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Marine riser is a key equipment in offshore drilling operation, and failure of the riser can lead to drilling moratorium; in severe
cases, it may cause oil and gas leaks. In this paper, the time-dependent boundary conditions of the riser and the randomness of
wave load are considered to improve the calculation efficiency and accuracy of the dynamic response of the jack-up riser. Based on
the Euler–Bernoulli beam theory, an analytical method to determine the response of the jack-up riser subjected to the random
wave load was established by the Mindlin–Goodman method in the frequency domain, and an experiment was carried out to
verify it. +e research shows that transverse dynamic response is the main component of the transverse response of the riser, and
the method proposed is feasible to calculate the transverse response of the riser.

1. Introduction

In this study, the jack-up riser is taken as the research object.
As the main equipment of offshore oil exploration and
development, the jack-up platform plays a leading role in the
continental shelf waters. Jack-up platform which can de-
crease the lateral rigidity of the platform is designed to adapt
to the growth of oil and gas demand in deeper water. Under
the random environment loads, random dynamic response
is produced by the platform. Although the marine riser is a
key equipment in offshore drilling, it is a weak component.
As the working depth of the platform increases, the dynamic
response of the riser becomes more and more complicated,
which may lead to operational accidents, cause huge eco-
nomic losses, and even threaten the lives of operators and the
marine environment. +erefore, it is necessary to study the
dynamic response characteristics of the jack-up riser. In the
sea area with the depth of 100-200m, subsea blowout
preventers (BOP) are used to drill well (Figure 1). +e jack-
up riser can bemodelled as an Euler beam because of its large
slenderness ratio, the top tensioning system creates axial

tension force on the riser, and the lateral vibration of the
platform can be treated as the time-dependent boundary
conditions of the riser. +erefore, the jack-up riser can be
treated as an axial-loaded Euler beam with time-dependent
boundary conditions.

For the transverse vibration of the marine riser, some
scholars have studied the natural vibration characteristics
and forced vibration response of the riser. Ignoring the
variable tension force, Clauss et al. [1] and Nayfeh et al. [2]
investigated the natural vibration characteristics of the
marine pipes and beams. Based on the work by Nayfeh et al.,
Sinir [3] investigated the pseudo-nonlinear dynamic char-
acteristics of buckled pipes by considering the effect of
internal velocity. Montoya-Hernández et al. [4] developed a
numerical algorithm to evaluate the natural frequency of
risers under an internal multiphase flow. Klaycham et al. [5]
derived the motion equation of a large-displacement deep-
water riser based on the Hamilton variational principle and
studied the nonlinear-free vibration characteristics of the
marine riser. By the Galerkin method, Zhou et al. [6]
conducted research on the effects of the elastic constraints
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simulating damaged and undamaged boundaries on the
natural frequencies and shapes of marine risers with a
variable axial tension. Alfosail et al. [7] studied natural
frequencies and mode shapes of the linear vibrations of
inclined risers and proposed a numerical state-space ap-
proach to examine the natural frequencies and critical
buckling limits of the marine riser [8]. Alfosail and Younis
also carried out research on the two-to-one internal reso-
nance [9] and three-to-one internal resonance of an inclined
marine riser [10]; in their research, the excitation is for-
mulated by the harmonic functions and the boundary
conditions were treated as constants. Franzini and Mazzilli
[11] studied the lateral motion of a slender and immersed
rod subjected to harmonic and axial top motion with the
reduced-order model (ROM). +e dynamic response of
marine risers under the harmonic excitation was also studied
by Yin et al. [12]. According to the finite-difference ap-
proximation method, Wang et al. [13] put forward an idea of
computing the dynamic response of risers under returning
working conditions. Considering the interaction of the in-
ternal and external fluids on the marine riser, Wang et al.
[14] studied lateral vibration characteristics of the riser.
Reduced-order models were proposed by Vernizzi et al. [15]
to investigate the parametric excitation of a vertical rod. Mao
et al. [16] established a dynamic model to investigate the
mechanical characteristics of a drilling riser and studied the
offset of the platform as a series of determined values. For the
nonlinear model, Lei et al. [17] studied the response of a
deep-water riser to the platform motion, in which the
motion of the platform was also treated as deterministic.
Based on the Euler–Bernoulli theory, Liu et al. [18] and Zhao
et al. [19] conducted research on the stabilization scheme for
the flexible marine riser system, and the axial force is
regarded as a constant. According to the linear wave theory,
Fan et al. [20] and Wu et al. [21] investigated the vibration
characteristics of the drilling riser. Do [22] proposed a
constructive design of boundary controllers to stabilize
lateral motion of flexible marine risers under random loads.
+ewell posedness of the boundary conditions at the top end
of the riser was studied by Guo et al. [23] with the as-
sumption of constant axial force; and a three-dimensional
simulation of the curved riser was fulfilled by Zhu et al. [24]

without considering the randomness of loads. Tang et al.
[25] discussed the effects of tension ratio and platform
deflection on the lateral displacement, bendingmoment, and
the stress of the drilling riser. Recently, the penalty method
was applied by Klaycham et al. [26] to investigate the
nonlinear response of the marine riser.

+e above literature review presents that most scholars
used the numerical methods to investigate the lateral vi-
bration response of marine risers. In their research, the
average axial force and harmonic functions are used to
establish the mathematical model of risers, and the quasi-
static method is mainly used to solve the lateral vibration
response of risers. However, neglecting the randomness of
load and boundary conditions will reduce the calculation
accuracy of the vibration response. Based on the current
research achievements, the average axial force is also applied
in this paper to establish the mathematical model of a riser;
but we consider the time-dependent boundary conditions of
the riser and the randomness of the wave load in this paper.
We propose an analytical method to determine the random
lateral vibration response by the Mindlin–Goodman
method. +e research results can further improve the ran-
dom vibration theory of beams; in terms of engineering
application, this method can provide technical support to
evaluate whether a special sea area and its sea conditions are
available for the jack-up, can adjust the installation sequence
of the riser, and improve the service life of the marine riser
system. +e rest of this paper is organized as follows: an
analytical procedure and an experiment are elaborated in
Section 2. +en, a case study is presented in section 3. Fi-
nally, several conclusions are summarized in Section 4.

2. Analysis

2.1. RandomVibration Response of Jack-Up. +emotion of a
jack-up is treated as the time-dependent boundary condition
of the riser in this research, thus it should be studied first.
Figure 2 shows the sketch map of the jack-up drilling system.
According to the requirements of the China classification
society, the jack-up platform is modelled as a single degree of
the freedom system, and the motion of the platform can be
formulated by the following equation:

me €u(t) + ce _u(t) + keu(t) � p(t), (1)

where u(t) is the lateral displacement of the platform, me is
the equivalent mass of the platform, ce is the equivalent
damping of the jack-up leg, ke is the bending stiffness of the
jack-up leg, and p(t) is the random wave load.

+e frequency response function of the platform is

T ωp( ) � 1

−meω
2
p + jceωp + ke

, (2)

where ωp is the natural frequency of the platform. In this
study, the Pierson–Moskowitz spectrum S(ωw) is selected to
describe the wave:

S ωw( ) � 0.78

ω5
w

exp −
3.11

ω4
wH

2
s

( ), (3)

Jack-up

Riser

Figure 1: +e working conditions of the jack-up platform with
subsea BOP.

2 Shock and Vibration



where Hs is the significant wave height of the wave, ωw is the
natural frequency of the wave, and the unit of the numerical
is m2/s4. Based on the Morison equation and Borgman’s
linearization method, the total wave force spectrum of one
leg of a jack-up can be obtained by the integral along the
direction of the water depth, as shown in the following
equation:

Sf ωw( ) � CDρDoωw
sinh(kz)

��
2

π

√ ∫z
0
σ cosh(kh)dh[ ]2S ωw( )

+
CMρgπD2

o

4
tanh(kz)[ ]2S ωw( ),

(4)

where CD is the drag force coefficient, CM is the inertia force
coefficient, k is the wavenumber of a significant wave, ρ is the
density of seawater, g is the gravitational acceleration, Do is
the outer diameter of the leg, z is the operating depth of the
platform, and the parameter σ2 is the variance of horizontal
speed of the water particle, which is the function of the
height h. Considering the linearization of the drag force is an
approximate treatment, and the variance can be obtained by
the following equation:

σ ≈ 0.25Hsωw
cosh(kh)

sinh(kz)
. (5)

Substituting equation (5) into equation (4), the ap-
proximate expression of the total wave force spectrum of one
leg can be derived in the following equation:

Sf ωw( ) � CDρDogHs( )2
32π

sinh(2kz) + 2kz

sinh(2kz)
[ ]2 S ωw( )

+
1

4
CMρgπD2

otanh(kz)[ ]2S ωw( ).
(6)

According to the definition of power spectral density
function and the relationship between autocorrelation
function and power spectral density function, the total wave

force spectrum of the platform Sp(ωw) can be obtained as
follows:

Sp ωw( ) � 9 CDρDogHs( )2
32π

sinh(2kz) + 2kz

sinh(2kz)
[ ]2 S ωw( )

+
3

4
CMρgπD2

otanh(kz)[ ]2S ωw( ).
(7)

By using equations (2) and (7), the power spectral
density function of the random vibration Su(ωw) of the
platform can be obtained by the following equation:

Su ωw( ) � T ωp( )∣∣∣∣∣ ∣∣∣∣∣2Sp ωw( ). (8)

2.2. RandomVibration Response of Jack-Up Riser with Subsea
BOP. When a jack-up platform uses subsea BOP to drill an
exploration well, the top end of the riser is connected to the
platform by a ball joint and a tension system, and the bottom
end of the riser is connected to the subsea drilling system
through a ball joint. In our research, several assumptions are
applied as follows: (1) joints of the top end and the bottom
end are modelled as a hinge; (2) the geometry characteristics
and material properties of the riser are considered constant;
(3) linearly varying axial force is replaced by the average axial
force. Based on the above assumptions, the Euler–Bernoulli
beam theory is adopted to establish the transverse motion
equation of the riser as follows (without considering the
internal damping of material):

EI
z
4y(x, t)

zx4
− Tm

z
2y(x, t)

zx2
+m

z
2y(x, t)

zt2
+ c

zy(x, t)

zt
� 0,

(9)
where y is the transverse deflection of the axis of the riser, t is
the time, x is the coordinate measured along the beam axis, E
is the modulus of elasticity, I is the area moment of inertia,
Tm is the average axial tensile force, m is the mass per unit
length, and c is the damping coefficient.

u (t)

y (x, t)

x

t

Figure 2: +e sketch map of the jack-up drilling system.
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+e time-dependent boundary conditions of the riser
at x � 0 and x � l (l is the length of the riser) are formulated
as

y(0, t) � 0, y(l, t) � u(t),
z
2y(0, t)

zx2
� 0,

z
2y(l, t)

zx2
� 0.

(10)

By using the Mindlin–Goodman method, the lateral
deformation of the riser is decomposed into quasistatic
displacement ys(x, t) and transverse dynamic displacement
yd(x, t) as follows [27]:

y(x, t) � ys(x, t) + yd(x, t), (11)

ys(x, t) �∑r
i�1

gi(x)ui(t), (12)

yd(x, t) � ∑∞
n�1

φn(x)qn(t). (13)

+e coefficient r in equation (12) is decided by the
boundary conditions of the riser, and in this research, r� 1.
φn (x) is the vibration mode function, gi (x) is the static
influence function, and qn (t) is modal coordinate of ith
mode:

g(x) �
x

l
. (14)

+e corresponding boundary conditions for the riser are
expressed in the following equations:

ys(0, t) � 0, ys(l, t) � u(t),
z
2ys(0, t)

zx2
� 0,

z
2ys(l, t)

zx2
� 0,

yd(0, t) � 0, yd(l, t) � 0,
z
2yd(0, t)

zx2
� 0,

z
2yd(l, t)

zx2
� 0.

(15)
Substituting equation (11) into equation (9) yields the

following equation:

EI
z
4yd
zx4

− Tm
z
2yd
zx2

+m
z
2yd
zt2

+ c
zyd
zt

� −EI
z
4ys
zx4

+ Tm
z
2ys
zx2

−m
z
2ys
zt2

− c
zys
zt
.

(16)

Based on equation (14), the first and second terms on the
right side of equation (16) are both zero. +erefore, equation
(16) is rewritten as

EI
z
4yd
zx4

− Tm
z
2yd
zx2

+m
z
2yd
zt2

+ c
zyd
zt

� −m
z
2ys
zt2

− c
zys
zt
.

(17)
+e substitution of equations (12) and (13) into equation

(17) generates the following equation:

EI∑∞
n�1

d4φn
dx4

qn(t) − Tm∑∞
n�1

d2φn
dx2

qn(t) +m∑∞
n�1

φn(x)€qn(t)

+ c∑∞
n�1

φn(x) _qn(t) � −mg(x)€u(t) − cg(x) _u(t).

(18)
+e transverse dynamic displacement of the riser sat-

isfies the homogeneous boundary condition, which makes
the mode shape function of the riser conform to the fol-
lowing equation:

EI
d4φn(x)

dx4
− Tm

d2φn(x)

dx2
−mω2

nφn(x) � 0. (19)

Substituting equation (19) into equation (20) yields the
following equation:

m∑∞
n�1

φn(x)€qn(t) + c∑∞
n�1

φn(x) _qn(t) +mω2
n∑∞
n�1

φn(x)qn(t)

� −mg(x)€u(t) − cg(x) _u(t).

(20)
By applying the orthogonality conditions, equation (20)

is decoupled to the following equation:

m€qn(t) + c _qn(t) +mω2
nqn(t) � −mξn €u(t) − cξn _u(t),

(21)

ξn �
∫l
0
g(x)φn(x)dx

∫l
0
φ2
n(x)dx

, (22)

where ξn is the weight coefficient of generalized load.
According to linear theory, the frequency response function
of a modal coordinate versus u(t) can be obtained as follows:

Ln(ω) �
mξnω

2 − jcξnω

mω2
n −mω2 + jcω

, (23)

where ω is the natural frequency of the riser. By equation
(23), the frequency response function between the transverse
dynamic displacement and u(t) is generated in the following
equation:

L(x,ω) � ∑∞
n�1

φn(x)Ln(ω), (n � 1, 2, . . . ,∞). (24)

+en, the power spectral density functions of the
transverse dynamic displacement can be formulated as

Sa(x,ω) � ∑∞
n�1

φ2
n(x) Ln(ω)

∣∣∣∣ ∣∣∣∣2Su(ω), (n � 1, 2, . . . ,∞).

(25)
+e cross spectral density function between u(t) and the

transverse dynamic displacement is

Sas(x,ω) � Su(ω)L(x,ω). (26)

By using the definition of autocorrelation function and
the Wiener–Khinchin principle, the power spectral density
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functions of the quasistatic displacement is derived as
follows:

Ss(x,ω) � Su(ω)[g(x)]
2. (27)

Based on the above analysis, the power spectral density
function of the beam’s transverse displacement can be ob-
tained by the following equation:

Sy(x,ω) � Sa(x,ω) + 2 Re Sas(x,ω)[ ] + Ss(x,ω). (28)

According to the relationship between displacement and
stress, the frequency response function of bending stress
response σ(x, t) versus u(t) is written as

Lσ(x,ω) �
EI

W
∑∞
n�1

Ln(ω)
d2

dx2
φn(x), (n � 1, 2, ...,∞),

(29)
where W is the bending modulus of the riser, and it can be
calculated by equation (30). In equation (30), D is the outer
diameter of the riser and d is the inner diameter of the riser:

W �
π D4 − d4( )

32D
. (30)

On the basis of equations (25) and (29), the power
spectral density functions of stress resulted from yd(x, t) is

Saσ(x,ω) � Su(ω)
EI

W
( )2 ∑∞

n�1

Ln(ω)
∣∣∣∣ ∣∣∣∣2 d2

dx2
φn(x)[ ]2,

(n � 1, 2, . . . ,∞).

(31)

According to equations (27) and (29), the power spectral
density functions of stress resulted from ys(x, t) is

Ssσ(x,ω) � Su(ω)
EI

W
( )2 d2

dx2
g(x)[ ]2, (n � 1, 2, . . . ,∞).

(32)
Combining equations (26) and (29), the cross power

spectral density functions of the bending stress of the riser is
obtained as

Sasσ(x,ω) � Su(ω)
EI

W
∑∞
n�1

Ln(ω)
d2

dx2
φn(x)[ ],

(n � 1, 2, . . . ,∞).

(33)

According to the summation formula of spectrum, the
power spectral density function of the bending stress of the
riser can be obtained by combining equations (31), (32), and
(33):

Sσ(x,ω) � Saσ(x,ω) + 2 Re Sasσ(x,ω)[ ] + Ssσ(x,ω). (34)

2.3. Experimental Study. Based on the Mindlin–Goodman
method, we propose an analytical method to obtain the
random dynamic response of the Euler beam with axial
load and time-dependent boundary conditions. Subse-
quently, an experiment is carried out to determine the

effectiveness of our method. Overall scheme of the ex-
periment is (a) solve the dynamic stress response of the
Euler beam under the sinusoidal constant frequency ex-
citation based on our proposed method. (b) +e stress
response of the beam resulted from the above sinusoidal
excitation is tested by the experimental system. (c) Make a
contrastive analysis of the stress response data obtained by
the proposed method and the experimental test. Figure 3
shows the experiment system.

2.3.1. Harmonic Excitation. In order to better observe the
experimental phenomena and collect more accurate ex-
perimental data, we constantly adjust the frequency and
amplitude of the sine constant frequency excitation and then
choose the following expression E(t) as the excitation:

E(t) � 5.754 × 10− 3 sin(0.314t). (35)

+e beam in the experiment is fixed at x� 0 and hinged
at x� l (l� 0.965m), and the sinusoidal constant frequency
excitation E(t) is given to the hinge support end. +e co-
ordinate of the test point is x� 0.03m, and the transverse
motion equation at x� 0.03m of the beam is

EI
z
4y(0.03, t)

zx4
+ 0.96m

z
2y(0.03, t)

zx2
+m

z
2y(0.03, t)

zt2
� 0.

(36)
+e static influence function of the beam can be obtained

by the initial parameter method, and the function of the
beam’s pseudostatic displacement can be derived according
to equation (12):

ys(x, t) � E(t)
3x2

2l2
−
x3

2l3
( ). (37)

+en, the modal coordinate equation of the beam can be
derived as

€qn(t) + ω2
nqn(t) � ψnE(t),

ψn �
∫l
0
[g(x) − 0.96g″(x)]φn(x)dx∫l

0
φ2
n(x)dx

,

(38)

where ψn is the weight coefficients of generalized load. +e
modal coordinates of the dynamic displacement of the beam
under sinusoidal constant frequency excitation is

qn(t) �
ψn
ωn

∫t
0
E(τ)sinωn(t − τ)dτ. (39)

+e material of the beam is 45 carbon steel, and the
diameter of the beam is 6mm. Since the series in equations
have a fast convergence rate, the first five orders of the series
are enough for the analysis. +erefore, the first five order
natural frequencies of the beam and weight coefficients are
calculated first, which are listed in Tables 1 and 2. Subse-
quently, the first five modal coordinates of the transverse
dynamic displacement of the beam are calculated by
equation (39).
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qi(t) � 5.754 × 10− 3
ψi
ωi

sin ωit( ) −cos 0.314 + ωi( )t
2 0.314 + ωi( ) −

cos 0.314 − ωi( )t
2 0.314 − ωi( ) +

1

2 0.314 + ωi( ) + 1

2 0.314 − ωi( )[ ]

− cos ωit( ) sin 0.314 − ωi( )t
2 0.314 − ωi( ) −

sin 0.314 + ωi( )t
2 0.314 + ωi( )[ ]




. (40)

Based on the above analysis, the total transverse dis-
placement of the beam in the experiment is

y(x, t) � E(t)
3x2

2l2
−
x3

2l3
( ) +∑5

i�1

φi(x)qi(t). (41)

From the relationship between displacement and stress,
the stress response of the beam can be obtained as

σ(x, t) �
EI

W
E(t)

3

l2
−
3x

l3
( ) +∑5

i�1

qi(t)
d2

dx2
φi(x) . (42)

2.3.2. Experimental Results and Discussion. As the beam is
cylindrical, its curved surface causes initial deformation of
the strain gauge; therefore, this part of stress caused by the
deformation should be subtracted from the original data. To
ensure a fixation at the bottom, we installed a pin at the
connection between the beam and the base, which generates
bending stress; this part of stress caused by installation
should be removed from the initial stress too. In Figure 4, the
stress response curve obtained from theoretical method and
experimental data are drawn, respectively. Due to the lim-
itation of the experimental conditions, the foundation
stiffness of the exciter and the beam is not large enough, so
the extreme response amplitude of the beam is lower in the
experiment.

+e stress response curve obtained by experiment ba-
sically coincides with the theoretical calculation data in the
main vibration response time period of the beam, which
demonstrates that the proposed method is effective in
solving the random response of a jack-up riser. Engineers
can use our method to conduct a preliminary study of the
marine riser, and if they want to accurately obtain the dy-
namic response of the riser at a certain position, they need to
establish the motion equation at that point.

3. Case Study

We take a typical riser with the length of 22.86m and an
external diameter of 1.372m as the example, and the dy-
namic response of the riser with subsea BOP under the
random wave load is investigated in our research. +e pa-
rameters of the platform are me� 6.48×10

6 kg,
ke� 4.71× 10

6N/m, ce� 8.77×10
5Nm/s, Do� 3.62m,

EI� 8.24×108Nm2,m� 461 kg/m, l� 110m, Tm� 3×10
3N,

Hs� 10m, CD� 2.0, CM� 2.0, z� 100m, ρ� 1025 kg/m3, and
g� 9.8m/s2.

+e first five order generalized load coefficients of the
riser are calculated and listed in Table 3. +e distribution of
the stress response spectrums of the riser in the frequency
domain and the spatial domain is plotted in Figures 5–7.+e
results show that the dynamical stress spectrum has two peak
frequencies, which are the dominant frequency of the wave
force spectrum and the fundamental frequency of the
platform, and the total stress response spectrum is a narrow
band spectrum; its dominating vibration frequency is the
fundamental frequency of the platform. And, the dynamical
displacement response of the jack-up riser is the main re-
sponse according to the comparative analysis between
Figures 5 and 7.

Based on the above research results, the mean square
deviation of the random displacement response and the
stress response of the riser are calculated and depicted in
Figures 8 and 9. Figure 8 shows that the minimum dis-
placement response occurs in the middle of the riser. +e
stress response amplitude of the riser is the largest near its
top end and bottom end, and the stress response is evenly
distributed in the middle area of the riser system. +e dy-
namical response results of our study are available to
evaluate whether a certain sea area meets the drilling con-
ditions, and it can also provide technical support for
adjusting the installation sequence of risers and improve the
service life of the jack-up riser.

Table 2: First five order load coefficients of the beam in the
experiment.

N 1 2 3 4 5

Ψn −0.0033 −0.0066 −0.0101 0.0444 0.0547

1

2

3

4

5

6

Figure 3: Diagram of the experiment system. 1, computer; 2, data
analyzer; 3, power amplifier; 4, vibration exciter; 5, beam; 6, strain gage.

Table 1: First five order natural frequencies of the beam in the
experiment.

N 1 2 3 4 5

ωn (rad/s) 82.43 329.9 742.34 1319.8 2062.2
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Table 3: Generalized load coefficients of the riser with subsea BOP.

n 1 2 3 4 5

ξn 0.6366 −0.3183 0.2122 −0.1592 0.1273

5
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Figure 5: Stress response spectrum caused by the transverse dynamic responses (Hs� 10m).
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4. Conclusions

In this paper, a frequency domain analysis method is pro-
posed to solve the random dynamic response of the jack-up
riser with subsea BOP and time-dependent boundary
conditions based on the Mindlin–Goodman method. +is
method can also be used to calculate the lateral response of

the Euler beam with other boundary conditions. In addition,
an experimental system was established and a response test
experiment of the Euler beam was finished. +e experi-
mental results show that the method is effective for solving
the transverse vibration response of the Euler beam.
+rough the case study, it is found that the lateral dynamic
response of the jack-up riser is dominated by the transverse
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Figure 7: +e total stress spectrum (Hs� 10m).
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Figure 8: Standard deviation of the displacement response with the subsea BOP (Hs� 4.52m).
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dynamic responses, the minimum displacement response
amplitude appears in the middle of the riser system, and the
maximum stress response amplitude occurs at both ends of
the riser system.
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