faults. This last assumption simplifies the de-

velopment of the model without significantly impacting

its accuracy, as these sources of aborts are typically

negligible in real-life workloads [16].

In the model a restarted transaction is indistinguish-

able from a transaction that starts for the first time. In

addition, the execution times of code blocks are assumed

to be exponentially distributed i.i.d. variables.

Finally, the model assumes a stable and ergodic sys-

tem [26], so that quantities like abort probabilities and

the mean execution times exist and are finite, and defined

to be either long-run averages or steady-state quantities.

B. Modeling methodology and target KPIs

Our model is based on average value analysis [34]:

it takes as input system parameters, e.g., θ and B, the

average values corresponding to the workload character-

ization, e.g., C and Cn, and it returns average values of

three Key Performance Indicators (KPIs). Specifically,

the model computes the probability that a transaction

aborts, PA, the average throughput of the system, X , and

the average response time of a transaction, R, i.e., the

average time spent by the transaction including multiple

re-executions possibly in the fall-back path.

We model the evolution of the system by means

of a Continuous Time Markov Chain (CTMC) [26].

The CTMC’s vertices represent the states in which

the system can be and the edges represent the rates

at which the system transitions from one state to an-

other. A CTMC’s state is uniquely identified by a tuple

〈θB , θB−1, . . . , θ0, θn〉, where θi, i = B, . . . , 1 indi-

cates the number of threads that are running a TCB

and still have i hardware retries remaining from their

initial budget. θ0 is the number of threads that have

exhausted their budget and have to execute using the

sequential fall-back path. θn is the number of threads

executing a NTCB. Since we are modeling a closed

system where threads constantly execute a code block,

it follows that
∑B

i=0 θi + θn = θ. Overall, the number

of states in the CTMC is equal to the number of ways

in which θ indistinguishable balls can be put into B+2
distinguishable bins, which is given by

(

θ+B+1
B+1

)

[19].

The system transitions from one state to another upon

the completion of a NTCB, and upon the commit or

abort of one or more transactions. When θ0 = 0, threads

executing hardware transactions can execute in parallel.

When θ0 > 0, hardware transactions are stalled until

the global lock is free, and the execution of threads with

depleted budget is serialized. Threads executing a NTCB

are not affected by the acquisition of the global lock.

We denote by μt,s the rate at which a thread completes

a transactional code block, either successfully or prema-

turely because of an abort, in the current state s. Note

that, whenever the value of a variable is state-dependent,

we shall specify the identifier of the current state, s, as a

subscript. We denote by μn = 1/Cn the rate at which a

NTCB is completed and by μf = 1/C the rate at which a

thread completes a TCB in the fall-back path. In general,

let the system be in a state s where there are t hardware

transactions running concurrently and n threads running

a NTCB. Then, a state transition happens if i) any of

the t transactions commits; ii) any of the t transactions

aborts; or iii) any of the n NTCBs is completed. The

first transition is triggered at a rate given by the product

of the rate at which a TCB is completed times the (state-

dependent) probability that the completion is caused by

a commit times the number of concurrent transactions,

i.e., tμt,s(1 − pa,s). Following a similar reasoning, the

completion rates for the second and third events are

tμt,spa,s and nμn, respectively. If a transaction aborts

and fall-backs to acquiring the global lock, it induces

the abort of the other t − 1 transactions and decreases

their budget by one. The full set of transition rates is

reported in Table I and is based on the above reasoning.

To compute μt,s and pa,s we derive analytical expres-
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Source state Destination State Transition Rate Corresponding Event

[θB , .., θ0, θn] [θB , .., θ0, θn] θnμn(1 − pt) A thread finishes a NTCB and starts another NTCB

[θB , .., θ0, θn] [θB + 1, .., θ0, θn − 1] θnμnpt A thread finishes a NTCB and starts a TCB

[θB , .., θi, ..., θ1, 0, θn] [θB + 1, .., θi − 1, ..., θ1, 0, θn] θiμt,s(1 − pa,s)pt A thread with i > 0 retries left commits a TCB and starts another TCB

[θB , .., θi, ..., θ1, 0, θn] [θB , .., θi − 1, ..., θ1, 0, θn + 1] θiμt,s(1−pa,s)(1−pt) A thread with i > 0 retries left commits a TCB and starts a NTCB

[θB , .., θi, ..., θ1, 0, θn] [θB , .., θi − 1, θi−1 + 1, ..., θ1, 0, θn] θiμt,spa,s A thread with i > 1 retries left aborts a TCB and restarts

[θB , .., θi, ..., θ1, 0, θn] [0, θB , .., θi+1, .., θ2, θ1, θn] θ1μt,spa,s A thread with 1 retry left aborts a TCB and falls-back

[θB , .., θ1, θ0, θn] [θB + 1, .., θ1, θ0 − 1, θn] μfpt A thread completes a TCB in the fall-back path and starts another TCB

[θB , .., θ1, θ0, θn] [θB , .., θ1, θ0 − 1, θn + 1] μf (1 − pt) A thread completes a TCB in the fall-back path and starts a NTCB

Table I: State transition diagram.

sions that consider abort events due exclusively to con-

flicts between transactions, while neglecting cascading

abort events caused by the abort of transactions with

only 1 retry left. In fact, even in presence of multiple,

concurrent cascading aborts, the transition in the CTMC

is triggered by the abort (caused by a conflict or by a

capacity exception) that triggered the domino effect in

the first place. Also, the transition rates in Table I are

computed assuming the independence of the abort events

affecting different threads, and cascading abort events are

clearly not independent.

Once the CTMC is instantiated with the transition

rates, we obtain its stationary probability vector �π1.

Based on �π, we compute the global average throughput

and abort probability as the weighted average of the

probabilities �πs of being in state s and the corresponding

throughput/abort probability in that state. It is at this

stage that we account for the effects of cascading aborts

triggered when the fall-back path is acquired, by comput-

ing adjusted values for μt,s and pa,s, denoted as μ′

t,s and

p′a,s. This allows for accurately reflecting these cascading

abort dynamics in the computation of the target KPIs.

C. Modelling aborts due to conflicts

As discussed in Section II, TSX employs an eager

conflict detection and a “last requester wins” conflict

resolution policy. After a hardware transaction T ac-

cesses the i-th granule and until its i+1-th access, there

is an average time interval of length C/L. During this

time, T can be aborted because of conflicting accesses

by concurrent transactions on any of the i data items T
has accessed. If we assume that the sequence of accesses

to granules issued by concurrent transactions forms a

Poisson process, we can express the probability density

function corresponding to the event that a conflicting

access is generated at time t, with t ∈ [0, C/L] as:

1This can be achieved by solving the set of linear equations
expressed by π ·Q=0, where Q is the infinitesimal generator matrix of
the CTMC [26]. We use a numerical solver [25] that relies on the QR
decomposition algorithm [33], which has O(n3) time complexity and
O(n2) space complexity, n being the number of states of the CTMC.

fc,s(i, t) = Hs(i)e
−Hs(i)t

Hs(i) is the rate at which concurrent transactions

conflicts on any of the i granules accessed by T in

state s, and it can be computed as Hs(i) = λsPh(i)PI ,

where: λs is the rate at which concurrent threads issue

accesses to memory words; Ph(i) is the probability that a

concurrent access targets one of the i granules previously

accessed by T ; PI is the probability that an access

by a concurrent transaction T ′ to a granule previously

read/written by T results in a conflict.

During the execution of a transaction, a thread issues

a memory access every C/L time units. Before starting

a transaction, however, a thread incurs a cost TB to

initialize the transaction. Similarly, when committing

(resp., aborting), the thread incurs a cost TC (resp., TA).

A transaction does not issue any memory access during

these lapses of time. Hence, assuming that TC ≈ TA,

a transactional thread executes a memory access, on

average, every (C +TA +TB)/L time units. Hence, the

model computes λs =
θt,s−1

(C+TA+TB)/L , where θt,s is the

number of transactional threads that are active in a given

CTMC state. Because we are assuming that memory

granules are chosen uniformly at random from a pool

of cardinality D, Ph(i) = i/D.

Finally, two concurrent accesses yield a conflict if at

least one of the two is a write: PI = 1− (1− PW )2.

D. Response time and abort probability

We now compute the mean response time Rt of a

single execution of a transaction T using HTM, assum-

ing that transactions can only be aborted because of

conflicts. This response time does not include multiple

re-executions of the same transaction: Rt is the average

time since the (re)start of T and its completion, inde-

pendently of whether it is successful.

We first introduce the probability that a transaction

T manages to successfully perform i memory accesses

in state s, PR,s(i). PR,s(i) has a recursive expression,

because it is given by the product of the probability that

T manages to access i− 1 granules and the probability
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that T then manages to access the i-th granule without

experiencing aborts due to a data conflict.

The average time between two memory accesses is

C/L. The probability that a transaction that has accessed

i granules is not aborted in such lapse of time is:

PR,s(i) = PR,s(i− 1)

(

1−

∫ C/L

0

fc,s(i− 1, t)dt

)

= PR,s(i− 1)
(

e−Hs(i−1)C/L
)

(1)

PR,s(i) is used to obtain Rt,s. Rt,s corresponds to

the cost of starting a transaction plus the sum of two

contributes: i) one corresponding to the case in which

T commits (RC
t,s); and, ii) one corresponding to the

abort case (RA
t,s). Namely Rt,s = TB + RC

t,s + RA
t,s.

A transaction T commits if it successfully performs L
memory accesses and it is not aborted during the final

commit operation. In this case, its average execution

time, including the final validation phase, is equal to

C + TC . The probability that the validation phase is

successful is computed as 1 minus the probability that T
is aborted in a time window of duration TC , after having

accessed L granules. Hence,

RC
t,s = PR,s(L)(C + e−Hs(L)TCTC) (2)

We now compute RA
t,s. Let us first compute the

probability density function (PDF) corresponding to the

event that T successfully accesses i granules and aborts

at time t, with t ∈ [0, C/L], before accessing the i+ 1-

th granule. By leveraging the assumption of independent

accesses to granules, this PDF is PR,s(i)fc,s(i, t). The

response time corresponding to the event is iC/L+ t.
The probability that T successfully accesses all the

L granules and then is aborted at time t, t ∈ [0, TC ],
during the final validation phase is PR,s(L)fc,s(L, t).
The corresponding response time is TB + C + t.

The execution time of T if T manages to perform i
accesses and is aborted at time t after the i-th access is

equal to TB+iC/L+t. RA
t,s is computed as the weighted

average that T is aborted after having accessed i granules

and while trying to access the i + 1-th, with i ranging

from 1 to L − 1. T can also abort during the commit

phase, because of a conflicting access towards any of the

L accessed granules. Using the shorthand W = C/L, we

can express RA
t,s as:

R
A
t,s =

L−1
∑

i=1

PR,s(i)

∫ W

0

iWtHs(i− 1)e−Hs(i)tdt

+ CPR,s(L)(1− e
−Hs(L)TC )

We can now compute the abort probability pa,s and

average rate μt,s at which transactions complete, in a

state s of the CTMC, as:

pa,s = 1− PR,s(L)e
−Hs(L)TC , μt,s = R−1

t,s (3)

E. Modeling capacity aborts

The model presented so far captures only the aborts

triggered by conflicts between transactional operations.

We now extend the model to capture also capacity aborts.

We note P (c ≤ i) the probability that a transaction

experiences a capacity abort in any of its first i memory

accesses, conditioned to that it does not experience a data

conflict. Assuming to know how to obtain P (c ≤ i), we

can compute an updated version of the probability that

T successfully manages to access i granules as

P
′′

R,s(i) = PR,s(i)(1− P (c ≤ i)) (4)

P ′′

R,s(i) takes into account data conflicts, aborts due to

the activation of the fall-back path and capacity aborts.

By replacing PR,s with P ′′

R,s(i) in Equations 2-3, we can

also update the variable pa,s and μt,s, which, we recall,

are used in the definition of the CTMC’s transition rates.

In the light of the findings reported in Section III-B,

our model assumes that a capacity abort can only be

triggered by the eviction of a cache line that was written

by a transaction. In this section we present a model to

calculate the probability of capacity exception at the i-

th accessed granule assuming a N-way associative cache

with a given number of sets. To compute the probability

that a transaction experiences a capacity abort at its i-th
access we compute the probability that two events jointly

happen: i) the corresponding granule is stored in a full

set of the L1 cache, and ii) the cache line selected for

eviction corresponds to a written granule.

We cast the problem of finding this probability to a

variation of the balls-into-bins problem. In our settings,

a ball is an accessed granule, the bins (β) are the sets

of the cache, and the capacity of each bin (γ) is the

associativity of the cache.

Each memory access of a transaction is a ball thrown

at a bin chosen uniformly at random. The variation with

respect to the classic bin-into-balls-problem is two-fold:

i) a ball can be a write or a read ball (with probability

PW , resp. 1 − PW ); ii) if a bin is full, a read ball can

be removed from it (if selected by the eviction policy)

to make room for another ball.

Let us start by considering the simpler case in which

only write accesses are performed. We define a valid

sequence of length i, a sequence of i ball throws such

that no bin overflows, i.e., no bin receives more than

γ balls. The total number of possible sequences of

length i with β bins is βi. These sequences also include

invalid ones, i.e., sequences in which bins can have

been assigned more than γ balls. We note Mβ,γ,i the

number of valid sequences after i balls have been thrown.

Then, the probability that at least one bin experiences an

overflow after throwing I balls, P (c ≤ i), is:

P (c ≤ i) = 1−
Mβ,γ,i

βi
(5)
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We compute Mβ,γ,i as follows. Assume that exactly

x bins have been filled after i balls. The number of

combinations of balls-to-bins allocations is given by the

product of a) the number of ways in which the x bins

can be filled with xγ balls and b) the number, ν, of ways

in which the the remaining i−xγ balls can be assigned

to the remaining β − x bins without fully filling them.

It follows that ν can be computed as Mβ-x,γ-1,i-xγ , i.e.,

the number of ways in which the remaining i−xγ balls

can be thrown in β−x bins in such a way that, at most,

every bin is filled with γ − 1 balls.

The minimum value for x is the number of bins that

are filled if balls are assigned to bins in a round-robin

fashion: minγ = max(0, i − β(γ − 1)). The maximum

value for x is the number of bins that get filled if the

balls are thrown to the same bin until it gets full: maxγ =
⌊i/β⌋. These x bins can be chosen out of the total β
possible in

(

β
x

)

ways. Finally, the number of ways in

which γx balls can be thrown in x bins in such a way

that all the x bins are filled is
∏x-1

y=0

(

i-yγ
γ

)

. The resulting

equation for Mβ,γ,i is then

Mβ,γ,i =

maxγ
∑

x=minγ

Mβ-x,γ-1,i-xγ

(

β

x

)

x-1
∏

y=0

(

i-yγ

γ

)

(6)

We now describe how we extend the model to take

into account scenarios in which transactions issue a mix

of reads and writes. In this case, the number of valid

sequences of a given length i is larger than for the case of

PW = 1, since if a full bin contains at least a read ball b,
it can still accommodate an additional (read/write) ball,

provided that b is selected by the eviction policy. Given

the combinatorial nature of the problem, the number

of scenarios to be accounted for in order to derive an

exact probabilistic solution increases dramatically for

the case of PW 	= 1, along with the complexity and

computational cost of the resulting model.

We propose therefore an approximate solution tech-

nique that is based on the following approach. Let us

introduce the notations: a) P (c ≤ iPW
), to refer to the

probability of having a capacity abort upon during any

of the first i accesses of a transaction that executes writes

with probability PW ; ii) P (c = iPW
∧¬c < (i−1)PW

),
to refer to the probability of having a capacity abort

exactly at the i-th access and of not incurring capacity

aborts during the previous i-1 operations, where each

operation is a write with probability PW .

We express P (c = iPW
∧ ¬c < (i− 1)PW

) as:

P (c = iPW
|¬c < (i− 1)PW

)P (¬c < (i− 1)PW
) (7)

Next we observe that the probability of having a

capacity exception at operation i is not affected by

whether this operation is a read or write , but only

by whether the corresponding ball i hits a full bin and

causes the “eviction” of a write ball. Hence:

P (c = iPW
|¬c < (i−1)PW

) = P (c = i|¬c < (i−1)PW
)

Next, we introduce the following approximation:

P (c = I|¬c < (I−1)PW
) ≈ P (c = I|¬c < (I−1))PW

namely, we approximate the conditioned probability of

having a capacity after i read/write accesses with the

conditioned probability of having a capacity after i write

accesses scaled down by a factor PW . The latter scaling

factor reflects the fact that P (c = i|¬c < i − 1)
is computed assuming that all the full bins after i-
1 balls contain exclusively write balls. Conversely, if

transactions issue write operations with probability PW ,

on average the full bins after i − 1 throws will contain

only a fraction of write ball equal to PW γ over a total

of γ balls. This is an approximation, which, as we will

show in Section V, yields good accuracy for PW values

larger than 1%. In fact, as discussed in Section III-B,

assuming PW values larger than 1% is also a necessary

condition for modelling accurately the cache dynamics

by modelling solely the L1 dynamics.

P (c = i|¬c < i− 1) can be computed by expressing

it as (P (c ≤ i) − P (c ≤ i − 1))/(1 − P (c < i − 1))
and exploiting Eq. 5, using the definition of conditioned

probability. P (¬c < (i − 1)PW
), in Eq. 7, can be

expressed as:

1−

i−1
∑

j=1

P (c = jPW
∧ ¬c < (j − 1)PW

)

and can be computed recursively by setting P (c = 1PW
∧

¬c < 0PW
) = 1.

Finally, P (c ≤ iPW
) can simply be expressed as

the sum of the probabilities of having a capacity abort

exactly at operation j, and not earlier, for all j < i :

P (c ≤ iPW
) =

i
∑

j=0

P (c = jPW
∧ ¬c < (j − 1)PW

)

F. Computing the Target KPIs

We now describe how to obtain the average throughput

X , average transaction response time R∗

t and average

abort probability PA. Unlike the response times com-

puted in the former section, R∗

t represents the execution

of a transaction since its first begin to the time it

commits. Namely, R∗

t includes possible multiple re-

executions of a transaction and the possible final exe-

cution in the fall-back path.

We start by computing the state transitions for the

CTMC (using the values of pa,s and μt,s derived in

Section IV-E that encompass both conflict and capacity

aborts), and by solving it to obtain the vector �π of the

states probabilities.

Next, we compute the adjusted abort probability, p′a,s,

and average transaction execution rate, μ′

t,s, in each state

s, keeping into account that a transaction can abort, either

directly due to a conflict or capacity abort, or, indirectly,
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Figure 2: Real vs predicted KPIs in workloads with negligible capacity aborts.

because of the abort of a concurrent transaction with only

1 retry left. Such transactions, which we call dangerous

because they can trigger the cascading abort of all

concurrent transactions, are not accounted for in pa,s
and μt,s (as these variables are used solely to derive the

CTMC’s transition rates, which need to account only for

independent abort events), but they do have an impact

on the actual abort probability and average transaction

execution time of the system.

To ease the presentation, we postpone the discussion

on how to compute p′a,s and μ′

t,s, and explain first how

to compute PA, X and R∗

t .

The average abort probability PA is computed as

the weighted average of p′a,s across all the states with

no threads in the fall-back path (as no transaction can

execute and, hence, abort in such a state):

PA =
∑

s(i,f=0,n)∈S

�πsp
′

a,s (8)

where S denotes the set of states of the CTMC and the

notation s(i, f, n) indicates the state corresponding to i
active hardware transactions, f in the fall-back path and

n non-transactional active threads.

Let us denote with Xt the transactional throughput,

i.e., the rate at which transactions commit, and with X
the global throughput, i.e., the rate at which any thread in

the system completes a code block (either transactional

or not). Both throughputs are computed as the weighted

average of the system being in a state si times the

corresponding throughput in si. On its turn, the global

throughput in si is the sum of the rates corresponding

to the completion of a NTCB or the commit of a TCB.

X =
∑

s(i,f=0,n)∈S

�πs(iμ
′
t,s(1−p

′
a,s)+nμn)+

∑

s(i,f≥1,n)∈S

�πs(nμn+μf )

This equation captures the fact that in a state in which

there is at least one transaction in the fall-back path there

is only one transaction contributing to the transactional

throughput, by committing with a rate μf = 1
C . In a state

s in which f = 0, instead, the i hardware transactions

all contribute to the throughput of the system, with a rate

iμ′

t,s(1 − p′a,s). The transactional throughput is simply:

Xt = Xpt.

We exploit Little’s law [27] to obtain the response

time of a transaction, R∗

t . We first express X as the

product of the number of active threads θ and the

inverse of the average response time of a code block,

whether transactional or not, R∗. Once we obtain R∗

we note that it corresponds to the weighted average

of the response time of a transactional code block R∗

t

and of a non-transactional code block R∗

n. Because

the system is stable, the probability that a successfully

executed code block is (non) transactional corresponds

to the probability that a (non) transactional code block

is started. Hence, R∗ = ptR
∗

t +(1−pt)R
∗

n. Because R∗

n

is equal to Cn and it is given as input to the model, we

can solve the equation and obtain R∗

t .

Modeling aborts due to fall-backs. Finally, we describe

how to compute the per-state abort probability, p′a,s, and

average transaction execution rate, μ′

a,s, which we have

introduced and used above to compute the model’s KPIs.

Let us consider a state with n non-dangerous transactions

and d dangerous ones. We model the increase in the

abort probability of T due to concurrent dangerous

transactions by computing an adjusted rate at which T
can abort. Such rate does not encompass only the rate at

which other transactions can issue conflicting accesses

with T , but also the rate at which T aborts due to the

abort of some dangerous transaction.

We express the adjusted rate as the previous rate Hs(i)
(see Section IV-C) plus the rate at which dangerous

transactions abort. The rate at which a dangerous trans-

action aborts (due to a conflict or a capacity exception)

is computed as μt,spa,s, obtained as discussed in Sec-

tion IV-E. The adjusted rate at which a non-dangerous

transaction can abort after having accessed i granules is

then Hn
s (i) = Hs(i) + dμt,spa,s. The adjusted rate is

different for a dangerous transaction, since it can only

abort because of the conflict of d − 1 other dangerous

transactions. Hence, Hd
s (i) = Hs(i) + (d− 1)μt,spa,s.

The first step to compute p′a,s is to derive the proba-
bility that a transaction successfully accesses i granules,
despite both direct aborts and cascading aborts due to
dangerous transactions. We again distinguish between

the case of non-dangerous transactions (P
′n(i)
R,s ) and
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dangerous transactions (P
′d(i)
R,s ). Both probabilities take

the value 1 for i = 1. For i > 1, following the same
reasoning applied when computing PR,s(i) and P ′′

R,S

P
′n
R,s(i) = P

′n
R,s(i-1)e

−Hn
s (i-1) C/L(1− P (c ≤ i))

P
′d
R,s(i) = P

′d
R,s(i-1)e

−Hd
s (i-1) C/L(1− P (c ≤ i))

Taking into account the vulnerability window Tc corre-

sponding to the commit operation, we obtain p′a,s:

p′a,s = 1−
(nP

′n
R,s(L)e

−Hn
s (L)Tc + dP

′d
R,s(L)e

−Hd
s (L)Tc

n+ d

)

(9)

We also obtain adjusted values for the response times of

an execution of dangerous (Rd) and non-dangerous (Rn)

transactions. To compute them, we use Equation 2 and

Equation IV-D, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single

hardware execution of a transaction:

R
′

t,s =
n

n+ d
Rd,s +

d

n+ d
Rn,s

The adjusted μ′

t,s is obtained as μ′

t,s = 1/R′

t,s.

V. MODEL VALIDATION AND EVALUATION

This section reports the results of a validation study

that compares the KPIs predicted by the proposed model

with those achieved when executing on our target exper-

imental platform (see Section III). In order to stress the

prediction accuracy of the presented model, we use a

synthetic benchmark that generates diverse workloads.

The micro-benchmark launches θ concurrent threads

bounded to different physical cores, hence, not sharing

private caches and other resources. These threads start

transactions that perform L accesses uniformly at ran-

dom over a granule pool of size D.

We first focus the study on validating the accu-

racy of the proposed model to predict the contention

dynamics among transactions and due to the fallback

path activation. To minimize the probability of capac-

ity aborts, we initially consider short transactions and

generate about 380 workloads/configurations varying the

model’s parameters as follows: L ∈ {2, 5, 10, 20}, D ∈
{512, 2048, 8192, 32768}, θ ∈ {2, 4, 8}, B ∈ {2, 4, 6},

PW ∈ {0.5, 1}. Figures 2a and 2b report a scatter plot

comparing the real and predicted KPI values for the

considered workloads. The reported data highlights the

accuracy of the proposed model in predicting both the

throughput and abort probability of the system: the Mean

Absolute Error (MAE) for the abort rate is less than 5%

and the Mean Percentage Absolute Error (MAPE) for

the throughput around 8%; the Pearson correlation factor

(R) is in both case larger than 0.99. Figures 2c and 2d

report the predicted/real throughput and abort probability

values while varying the thread count in a conflict

intensive workload. Also in such a challenging workload,
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where the abort probability spikes up to approx. 70%,

we can appreciate the high accuracy of the model in

predicting the actual system’s performance.

Next, we focus on validating the modelling of the

probability capacity aborts (P (c ≤ i)) in absence of

contention among transactions. To this end we consider

a single threaded execution, where we varied the number

of distinct granules (L) accessed by transactions, set

D = 8192 and vary PW ∈ [0.01, 1]. The results

of this study are reported in Fig. 3 and confirm the

high accuracy of the model, which attained a MAE of

2.12%. As expected, the larger errors are introduced for

smaller values of PW . This is due to the approximation

introduced in Section IV-E, which we use to compute

P (c ≤ i) when PW < 1. Nonetheless, this study shows

that the proposed approximation achieves good accuracy

even for PW values as small as 1%.

Next, we assess the model’s accuracy with workloads

that generate aborts induced both by capacity exceptions

and conflicts (see Fig. 4). To this end, we set Θ =4,

D =100000, PW =0.5 and varied L ∈[5, 320]. Also

in this case, the experimental data confirms the high

accuracy of the model.

Finally, Figure 5 reports the memory and time required

to solve the model while varying the two main factors

that affect its spatial and temporal complexity, i.e., θ
and B. The top plot reports the model solution time,

using a single threaded implementation based on the

Eigen [25] numerical library, running on an Intel E3-

1270v3@3.50GHz with 32GB of RAM (Ubuntu 12.04).

We observe that the model can be solved in less than 10

seconds for up to 100 threads, when B = 1. This result

is relevant, since B = 1 when using TSX’s in Hardware

Lock Elision mode [36] and given that, currently, the

largest TSX-enabled Intel’s processor has 28 physical

cores. As B grows, though, the solution time grows very

quickly, and for B = 5 it requires 3 minutes when θ = 9,

with a 3× increase with respect to θ = 8, B = 5. This

is expectable, since the CMTC’s state space, S, grows

combinatorially, as previously discussed.

The data in the bottom plot evaluates the spatial
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Figure 4: Workloads generating aborts due to both

contention and capacity.

complexity of the model, which is dominated by the

CTMC’s generator matrix, Q. An interesting observation

that we can draw from this plot is that Q, despite having

size |S| × |S|, is actually very sparse. This is clearly

illustrated by the bottom plot, which reports the total

number of elements in Q and the actual non-zero entries

of Q: for the largest models (e.g., B = 5, θ = 9) less

than 4% of the matrix holds non-zero values, i.e.,1̃50K

cells, for a memory occupation of less than 10 MB. This

suggests that the model’s solution is CPU-bound, rather

than memory-bound, and that it should be therefore pos-

sible to boost it using parallel implementations, possibly

exploiting hardware accelerators (like GPUs).

VI. RELATED WORK

The most closely related works lie in the area of

analytical modelling of the performance of transactional

systems. A number of analytical models of concurrency

control for database management systems have been

proposed in the literature [35], [1], [37], [9]. More

recently, several analytical models have been proposed

for the concurrency control algorithms adopted by soft-

ware implementations of TM [38], [21], [8], [14], [12],

[32], [13]. The key difference with respect to these

approaches is that in our model we consider peculiar

characteristics of the concurrency control of HTM, in-

cluding the co-existence of optimistic techniques (i.e.,

speculative execution of parallel transactions) and of a

sequential/pessimistic fallback path. Indeed, to the best

of our knowledge, the analytical model presented in this

work is the first one to target HTM systems.

Black box techniques for throughput prediction are

present in the literature for the case of STM [5], [31],

and also in HTM either to predict its throughput [29]

or to improve its performance by tuning the TM param-

eters [11], [15], [10]. Unlike the white-box analytical

model presented in this model, which can be instantiated

by simply providing a few parameters as input, these

black box models require an extensive training phase.

Indeed, the accuracy of black-model is known to be
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Figure 5: Model solution time (top) and memory con-

sumption (bottom).

strongly influenced by the representativeness of the data

collected during the training phase [2], [12].

VII. CONCLUSIONS

This paper introduces the first analytical model of

an HTM system. The presented model targets TSX, a

mainstream HTM implementation included since 2013

in Intel’s processors, and captures complex, non-linear

performance dynamics reflecting the joint impact of

architectural choices (e.g., cache size and geometry),

workload characteristics (e.g., number of accessed mem-

ory words) and specific features of the employed conflict

resolution scheme (e.g., the co-existence of optimistic

and pessimistic execution modes). The model has been

validated using a real system, achieving high accuracy

in a broad range of workloads.

Another relevant contribution of our work consists

in having shed lights, via a set of ad-hoc experiments

and simulations, on several internal and undisclosed

mechanisms of TSX: besides determining the conflict

detection and resolution schemes employed in TSX, we

have also investigated the cache capacity limitations

in presence of mixed read/write workloads, inferring

undisclosed information on how transactional meta-data

is stored and managed. Not only the insights gained

through this study allow for a better understanding of

performance dynamics of TSX; they were also crucial to

enable the development of analytical models capturing

both capacity and conflict aborts.
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