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Purpose: Recently, novel CdTe photon counting x-ray detectors (PCXDs) with energy discrimina-
tion capabilities have been developed. When such detectors are operated under a high x-ray flux,
however, coincident pulses distort the recorded energy spectrum. These distortions are called pulse
pileup effects. It is essential to compensate for these effects on the recorded energy spectrum in
order to take full advantage of spectral information PCXDs provide. Such compensation can be
achieved by incorporating a pileup model into the image reconstruction process for computed
tomography, that is, as a part of the forward imaging process, and iteratively estimating either the
imaged object or the line integrals using, e.g., a maximum likelihood approach. The aim of this
study was to develop a new analytical pulse pileup model for both peak and tail pileup effects for
nonparalyzable detectors.

Methods: The model takes into account the following factors: The bipolar shape of the pulse, the
distribution function of time intervals between random events, and the input probability density
function of photon energies. The authors used Monte Carlo simulations to evaluate the model.
Results: The recorded spectra estimated by the model were in an excellent agreement with those
obtained by Monte Carlo simulations for various levels of pulse pileup effects. The coefficients of
variation (i.e., the root mean square difference divided by the mean of measurements) were 5.3%—
10.0% for deadtime losses of 1%—50% with a polychromatic incident x-ray spectrum.
Conclusions: The proposed pulse pileup model can predict recorded spectrum with relatively good

accuracy. © 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3429056]
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I. INTRODUCTION

Current multislice x-ray computed tomography (CT) scan-
ners provide three-dimensional images of linear attenuation
coefficients that accurately delineate organs and tissues to
help physicians make accurate diagnoses. However, there are
three major limitations in current CT technologies: (a) Im-
ages of linear attenuation coefficients are not tissue-type spe-
cific, (b) contrasts between different tissues are not sufficient,
and (c) “CT scanning is a relatively high-dose procedure.”1

In general, the linear attenuation coefficients depend on
several factors: (1) Chemical composition of the object, (2)
mass density of the object, and (3) energy of the x-ray pho-
tons. Consequently, the transmitted x-ray spectra carry infor-
mation about tissue type such as fat, muscle, bone, contrast
materials, etc. Current energy integrating CT detectors, how-
ever, integrate the area under the curve of the transmitted
x-ray spectrum, losing all energy-dependent information. En-
ergy integrating detectors also add electric noise and Swank
noise,” and higher energy photons, which produce less con-
trast between tissues, receive a larger weight in the output
signal, resulting in increased noise and reduced contrast. In
general, dual-energy CT imaging3 can provide tissue-specific
images. But it is desirable to measure the transmitted x-ray
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photons at more than two energies. Detectors with multiple
energy windows provide this capability in a single acquisi-
tion with a single source.

Recently, novel CdTe-based photon counting x-ray detec-
tors (PCXDs), with energy discrimination capabilities based
on pulse height analysis, have been developed.“f10 Use of
PCXDs with multiple energy windows would have a great
potential to address all three issues listed above.*>!! Electri-
cal and Swank noise affect the measured energy, but do not
change the output signal intensity (i.e., the counts); the en-
ergy overlap in the spectral measurements may be superior to
that from any of the current dual-energy techniques. In addi-
tion, more than one contrast media can be used simulta-
neously and they are distinguishable if detectors have four or
more energy windows, which may lead to novel applications.

However, due to the limited speed of detectors, quasi-
coincident photons are recorded as one count with a higher
or lower energy (see Fig. 1). For example, one recent detec-
tor has a maximum output count rate of 6 million counts per
second (Mcps) per square mm.’ [The required operational
count rates for clinical x-ray CT detectors varies depending
on clinical applications and can be as large as
3-100X 10% counts per second per square millimeter
(cps/ mm?) for the attenuated beam when the unattenuated
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FiG. 1. The count rate loss and pulse pileup effects due to quasicoincident
photons with nonparalyzable photon counting detectors. When photon
counting detectors are in active state, the first photon incident on the detec-
tor will put the detector into the detection (inactive) state for a finite period
of time called the deadtime (or resolving time) 7. The height of the observed
pulse during the deadtime is associated with the photon energy and a count
is added to the corresponding energy window. All photons incident on the
detector during this state will contribute to form the observed pulse of one
count, resulting in lost counts and distorted recorded energy spectrum.

count rate incident onto a bowtie filter is 1 X 10° cps/mm?
measured at | m away from the x-ray source.'?] The opera-
tional input count rate of the detector, however, must be be-
low 0.5 Mcps in order to avoid distortion of the recorded
spectrum due to pulse pileup effects. With higher count rates,
two types of pulse pileup effects are observed: Peak pileup
and tail pileup. A typical bipolar pulse shape is shown in Fig.
2. Coincidences during the initial part of pulses are recorded
as a single count at a higher energy than the original pulse’s
energy (see Fig. 1). This is called peak pulse pileup.13 The
long tail of the pulse affects the recorded energy of subse-
quent events; for bipolar-shaped pulses, a peak overlapping
the tail of a preceding pulse results in a smaller recorded
energy. This is called tail pulse pileup.13 Both of these pulse
pileup effects distort the recorded spectrum and the amount
of distortion will depend on the count rate. Thus, using data
from the recorded spectrum in material decomposition pro-
cess without compensation or correction will produce inac-
curacies. Ideally, faster detectors with fewer pulse pileup dis-
tortions would be wused, but this may be practically
impossible. Alternatively, hardware-based pileup rejectors
can reduce or eliminate the spectral distortion due to peak

1 £ 1 3
2 — = = APCXD's pulse 2 JNy = = = APCXD's puise
\
; = Asymmetric triangle ; \‘ Asymmetric triangle
?o’. --------- Rectangular triangle ?d --------- Rectangular triangle
°
g B
g g
S Lt & A
Zo " Z 9 —
b, ol by peosEr
012345678 4, tit

1
i tylt

FIG. 2. A bipolar-shaped pulse (dashed black curve) obtained by a PCXD is
approximated by two triangles. An asymmetric triangle defined by ¢, and t,
approximates the positive part of the pulse for peak pileup effect, while a
right angle (rectangular) triangle defined by t,, 73, and b, fits the negative
part for tail pileup effect. Two plots are shown in different ranges.
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pileup; however, the efficiency of such rejectors could be
limited (e.g., 50%) for various reasons.>™'® The precision of
measurements may be significantly degraded since there are
fewer counts without pileup effects. In addition, it is quite
challenging to implement pileup rejectors in a PCXD since
they would need to operate at very high count rates. Even
after attenuation by a bowtie filter and an object, the required
operational count rates for clinical x-ray CT systems may be
as large as 3—50 Mcps when the incident count rate is 1000
Mcps.12 Thus, while the detector speed needs to improve, it
is also desirable to develop algorithmic methods to compen-
sate for these pulse pileup effects in order to take full advan-
tage of the energy discrimination capabilities of PCXDs. In
simulation studies (see Fig. 9 in Sec. IV B), we have found
that a significant fraction of recorded counts result from
pileup with orders of up to 3, where pileup of order m indi-
cates that
m+1 photons contribute to one recorded count.'* The key to
successful compensation methods is a fast and accurate
method to model both pulse pileup effects for realistic (es-
pecially bipolar) pulse shapes sufficiently well and to be able
to handle pileup orders of up to 3.

In previous work, we had developed an analytical pulse
pileup model'” and methods to compensate for pulse pileup
effects.'®!” The model, however, used the following three
oversimplistic assumptions: (1) The pulse shape was rectan-
gular; (2) the recorded energy was assumed independent of
the time interval between coincident photons; and thus (3)
the recorded energy was the sum of original energies. These
assumptions tend to overestimate the recorded energies as
reported by Tennery;20 as a result, we found that the esti-
mated spectrum deviated from the recorded spectrum.
Wielopolsk and Gardner" used a parabola or polynomials21
to model the pulse shape and to predict the peak pileup effect
for first order pileup events (m=1); the parabola model was
later extended to second order pileup by Barradas and Reis.'
However, these models did not account for the tail pileup
effect. Johns and Yaffe'” used a random or periodic pulse
generator, with or without a pulse pileup rejector, to estimate
the incident count rate and spectrum, but the method will not
work without the special pulse generator. Others have used
empirical filters to predict peak pileup effects;*> however, the
accuracy was limited because of simplifications and the use
of empirical kernels. To our best knowledge, there have been
no analytical models that satisfy all of the requirements dis-
cussed above.

The aim of this study was, thus, to develop a new analyti-
cal pulse pileup model which meets all of the requirements
discussed above for a typical PCXD. In order to improve
accuracy, the model takes into account the following factors:
The probability distribution of time intervals between pho-
tons, the probability distribution of photon energies, and a
more realistic average pulse shape. We performed Monte
Carlo (MC) simulations using monochromatic and polychro-
matic incident spectra to assess the performance of the pro-
posed model.

The structure of this paper is as follows. The analytical
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model of pulse pileup effects is described in Sec. II. Section
IIT outlines evaluation methods, and results are presented in
Sec. IV. In Sec. V, relevant issues are discussed and the paper
is concluded.

Il. ANALYTICAL MODELS OF PULSE PILEUP
EFFECTS

The following presents the analytical models. We explain
the counting mechanism, a simplified detection mechanism,
models of peak pileup, tail pileup, and the recorded spectrum
with pulse pileup effects.

I.LA. Counting (detection) mechanism and two
detector models

The detection mechanism for most of PCXDs can be
modeled reasonably well by either the nonparalyzable or
paralyzable model.'"* When detection mechanisms are real-
ized by electric circuits, most detector systems, even those
with a simple pulse height analysis, behave somewhere in
between. When the detector is in the active state, the first
photon incident on the detector will put the detector into the
detection state for a finite period of time called the deadtime
(or resolving time) 7. All photons incident on the detector
during the deadtime (potentially) contribute to the pulse
shape of the recorded count. For nonparalyzable detectors, a
new event will not reset the time clock for the deadtime with

such photons and the detector will return to the active state
after the deadtime 7 (Fig. 1). By contrast, in a paralyzable
detector, each detected photon resets the time clock and the
detector returns to the active state a time 7 after an event if,
and only if, there is no additional incident photon during the
deadtime interval.

Energy discrimination capabilities are often added to
PCXDs by the addition of one or more thresholds to the
detection chain. For either type of detector, a count is regis-
tered in a counter associated with a given threshold if the
pulse height exceeds the threshold. Subtracting counts in
counters from adjacent energy thresholds, yields the counts
in the energy window defined by the two thresholds.

For low true count rates [a < 1/ 7 (the unit of the deadtime
7 is seconds per count, when multiple occurrences of dead-
time 7 over a sufficiently long measurement time period are
discussed), where a is the true count rate], the two methods
provide identical results.'* For the sake of simplicity, and
since the nonparalyzable detector model fit better with mea-
sured count rates in preliminary experiments (not shown),
the nonparalyzable detector model was used throughout this
study.

11.B. Overview of the model

The mean number of recorded photons at energy E with
pulse pileup effects, Nppp(E), can be expressed as the prod-
uct of three probabilities

Nppp(E) = (True count rate) X (Probability of events being recorded)

]

x> [(Probability of the mth order pulse pileup event)

m=0

X (Probability of counts recorded at an energy E with mth order pulse pileup)],

©

=a X Pr(reclar) X ¥, Pr(m|rec)Pr(E|m),

m=0

©

=a X Pr(rec|at) X Pr(E|rec) ('.'Pr(E|rec) => Pr(m|rec)Pr(E|m)> , (1)

m=0

where «a is the true count rate, 7is the detector deadtime, and
Pr(E|rec) is the probability density function (PDF) of the
recorded energy E given the events-of-interest being re-
corded. The first two probabilities for the nonparalyzable
model have been discussed in Ref. 14 and are

Pr(reclar) = 1/(1 +a7) (2

and
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Pr(m|rec) = (a1)"exp(- ar)/m!. (3)

Equation (3) is the Poisson probability of having m events
during time 7, given the mean number of counts a7. Here we
provide a brief explanation for Eq. (2). When the recorded
count rate is ag, the fraction of time that the detector is
inactive (dead) is given by ag7. Thus, the rate at which
counts are lost during the time period is aap7, which is also
given by a—ag. Equating these two expressions for the lost
count rate, we have a—ag=aag7. Solving for ap and dividing
both sides of the equation by a, we get Pr(rec|ar)=ag/a
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=1/(1+ar). The third probability of Eq. (1), Pr(E|m), or the
PDF of pulse pileup spectrum for a given pulse pileup order
m, will be derived in Sec. II C.

1I.C. Probability density function of pulse pileup
spectrum

In this subsection, we derive the third probability in Eq.
(1): The PDF of the recorded spectrum with a given pulse
pileup order m, Pr(E|m). To provide good accuracy, the
model takes into account the following factors: The probabil-
ity of time intervals between photons, the probability of pho-
ton energies, and the shape of pulses. Estimating the peak
pileup effect, which defines the overall shape of the spec-
trum, requires better models for all of the above three factors
than estimating the tail pileup effect. Modeling the tail pileup
effect, which simply offsets the energy spectrum resulting
from peak pileup effect, requires a less accurate model.

I.C.1. Pulse shape of DxRay’s PCXD

Figure 2 shows the scaled bipolar pulse shape of the
DxRay PCXD (Ref. 7) modeled in this work, which was
obtained using a high speed oscilloscope. We assume that the
pulse shape scales in proportion to energy in the vertical
direction but is independent of energy in the horizontal
(time) direction. That is, the time duration is independent of
photon energy. We modeled this bipolar pulse shape by two
triangle functions and treated them separately. An asymmet-
ric triangle function was used for the positive lobe on the
time interval [0,7,], with the maximum occurring at 7;. This
allowed us to model the peak pileup effect accurately and
efficiently. The parameters #; and ¢, were estimated using
least-squares fitting. A right angle (rectangular) triangle func-
tion fitted to the negative part on the time interval [1,,1;] was
used to model tail pileup effect. The parameters t; and b,
were estimated using least-squares fitting. In our study, the
values were found as follows while setting a deadtime 7
slightly larger than #,: £,=0.284X 7, 1,=0.850Xr,
t,=8.253 X 1, and b,=-0.0635, respectively. The ratio of
t,/ 7 was determined empirically; an optimal value for each
detector may vary, although it may be close to, but less than,
1. Note that there was no inconsistency in these parameter
values in this study because we used the same detector dead-
time 7 for both Monte Carlo simulations and our models.

Il.C.2. Event recording model

Rather than estimating the number of counts above a spe-
cific threshold, we have chosen to calculate the energy spec-
trum. This is somewhat of an approximation to the actual
counting mechanism and was done in order to facilitate effi-
cient calculation of the effects of peak and tail pileup. We
modeled the detection process as follows. We assume that an
event arrives at =0 with the detector in the active state and
thus triggers the detection process. The detection state lasts
until #=7. Pulses from subsequent photons incident during
this interval are summed to form a single observed pulse.
The maximum height of the observed pulse between =0 and
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FiG. 3. Time intervals s; and s, and detector deadtime 7.

7 is recorded. After the time t= 7, the detector returns to the
active state and the remaining pulse shape is carried over and
summed with any subsequent pulses that occur before time
t5. This model allows us to efficiently calculate the recorded
spectrum with very fine energy threshold spacing, e.g., a 1
keV increment. An alternate approach would be to have a
finite number of energy thresholds and model the exact de-
tection scheme of a specific detection circuit. This approach
would limit the number of energy thresholds, since a large
number of energy thresholds would increase computational
costs.

II.C.3. First order peak pileup effect

We start with the pulse pileup order m=1 (i.e., when two
photons are involved with a recorded count). The PDF (dis-
tribution function) for time intervals between adjacent ran-
dom events 7,(z) is

1,(t)dt = a exp(— ar)dt. 4)

Let s, be the time interval between the (i—1)th event and the
ith event. For m=1 pileup to occur, the first event must occur
within a time 7 from the zeroth event (s; = 7) and the second
event must be outside 7 (s;+s,>7) (see Fig. 3). The distri-
bution function I"=Y(s,) for m=1 pileup events where the
time between the two piled-up events is s; can then be ob-
tained by

1"=D(s))ds, =11(51){f Il(sz)dSZ]dsl
T—‘Y]

=a exp(- asl)f a exp(— as,)ds,ds;,

T=5]

=a exp(— a7)ds, = const. X ds. (5)

Since [3d Pr(s;|m=1)ds;=1 and 1""=V(s,)ds;=0 for s;<0
or s, > 7, the differential probability of time intervals given
pulse pileup order 1 is

1=V (s,)ds, _const. X ds;
Jo1=V(s")ds' ~ const. X 7

dPr(s||m=1)= = 1/7ds,.

(6)

Now we consider the recorded energy as a function of the
energies of the two photons E and E/, and the time interval
between them (s,). For a simple triangular pulse shape, the
recorded energy Ejy is equal to the maximum of the summed
triangles and must be found at one of the peaks of the two
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(a) E, = 50 keV, E, = 20 keV
s,/1=0.10

(b) E, = 50 keV, E, = 40 keV
s,/1=0.10

(c) E,= 50 keV, E, = 60 keV
s,/1=0.65

Pulse height [keV]
Pulse height [keV]
Pulse height [keV]
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FIG. 4. Pictorial descriptions of an observed pulse with given energies and a
time interval between two events. The recorded energy Ex(s;;Ey,E) is the
maximum energy between =0 and 7. (a) E,=50 keV, E;=20 keV,
and s,/7=0.10; (b) E,=50 keV, E;=40 keV, and s,/7=0.10; and
(c) Ey=50 keV, E;=60 keV, and s,/ 7=0.65.

pulses or at =7 (see Fig. 4) because the derivatives of ob-
served pulses are piecewise constant. The value of E can be
expressed analytically, as shown in Appendix B.

Using the differential probability of s; given m=1 [Eq.
(6)], we obtain the PDF of the recorded energy E, given the
incident energies E and E;. A general formula, shown in Eq.
(7), was used to obtain the specific results shown in Appen-
dix C and Fig. 5.

Pr{’l}’)E(E;EO’El):JdPr(Sl|m: l)|ER(x1;E0,E1)=EdER~ (7)

Using the incident spectrum Sy(E), the PDF of the recorded
spectrum with first order peak pulse pileup can be calculated
using

Prpeak(E|m = 1) = f J PI{DIP)E
0 0

X(E;Eo,E\)So(Ep)So(E)dEydE; . (8)
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II.C.4. Higher order pileup effects

For m=2 to occur, both the first and the second events
must occur within a time 7 from the zeroth event and the
third event must be outside 7. The distribution function for
time intervals with m=2, I"=2)(s,), can then be obtained by

I(m=2)(51)d51 =1,(sy)

751 o
X{f I(s5) f 1,(s3)ds3 ds2:|dsl
0 T=51=5)

=a’e (17— 5,)ds,. 9)

Thus, for [id Pr(s;|m=2)ds =1, the differential probability
of time intervals is

d Pr(s,|m=2)=2/7 X (7-s,)ds,. (10)

Photons are independent and identically distributed, thus,
d Pr(sy|m=2)=d Pr(s,|m=2).

With a given set of three energies, E, E;, and E,, we wish
to obtain the PDF of recorded energy PrSP)E(ER;EO,E 1LEy),
and use a triple integration over energies similar to Eq. (8).
However, analytical expressions for recorded energies
ER(Z)(sl,s2;E0,E1,E2), used to calculate PrgP)E, are already
complex. The expressions become even more complex as the
pileup order m increases. Thus, we approximate the mth or-
der pulse pileup for m>1 as follows.

We recursively calculate the PDF of the recorded energy

(c) E,= 50 keV, E, = 60 keV

100

50

Eg (s4: Ep Ef) [keV]

1.0 0.0 1.0
Time intervals, s,/ T

(f) E, = 50 keV, E, = 60 keV

90 ' 50 60 110
Ex [keV] Eg [keV]

FiG. 5. [(a)—(c)] The recorded energies Eg(s;;Ey,E,) given various time intervals s, and the incident energies E, and E,. [(d)-(f)] The PDFs of the recorded

energies Ej given the incident energies E and E; for pileup order 1.
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Prpeak(E|m > 1) = f f PI;IIJE(E;Em—I’El)
0 J0

XPr(Em_1|m - I)SO(El)dEm—ldEl . (1 1)

while the differential probability function of time intervals
for the corresponding (correct) pileup order m is used as

Prope(E; By, Ey) = f d Pr(sy|m)| gk, £)=edE (12)
and
d Pr(s,|m) =m/7" X (1—s,)""'ds,. (13)

Here, we approximate higher order pileup as follows. A vir-
tual photon is incident on the detector at r=0 that carries the
same energy as the maximum energy of the observed pulse
from the first m photons [which would be the recorded en-
ergy in the absence of pileup for photon (m+1)]. The time
intervals between the virtual photon and the (m+ 1)th photon
are distributed according to the differential probability den-
sity for the corresponding pileup order m [Eq. (13)]. The
recorded energy is then calculated by the scheme developed
for the case of m=1 using the energies of the virtual and the
(m+ 1)th photon and the probability of time intervals for mth
order pileup. This simplification allows us to efficiently and
easily handle higher order pileup, since all we have to know
for each order m is d Pr(s;|m). The accuracy of this scheme
will be evaluated using Monte Carlo simulations.

I.C.5. Tail pileup effect

Previous events that occurred within a time #; from the
zeroth event in the events-of-interest (i.e., =3 <r) will result
in the tail pileup effects, decreasing the recorded energy of
the events-of-interest. Because the time duration of the tail
(23) is long, and thus its effect is limited to a (negative) bias
to the recorded energy, the tail pileup effect is modeled dif-
ferently from the peak pileup effect. We acknowledge that
the model does not consider a possibility of a part of the
peak from the previous events being carried over to the sub-
sequent event. The effect of the absence will be evaluated
using Monte Carlo simulations.

The mean counts during time duration 75 is at;, where a is
the true count rate. The Poisson probability of n photons is
then

Pr(n|at;) = (at3)"e™*"/n!. (14)

We simply assume that n events are uniformly distributed
and centered at r=—f3/2, and that all of the n events carry the
mean energy E of the incident spectrum Sy(E). These n pho-
tons will provide a negative offset for the peak pulse height
in the events-of-interest measured at t=7/2 of an amount
Ei(n:E) (<0), which can be calculated as follows. From
the geometrical relation shown in Fig. 6, we have

Medical Physics, Vol. 37, No. 8, August 2010

3962
t, t
e fs
_ Ei(n; E)
nEb,
nEh
t;/2+1/2

FIG. 6. Tail pileup effect: The bias E(n;E) (<0) is added to the measured
energy of the subsequent events-of-interest.

Etail(n;E)/t’ = nEh/t3, (15)

where i (<0) is the y-intercept when the negative right angle
triangle shown in Fig. 2 is extended to #=0, and can be
calculated by

h=b1><t3/(t3—t2). (16)
Using Egs. (15) and (16) and

t
t'=t3—<§+§>=(t3—7)/2, (17)

the negative offset, Etai](n;ﬁ), can be calculated as

— Eb t—T
Egi(n:E) =" x 2=~ <y, (18)
2 I3—1
With a given E,
Pryi(Eqi) = Pr(E(n;E)|ats) = Pr(n|ats). (19)

Il.C.6. Recorded spectrum with pileup effects

By taking into account the energy shift due to the tail
pileup effect on the recorded spectrum resulting from mod-
eling the peak pileup effect, we obtain the PDF of recorded
spectrum with pulse pileup order m

Pr(E|m) = f Proeaic(E = Eq|m)Proy (B dE . (20)

Notice that this model requires relatively modest amounts of
information about the PCXD. The information needed in-
cludes the pulse shape (defined by the parameters b, 1, 5,
and f5) and the deadtime 7. Given the incident count rate and
energy spectrum, the model then predicts the recorded spec-
trum.

lll. EVALUATION METHODS

We first evaluated the accuracy of approximating the ac-
tual pulse shapes by the two triangular functions. We then
used Monte Carlo simulations to evaluate the accuracy of
energy spectra estimated using the proposed pulse pileup
model. In the evaluation of energy spectra, pileup orders
(values of m) of up to 6 were used, which covers more than
99.9% of recorded events.
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lllLA. Recorded spectrum with peak pileup only

First, we evaluated how well the recorded energies
ER(I)(sl;EO,El) were modeled by the proposed triangular
function compared to those estimated using the actual shape
of the DxRay pulse for various combinations of recorded
energies and time between pulses. A numerical array contain-
ing the DxRay’s pulse shape (Fig. 2) was scaled by each of
the input energies of E,, E, to give the two input pulses.
They were then added to form an observed pulse with vari-
ous offsets, corresponding to various time intervals s; be-
tween the pulses. The maximum height of the observed pulse
between t=0 and 7 was recorded and compared to the re-
corded energy calculated by the model E R(l)(s 1Eo.EY).

The photon energy of either E, or E; was varied from 0 to
100 keV with a 1 keV increment, while the other was fixed at
50 keV, and s,/ 7 was varied between 0 and 1 with an incre-
ment of 0.01. Differences in the recorded energy from the
real pulse shape and triangular model were quantified by the
root mean square difference (RMSD) and the coefficients of
variation (COV). Formulas for these are given below.

lIl.B. Monte Carlo simulation program

We used a Monte Carlo simulation program developed in
our laboratory, which stochastically generates photons using
the distribution function for intervals between adjacent ran-
dom events, I,(/)=a exp(—ar)dt."* The energy of each pho-
ton was randomly sampled using the PDF of the incident
spectrum. The scheme discussed in Sec. II A was used to
obtain the observed pulse shape numerically, and the re-
corded energy and the pulse pileup order m were stored. The
tail of the observed pulse shape was added to the pulse shape
of the subsequent events-of-interest. After a predetermined
number of photons were generated, the recorded energies of
events-of-interest were sorted and binned with a width
of 1 keV.

We verified the Monte Carlo program with the following
measurements: The recorded count rate curve agreed with
the theoretical prediction [Eq. (2)] (see Sec. IV B); the prob-
abilities of mth order pileup agreed to the theoretical predic-
tion [Eq. (3)] (see Sec. IV B); the PDF of the recorded spec-
trum with a very fast detector (a7=0.001) was identical to
the PDF of the incident spectrum; the PDF of the recorded
spectrum was distorted toward higher energy with higher
count rates when a monopolar pulse shape (i.e., a pulse shape
with no negative lobe) was used (not shown); and the PDF of
the recorded spectrum was distorted toward lower energy
with higher count rates when a bipolar pulse shape was used,
as will be seen in the results of this study (see Secs. [V B and
IV Q).

IIl.C. Monte Carlo simulation with monochromatic
spectrum

We first performed a Monte Carlo simulation using a
quasimonochromatic spectrum. Modeling pileup effects for a
sharply peaked, monochromatic spectrum is more challeng-
ing than for a broad, polychromatic spectrum, since the

Medical Physics, Vol. 37, No. 8, August 2010

former shows the effects of both peak and tail pileup more
clearly than the latter. The quasimonochromatic spectrum
was a normal distribution centered at 60 keV with a full-
width-at-half-maximum of 10 keV. The detector deadtime 7
was fixed at 100 ns. We investigated count rates a of 0.1, 0.2,
0.5, 1, 2, 5, 10, or 20 Mcps, which corresponded to a7 of
0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 1.00, and 2.00, respec-
tively. We simulated a total of 107 photons for each count
rate setting.

Results were compared to the proposed model. First, the
probability of counts being recorded Pr(rec|ar) was com-
pared to the model [Eq. (2)]; the RMSD and the COV were
calculated. Second, the probability of mth order pileup
events given the events-of-interest being recorded Pr(m |rec)
were compared to the model [Eq. (3)]; the RMSD and the
COV were calculated. Third, the PDF of the recorded spec-
trum for mth order pileup Pr(E|m) was qualitatively com-
pared to the PDF obtained by the model [Eq. (20)]. Fourth,
the PDFs of the recorded spectra, Pr(E |rec), were compared
both qualitatively and quantitatively to those predicted by the
model for each count rate setting. The following four de-
scriptors of the PDF, the mean (u), the standard deviation
(o), the skewness, and the kurtosis of the PDF (see Appendix
A) were calculated, as well as the RMSD and the COV be-
tween the PDF obtained with Monte Carlo simulation and
with the model. Energy bins with probabilities less than
0.0005 were excluded from the calculations of RMSD and
COW.

lll.D. Monte Carlo simulation with polychromatic x ray

We performed a Monte Carlo simulation using a poly-
chromatic x-ray beam containing an transmission K-edge. A
90 kVp spectrum was obtained using the IPEM program23
with a tungsten anode and an anode angle of 7°. The spec-
trum was then attenuated by 1.0 mm of aluminum, 1.2 mm
of titanium, and 0.5 mm of gadolinium. The other conditions
were the same as in Sec. III C, and the results were assessed
in the same way.

lILE. Quantitative measures of agreement

To quantitatively assess the degree of agreement we cal-
culated the RMSD and COV using the formulas

N
RMSD = [ 2 (% ret = Xi.modet) /N, (21)
i=1
N
COV = RMSD/(E x,»,Ref/N) X 100[ %], (22)
i=1

where x; ger 18 the reference value (obtained, e.g., using the
true pulse shape or Monte Carlo simulation) at sampling
point, I, X; model 1 the value at i predicted by the analytical
model, and N is the number of sampling points.
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FiG. 7. Contour maps of the recorded energy with first order pulse pileup
(m=1) under various conditions when the observed pulse height is O

at r=0.

IV. EVALUATION RESULTS
IV.A. Recorded spectrum with peak pileup only

Figure 7 shows contour maps of E R(l) under various con-
ditions. The agreement was excellent in each case: RSMD
and COV were 2.29 keV and 3.21% between Figs. 7(a) and
7(c), respectively, and 3.29 keV and 4.60% between Figs.
7(b) and 7(d), respectively. The asymmetric triangle fits the
positive part of the pulse reasonably well (see Fig. 2); thus,
only relatively minor effects due to deviations in the pulse
shape were observed. The right angle triangle fits the nega-
tive part of the pulse with a long duration (1, <t<< ~8.37);
however, a relatively large deviation exists in the dip at the
initial part of the negative pulse for 1, <t<1.87 (see Fig. 2).
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O Monte Carlo
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1.0
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(b) Pr( m | rec ) by Monte Carlo

77755 SNNNNNNNY
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Relative count rate, at

Fic. 8. (a) A plot of the probability of events being counted Pr(rec|ar),
obtained by the model and by Monte Carlo simulations. [(b) and (c)] Area
plots of the probabilities of mth order pileup given the events-of-interest
being counted Pr(m|rec), obtained by (b) Monte Carlo simulations and by
(c) the model.

Medical Physics, Vol. 37, No. 8, August 2010

Taguchi et al.: Pulse pileup model of photon counting detectors

3964

(a) &t = 0.05 (4.8%) (b) at = 0.20 (16.7%)

0.10 0.10
3 z
o : a , ‘
e, i W R . Bpmamigiierta
% 75 Energy[kev] 25 75 Energy [keV]
= 0, = 0,
010, (€) ar=0.50 (33.3%) 010, (@) ar=1.00 (50.0%)
5 £
N 4 . & N
L Rl ’ A e -
"% T Energyevt °% w0 75 Energy [keV]
m=0 m=1 m=2 m=3
Incident s— MOdE| ———— e e rarrersan — —
Monte Carlo =f——— =0— = :=Q:s=s== Y S

FIG. 9. The PDF of the recorded spectra for mth order pileup Pr(E|m), with
the quasimonochromatic 60 keV input x-ray spectrum at various relative
count rates a7, obtained using the model and Monte Carlo simulations.
Numbers in parentheses are count rate loss ratios, 1 —Pr(rec|a7) (%). Oscil-
lations in Monte Carlo results (e.g., m=3 with a7=0.05) was due to a
limited number of cases (counts).

The effect of this deviation will appear only if position of the
maximum occurs within this dip. The results indicated that

this effect was small.

IV.B. Monte Carlo simulation with monochromatic
spectrum

Figure 8(a) shows the plots of the probability of counts
being recorded, Pr(rec|ar), at various count rates, obtained
by the Monte Carlo simulation and by the model [Eq. (2)].
The RMSD and COV were 1.30 X 10~ and 0.17%, respec-
tively, demonstrating an excellent agreement. Figures 8(b)
and 8(c) show area plots of the probabilities of mth order
pileup given the events-of-interest being recorded at various
count rates, obtained by the Monte Carlo simulation and by
the model [Eq. (3)]. The RMSD and COV were 3.10X 107*
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FI1G. 10. The PDF of the total recorded spectra Pr(E), the quasimonochro-
matic 60 keV input x-ray spectrum at various relative count rates a7, ob-
tained by the model and Monte Carlo simulations. Numbers in parentheses
are count rate loss ratio 1-Pr(rec|ar) (%).
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TaBLE 1. Four statistical descriptors of recorded spectrum with quasimonochromatic x-ray spectrum of 60 keV obtained by MC simulations and the model.

Relative count rates a7 (count rate loss ratio)

0.01 (1.0%) 0.02 2.0%) 0.05 (4.8%) 0.10 (9.1%) 0.20 (16.7%) 0.50 (33.3%) 1.00 (50.0%) 2.00 (66.7%)
Mean (keV) MC 59.2 59.2 59.4 59.7 60.4 62.9 68.4 83.5
Model 59.7 59.7 59.8 59.9 60.3 62.1 66.2 75.3
% errors 1.0 0.9 0.6 0.3 0.1 1.3 32 9.8
St. dev. (keV) MC 4.9 5.8 7.9 10.6 14.7 23.5 34.0 48.5
Model 4.8 5.6 7.3 9.7 13.5 22.3 33.1 45.0
% errors 2.1 4.6 7.3 8.2 7.8 5.0 2.7 7.3
Skewness MC 3.7 4.5 4.5 3.9 3.0 1.9 1.3 0.8
Model 2.8 3.8 4.3 4.0 33 2.2 1.5 0.7
% errors 23.3 16.2 52 2.3 9.2 16.8 14.7 9.2
Kurtosis MC 42.5 44.2 33.3 22.3 13.7 7.2 4.8 34
Model 32.1 37.3 33.2 24.8 16.7 8.9 5.1 2.9
% errors 24.4 15.6 0.3 11.0 21.4 24.6 7.1 12.7

and 0.19%, respectively, again demonstrating (20) excellent
agreement. Note that we have targeted using PCXDs under
conditions where 0.05=a7=1.0 (corresponding to a dead-
time loss of 5%-50%) for PCXD-based CT imaging using
this pulse pileup model. Figure 8 confirmed that pulse pileup
orders of up to 3 (0=m=3) are then necessary and suffi-
cient.

Figure 9 shows the PDFs of the recorded spectrum ob-
tained with the quasimonochromatic incident spectrum of 60
keV, given the mth order pileup Pr(E|m) [Eq. (20)] at count
rates of 0.5, 2, 5, and 10 Mcps (with a7 of 0.05, 0.20, 0.50,
and 1.00). Probabilities for recorded energies above 60 keV
with m>0 increased compared to the incident spectrum,
demonstrating the effect of the peak pileup; spectra predicted
by the model showed excellent agreement with those gener-
ated by Monte Carlo simulations up to third order pileup
(m=3), although the spectra obtained by Monte Carlo simu-
lations seem to be slightly broader, especially for a7=1.00 or
m=0. The deviation might be because the model does not
take into account the possibility of part of the peak from the
previous events being carried over to the subsequent event,
as discussed in Sec. III. The recorded spectra for the higher
count rates exhibited decreased energies, especially those of
m=0, due to the tail pileup effect, and the model successfully
predicted this count rate-dependent phenomenon.

Figure 10 shows the PDFs of the total recorded spectra at
various incident count rates; the four cases correspond to
those shown in Fig. 9. The spectra calculated with the model
were in an excellent agreement with those obtained with
Monte Carlo simulations in terms of the peak energies and
the tails of the spectra.

Tables I and II summarize the results of the quantitative
analyses. All of the four descriptors of the PDFs shown in
Table I were in an excellent agreement for a7= 1.0, confirm-
ing the subjective assessment of the recorded spectra (Figs. 9
and 10). The RMSD values were consistently small and
COV values were less than 18.4 for the targeted range of
at=0.5 (Table II).

IV.C. Monte Carlo simulation with polychromatic x ray

Figure 11 shows the PDFs of the recorded spectra ob-
tained with the 90 kVp polychromatic incident spectrum for
mth order pileup Pr(E|m) [Eq. (20)] at count rates of 0.5, 2,
5, and 10 Mcps (a7 of 0.05, 0.20, 0.50, and 1.00). The spec-
tra predicted by the model agreed very well with those from
Monte Carlo simulations. The spectrum shape near the gado-
linium K-edge (50 keV) changed as the count rates in-
creased, which was accurately predicted by the model; the
sharpness of the K-edge was reduced and it was distorted
toward lower energies. The PDFs for m=0 were distorted
toward lower energies as the count rates were increased. The
shape and extent of spectra above 90 keV were also in good
agreement.

Figure 12 shows the PDFs of the total recorded spectra at
various count rates; the four cases correspond to those shown
in Fig. 11. The spectra calculated using the model were in an
excellent agreement with those from Monte Carlo simula-
tions in terms of the peak energies, the sharpness and height
of gadolinium K-edge, and the tails of the spectra.

Tables IIT and IV summarize the results of the quantitative
analyses. All of the four descriptors of the PDFs shown in

TaBLE II. RMSD and COV of recorded spectrum with quasimonochromatic x-ray spectrum of 60 keV obtained by the model.

Relative count rates a7 (count rate loss ratio)

0.01 (1.0%) 0.02 (2.0%) 0.05 (4.8%) 0.10 (9.1%) 0.20 (16.7%) 0.50 (33.3%) 1.00 (50.0%) 2.00 (66.7%)
RMSD (x107%) 6.19 5.43 3.26 1.14 1.73 1.86 1.26
COV (%) 16.2 14.8 13.6 12.3 10.0 18.4 29.1 274
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FiG. 11. The PDFs of the recorded spectrum for mth order pileup Pr(E|m),
with 90 kVp polychromatic input X-ray spectrum at various relative count
rates a7, obtained using the model and Monte Carlo simulations. Numbers
in parentheses are count rate loss ratio 1—Pr(rec|ar) (%). Oscillations in
Monte Carlo results (e.g., m=3 with a7=0.05) were due to a limited number
of cases (counts).

Table III were in an excellent agreement for all of a7 values
tested, confirming the subjective assessment of the recorded
spectra (Figs. 11 and 12). The RMSD values were consis-
tently small and COV values were equal to or less than 10%
for the targeted range of a7=1.0 (Table IV).

V. DISCUSSION AND CONCLUSIONS

We have developed an analytical pileup model of both
peak and tail pileup effects for nonparalyzable detectors. The
model takes into account the following factors while using
the detector deadtime 7 as a parameter: The bipolar shape of
the pulse, the distribution function of time intervals between
random events, and the PDF of photon energies. The model
was in excellent agreement with Monte Carlo simulations in
terms of the recorded spectrum including pulse pileup effects
over a large range of count rates; the COV was equal to or
less than 10% with a deadtime loss of up to 50% with a
polychromatic x-ray spectrum.
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FIG. 12. The PDFs of the final recorded spectra Pr(E), with 90 kVp poly-
chromatic x-ray at various relative count rates a7, obtained using the model
and Monte Carlo simulations. Numbers in parentheses are count rate loss
ratios, 1 -Pr(rec|a7) (%).

We aimed to develop a pulse pileup model which is accu-
rate and efficient. It has been shown in this study, both quali-
tatively and quantitatively, that the accuracy of the proposed
model is relatively good. The efficiency of the model, how-
ever, has not been evaluated. There is no doubt that analyti-
cal models including ours are much more efficient than
Monte Carlo simulations. Further we believe our model,
which uses triangles, is more efficient than others which use
other more complex analytical pulse shapes, e.g., a
parab0121,]3‘16’2l because the probability of the recorded en-
ergy Pri)lp)E(E ;Eq,E;) can be calculated in a much simpler
fashion for triangles (see Secs. IIC 3 and II C4) than for
par21bolas.13’16’21 Our current implementation of this algo-
rithm was not optimized for the computational efficiency;
thus data on the current computational cost would not be
very meaningful.

We acknowledge that statistical tests such as the
Kolmogorov—Smirnov test could be employed to evaluate
the so called goodness-of-fit of the model. We did not incor-
porate such tests in this study for the following two reasons.

TasLE III. Four statistical descriptors of recorded spectrum with polychromatic x-ray spectrum with 90 kVp obtained by MC simulations and the model.

Relative count rates a7 (count rate loss ratio)

0.01 (1.0%) 0.02 (2.0%) 0.05 (4.8%) 0.10 (9.1%) 0.20 (16.7%)  0.50 (33.3%) 1.00 (50.0%) 2.00 (66.7%)

Mean (keV) MC 54.3 54.4 54.6 55.0 55.8 58.4 63.9 79.2
Model 55.0 55.0 55.1 55.3 55.9 57.9 62.9 71.9

% errors 1.2 1.1 0.9 0.6 0.2 0.8 2.5 9.2

St. dev. (keV) MC 14.1 14.4 15.2 16.6 19.2 25.8 34.5 47.1
Model 14.0 14.3 15.0 16.2 18.5 25.0 34.0 44.0

% errors 0.2 0.6 1.7 2.8 3.7 3.1 1.5 6.4

Skewness MC 0.4 0.5 0.8 1.1 1.3 1.3 1.1 0.8
Model 0.4 04 0.7 0.9 1.3 1.5 1.2 0.7

% errors 9.4 12.6 144 10.4 2.5 10.3 10.4 10.8

Kurtosis MC 2.9 34 4.7 5.7 6.4 5.8 4.6 3.5
Model 2.7 3.1 4.1 53 6.5 6.5 4.8 3.1

% errors 6.1 9.1 11.2 6.6 2.5 12.9 4.5 11.0

Medical Physics, Vol. 37, No. 8, August 2010
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TaBLE IV. RMSD and COV of recorded spectrum with polychromatic x-ray spectrum with 90 kVp obtained by the model.

Relative count rates a7 (count rate loss ratio)

0.01 (1.0%) 002 (2.0%)  0.05 (4.8%)  0.10 (9.1%) 020 (167%)  0.50 (33.3%)  1.00 (50.0%)  2.00 (66.7%)
RMSD (X1073) 1.53 1.41 1.16 0.76 0.49 0.43 0.61 0.78
COV (%) 9.8 9.2 7.6 7.0 53 57 10.0 16.2

First, the proposed model clearly produces approximations to
the true spectrum, and we wanted to evaluate the degree of fit
of our model as a function of count rates. Statistical tests, on
the other hand, provide a rather binary answer to a null hy-
pothesis: Either the two distributions are the same or they are
not. The probability, or a P value, describes the certainty of
the binary decision, not the goodness of fit. Second, such
tests are used to decide if the null hypothesis can be rejected.
In our case, however, the PDFs of recorded spectrum ob-
tained using Monte Carlo simulations were, in fact, different
distributions from those obtained using the model. Thus,
these tests should always reject the null hypothesis if a large
enough number of samples (photons) were used in Monte
Carlo simulations. Therefore, we chose RMSD and COV,
which provide a continuous value to indicate the quality of
the fit.

There is some work that remains. The proposed pulse
pileup model is based on a nonparalyzable detection model.
A pulse pileup model based on a paralyzable detection model
may be desired for some detectors. While the first two prob-
abilities of Eq. (1) are known,'* the third probability Pr(E|m)
needs to be derived. We shall leave the derivation to future
studies. Note, however, that both the nonparalyzable and
paralyzable detection models behave very similarly if a7 is
small." The nonparalyzable detection model may be suffi-
cient, even for paralyzable detectors, in the presence of sta-
tistical variations and other factors such as charge sharing
that would also influence the recorded spectrum.

An actual PCXD was not used for the evaluation due to
the following reasons. First, there are various other factors
that would also influence the recorded spectrum (e.g., charge
sharing, shift-variant finite energy resolutions, and escape
peaks or K-shell photoelectron escape x ray), and thus, one
cannot evaluate pileup effects in isolation. Second, we had
no access to the ground truth such as the incident count rate,
the incident spectrum, detector deadtime, etc. Third, it is not
easy to control conditions including the above-mentioned
ground truth. Finally, there always exist detector specific is-
sues related to, e.g., pulse shaping circuits, energy responses,
energy thresholds (comparators), deadtime measurements,
etc. Thus we decided to use Monte Carlo simulations, which
allowed us to focus on the pulse pileup effects. A comparison
with a real PCXD (Ref. 7) is an ongoing research project and
beyond the scope of this study, as it requires a series of
careful calibrations and determinations of parameters such as
the detector deadtime. We shall present the results when they
become ready.

We believe that the methodology presented in this paper
can be applicable to different detectors with various pulse
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shapes. The asymmetric triangle function will be used to
model the initial part of the pulse and the right angle triangle
will be used to model the tail of the pulse. A positive tail for
a monopolar pulse can also be modeled by vertically flipping
the right angle triangle function.

A method to combine the proposed pulse pileup model
with hardware-based pileup rejection circuits or anticharge
sharing circuits (e.g., 2X2 pixel summing with coincident
detections as used in the Medipix3 detector24726) may be of
practical interest, but is outside the scope of this study. Some
pileup rejectors do accept as many as 50% of the pulse
pileup events."” The mechanism of rejection/acceptance must
then be modeled and integrated into the pulse pileup model.
A charge generated by one photon near the boundary of de-
tector pixels may be shared among adjacent pixels and re-
corded as lower energies. The anticharge sharing circuit in
the Medipix3 detector detects and sums coincident events in
adjacent 2 X 2 pixels to recover the original photon energy.
At high count rates, however, such coincident events may
actually be due to independent photons. Pulse pileup effects
with such detectors, thus, are more complex and may need
more sophisticated models.

The proposed pileup model allows us to calculate an ex-
pected recorded spectrum from an incident spectrum. Often,
however, the incident spectrum is not known. As we did with
the previous pileup model,"™" we plan to integrate the
pileup model as a part of the image reconstruction process,
that is, as a part of the forward imaging process modeling to
compensate for the limited speed of the detector, and to it-
eratively estimate either the imaged object or the line
integrals12 using, e.g., a maximum likelihood approach.11
Such a compensation method would enable x-ray computed
tomography imaging using even the limited speed of multi-
window photon counting detectors currently available.'?
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APPENDIX A: FOUR DESCRIPTORS
OF A PROBABILITY DENSITY FUNCTION

The following four descriptors of a PDF, the mean (u),
the standard deviation (o), the skewness (u;/0°), and the
kurtosis (u4/0*) of the PDF, were calculated as follows:



3968 Taguchi et al.: Pulse pileup model of photon counting detectors 3968

m=E[X]= f xPDF(x)dx, A
o= E= 1= [ o wieors,
3
M3 E[(X - n)?] B f (x — u)’PDF(x)dx -
P > ’
4
s E[(X - W] B f (x — w)*"PDF(x)dx .
A 4 = ’ )

where X is a random variable with probability density func-
tion PDF(x), the operator E[ ] denotes the average or ex-

pected value of X, and u; and u, are the third and fourth
standardized moment of a random variable X about the
mean, respectively.

APPENDIX B: ANALYTICAL EXPRESSIONS
OF THE RECORDED Epg

The value of the recorded energy Ej, is expressed analyti-
cally as a function of the energies of the two photons E, and
E,| as follows:

(i) If (t,—1))/1; X E,<E, [see Figs. 4(a) and 5(a)],

Eg+(1=-s/t)E, (0=s,=1)

Eg(si;Eo.E) = {
K E, (1 <sy)

(B1)
(i) If E,=Ey<(t,—-t,)/t; X E; [see Figs. 4(b) and 5(b)],

S1
1- Ey+E, O=s,=E/EyX(t,—t
Ex(s,:Eo.Ey) = ( lz—h) o+tE; ( 1 VEy X (1= 1,)) . (B2)
(Eo (EVEy X (ty—1) <))
(iii) If Ey=<E, [see Figs. 4(c) and 5(c)],
S
(1— )Eo"'El O=s,=t-17)
=1
El (tz—t1<Sl§T—t1)
ER(SI;EO’EI):< R (B3)
: IEI (T—t1<SIST—E0/E1Xt1)
1
LEO (T_EO/EI X tl < Sl)
[
APPENDIX C: PDF OF THE RECORDED ENERGY E t (Ey> (t,—1))/t; X Ey)
GIVEN THE INCIDENT ENERGIES E, AND E; A= EJEy X (ty—t,) (otherwise) . (C2)
Using the differential probability of s; given m=1 [Eq. ) If E<E Figs. 5 d 5(f
(6)], we obtain the PDF of the recorded energy E given the (i) 0=E, [see Figs. 5(c) and 5(f)],
incident energies E, and E;. A general formula, shown in Eq. f(T_ 1)l T (Ex=E,)
(7), was used to obtain the specific results shown in Egs. ot AE
(CH)—(C4). L€ =R (E,<Ex<E)
() and (i) If E,<E, [sec Figs. 5(a) and 5(d) and B-By
i) and (ii |=E, [see Figs. 5(a) an an P (BB EN =X (to—1r) E.=E
Flgs. S(b) and 5(6)] rPPE( R>~0s l) (C D) T ( R 1) 5
tp AEg _
Eo Dsy (E) <Er=Ey+E))
(1=14)/7 (Ep=E,) L0 (otherwise)
ty AE
Pr(Eg:Ep.E)) = 2 =8 (Ey<Ex=Ey+E,) (C3)
El AS]
0 (otherwise) where
(Cl) tB:lz—tl, tC: T—t], tD: T_Eo/E] X[] (C4)

where
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and AEy and As; are widths of the corresponding discrete
sample bins.
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