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Abstract

A number of spatial statistic measurements such as Moran’s I and Geary’s C can be used

for spatial autocorrelation analysis. Spatial autocorrelation modeling proceeded from the 1-

dimension autocorrelation of time series analysis, with time lag replaced by spatial weights

so that the autocorrelation functions degenerated to autocorrelation coefficients. This paper

develops 2-dimensional spatial autocorrelation functions based on the Moran index using

the relative staircase function as a weight function to yield a spatial weight matrix with a dis-

placement parameter. The displacement bears analogy with the time lag in time series anal-

ysis. Based on the spatial displacement parameter, two types of spatial autocorrelation

functions are constructed for 2-dimensional spatial analysis. Then the partial spatial auto-

correlation functions are derived by using the Yule-Walker recursive equation. The spatial

autocorrelation functions are generalized to the autocorrelation functions based on Geary’s

coefficient and Getis’ index. As an example, the new analytical framework was applied to

the spatial autocorrelation modeling of Chinese cities. A conclusion can be reached that it is

an effective method to build an autocorrelation function based on the relative step function.

The spatial autocorrelation functions can be employed to reveal deep geographical informa-

tion and perform spatial dynamic analysis, and lay the foundation for the scaling analysis of

spatial correlation.

1 Introduction

Measuring spatial autocorrelation is an important method for quantitative analyses in geogra-

phy. This method can be treated as a cornerstone of spatial statistics. However, present spatial

autocorrelation analysis has two significant shortcomings, which hinder its application scope

and effect. First, in the theoretical aspect, the scaling property of geographical spatial autocor-

relation has not been emphasized. Conventional mathematical modeling and quantitative

analysis depend on characteristic scales. If and only if we find the valid characteristic scales

such as determinate length, eigenvalue, and mean, will we be able to make effective mathemati-

cal models. If a geographical distribution is a scale-free distribution, no characteristic scale can

be found, and the conventional mathematical methods will be ineffective. In this case, the
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mathematical tools based on characteristic scales should be replaced by those based on scaling

analysis [1]. Second, in the methodological aspect, the spatial displacement parameter, which

is equivalent to the time lag parameter in time series analysis, has not been underlined in auto-

correlation analyses. Thus, spatial autocorrelation function analysis in a strict sense has not

been developed yet. The development path of spatial autocorrelation analysis in geography can

be summarized as follows. First, generalizing Pearson’s simple cross-correlation coefficient to

time series analysis to yield a 1-dimensional temporal auto-correlation function (TACF) based

on a time lag parameter [2–5]. Second, generalizing temporal auto-correlation function to

ordered space series and substituting the time lag with spatial displacement to yield a 1-dimen-

sional spatial auto-correlation function (SACF) [1]. Third, generalizing the 1-dimensional spa-

tial auto-correlation function to a 2-dimensional spatial dataset and replacing the

displacement parameters with the spatial weight matrix to yield a 2-dimensional spatial auto-

correlation coefficient, which is termed Moran’s index, or Moran’s I for short, in the literature

[6–8]. In principle, a time lag parameter corresponds to a spatial displacement parameter,

which in turn corresponds to the weight matrix. Where 1-dimensional autocorrelation analysis

is concerned, a series of time lag parameters correspond to a series of spatial displacement

parameters. However, only one spatial weight matrix can be taken into account in conven-

tional autocorrelation modeling.

If the variable distance is adopted instead of the fixed distance to construct the spatial

weight matrix, the spatial autocorrelation function analysis may be created. Many spatial statis-

ticians have thought of this, and variable distance has been introduced into spatial autocorrela-

tion analysis in many ways [8–13]. However, the introduction of variable distance is only one

of the necessary conditions to advance the methods of spatial autocorrelation function analy-

sis. To develop this methodological framework, a series of key problems needs to be solved.

The problems include how to select the distance attenuation function, how to define the spatial

weight matrix, and how to have the spatial autocorrelation function effectively correspond

with the autocorrelation function in time series analysis. This paper develops 2-dimensional

spatial autocorrelation functions based on Moran’s index and the corresponding analytical

process, laying the foundation for scaling analysis based on spatial autocorrelation. A set of

ordered spatial weight matrixes are introduced into the spatial autocorrelation models to con-

struct the 2-dimensional spatial autocorrelation function. Based on the 2-dimensional autocor-

relation function, spatial scaling analysis may be made in addition to a spatial correlation

analysis. The parts of the paper are organized as follows. In Section 2, two types of spatial auto-

correlation functions based on Moran’s index are established by using the relative staircase

function as a weight function. Then the autocorrelation functions based on Moran’s index are

generalized to the autocorrelation functions based on Geary’s coefficient and Getis’s index. In

Section 3, empirical analyses are made to show how to utilize the spatial autocorrelation func-

tions to make empirical analyses of geographical phenomena. In Section 4, several questions

related to this work are discussed. Finally, the discussion are concluded by outlining the main

points of this study.

2 Theoretical results

2.1 Simplified expression of Moran’s index

The first measurement of spatial autocorrelation was the well-known Moran’s index, which is

in fact a spatial autocorrelation coefficient (SACC). The formula of Moran’s index bears a

complicated form, but the expression can be simplified by means of a normalized matrix and a

standardized vector. The formulae and expressions are not new in this subsection, but they are

helpful for us to understand the new mathematical process shown in next subsection. Suppose
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there are n elements (e.g., cities) in a system (e.g., a network of cities) which can be measured

by a variable (e.g., city size), x. In the literature, the global Moran’s index can be expressed as

I ¼

n
X

n

i¼1

X

n

j¼1

vijðxi � mÞðxj � mÞ

X

n

i¼1

X

n

j¼1

vij
X

n

i¼1

ðxi � mÞ
2

; ð1Þ

where I denotes Moran’s I, xi is a size measurement of the ith element in a geographical spatial

system (i = 1,2,. . .,n), μ represents the mean of xi, vij refers to the elements in a spatial contigu-

ity matrix (SCM), V. The symbols can be developed as follows

x ¼ ½x
1
x
2
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T
; ð2Þ
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The formula of Moran’s index can be simplified and re-express as a quadratic form [14]

I ¼ zTWz; ð5Þ

in which z denotes the standardized size vector based on population standard deviation,W

is the unitized spatial contiguity matrix (USCM), i.e., a spatial weight matrix (SWM), and

superscript T indicates matrix or vector transposition. The standardized size vector is as

follows

z ¼
x� m

s
; ð6Þ

where σ refers to population standard deviation, which can be expressed as

s ¼ ½
1

n

X

n

i¼1
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2
�
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¼ ½
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1=2
: ð7Þ

The spatial weight matrix,W, can be expressed as

W ¼
V
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where

V
0
¼

X

n

i¼1

X

n

j¼1

vij ð9Þ

represents the summation of the numeric value of matrix elements, and

wij ¼
vij

V
0

¼
vij

X

n

i¼1

X

n

j¼1

vij

; ð10Þ

denotes the unitized value of the ith row and the jth column in the weight matrix. Apparently,

the matrixW satisfies the following relation

X

n

i¼1

X

n

j¼1

wij ¼ 1; ð11Þ

which is termed the normalization condition andW is termed the normalization matrix in the

literature [14]. Besides the unitization indicated by Eq (11), the matrix has another two charac-

teristics. One is symmetry, i.e., wij = wji; the other is zero diagonal elements, namely, |wii| = 0,

which implies no self-correlation of an element with itself. The spatial contiguity matrix comes

from the spatial distance matrix, which is a symmetric hollow matrix. The distance axiom

determines the properties of spatial weight matrices [15].

Scientific description always relies heavily on a characteristic scale of a geographical system.

A characteristic scale is a typical scale of a system which can be represented by a 1-dimensional

measure. Thus, characteristic scales are usually termed characteristic length in the literature

[16–20]. In mathematics, characteristic scales include determinate radius, side length, eigen-

value, average values, and standard deviation. An eigenvalue, if it does not depend on measure-

ment scale, can be treated as a characteristic length. Therefore, eigenvalues and eigenvectors

are important in spatial autocorrelation analyses [6,21–24]. Mathematical transformation can

be employed to identify eigenvalues, and thus identify characteristic length of spatial autocor-

relation. For a transformation T, a function f(x) is an eigen function if it satisfies the following

relation

Tðf ðxÞÞ ¼ lf ðxÞ; ð12Þ

where λ is the corresponding eigenvalue of the function. If T denotes a scaling transformation,

the eigenvalue λ will be associated with fractal dimension, including correlation dimension

[16,18,19]. This relation can be generalized to matrix equations. It can be proved that Moran’s

index is the eigenvalue of generalized spatial correlation matrixes [14]. Based on the inner

product of the standardized size vector, a Real Spatial Correlation Matrix (RSCM) can be

defined as

M ¼ nW ¼ zTzW; ð13Þ

where n = zTz represents the inner product of z. Thus we have

Mz ¼ nWz ¼ zTzWz ¼ Iz; ð14Þ

which indicates that I is the characteristic root of the polynomial equation proceeding from

the determinant of the matrix nW, and z is just the corresponding characteristic vector. Based
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on the outer product of z, an Ideal Spatial Correlation Matrix (ISCM) can be defined as

M� ¼ zzTW; ð15Þ

where zzT represents the outer product of the standardized size vector. Then we have

M�z ¼ zzTWz ¼ Iz; ð16Þ

which implies that I is the largest eigenvalue of the generalized spatial correlation matrix

zzTW, and z is just the corresponding eigenvector of zzTW. This suggests that geographers

have been taking advantage of the characteristic parameter for spatial analyses based on auto-

correlation. Using Eqs (14) and (16), we can generate canonical Moran’s scatterplots for local

spatial analyses.

2.2 Standard spatial autocorrelation function based on Moran’s I

Conventional mathematical modeling and quantitative analysis are based on characteristic

scales. A mathematical model of a system is usually involved with three scales, and thus

includes three levels of parameters. The first is the macro-scale parameter indicating environ-

mental level, the second is the micro-scale parameter indicating the element level, and the

third is the characteristic scale indicating the key level [25]. As indicated above, a characteristic

scale is often called a characteristic length since it is always a 1-dimensional measure [17,19].

In geometry, a characteristic length may be the radius of a circle or the side length of a square;

in algebra, a characteristic length may be the eigen values of a square matrix or characteristic

roots of a polynomial; in probability theory and statistics, a characteristic length may be the

mean value and standard deviation of a probability distribution. As demonstrated above, Mor-

an’s index is the eigenvalues of the generalized spatial correlation matrixes. Although the char-

acteristic scales are expressed as radius, length of a side, eigenvalue, mean value, standard

deviation, and so on, the reverse is not necessarily true. In other words, the radius, the side

length, the eigenvalue, the mean value and the standard deviation do not necessarily represent

a characteristic scale. If and only if a quantity can be objectively determined and its value does

not depend on the scale of measurement, the quantity can be used to represent a characteristic

length. Can Moran’s index be evaluated uniquely and objectively under given spatio-temporal

conditions? This is still a pending question in theoretical and quantitative geographies. To find

the answer, we should calculate the Moran’s index by means of different spatial scales.

Moran’s index is a spatial autocorrelation coefficient, but it can be generalized to a spatial

autocorrelation function (SACF). A spatial autocorrelation function is a set of a series of

ordered autocorrelation coefficients. The spatial autocorrelation function can be derived from

the proper spatial weight functions. Four types of spatial weight functions can be used to gen-

erate spatial contiguity matrixes: the inverse power function, negative exponential function,

absolute staircase function, and relative staircase function [8,15,26–29]. Among these spatial

weight functions, the relative staircase function is the most suitable one for constructing a spa-

tial autocorrelation function. A relative staircase function can be expressed as

vijðrÞ ¼ f ðrÞ ¼
1; 0 < dij � r

0; dij > r; dij ¼ 0
; ð17Þ

(

where dij denotes the distance between locations i and j, and r represents the threshold value of

spatial distance. In the literature, the threshold value r is always represented by an average

value, and is treated as a constant. However, a complex system often has no effective average

value. In other words, complex systems are scale-free systems and have no characteristic scales.
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In this case, the quantitative analysis based on characteristic scale should be replaced by scaling

analysis. In fact, spatial statisticians and theoretical geographers have been aware of uncer-

tainty of the threshold, r [9–12]. Suppose that r is a variable rather than a constant. The spatial

contiguity matrix, Eq (4), should be rewritten as
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Accordingly, the spatial weight matrix, Eq (8), can be re-expressed as
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where

V
0
ðrÞ ¼

X

n

i¼1

X

n

j¼1

vijðrÞ ¼ eTVðrÞe; ð20Þ

wijðrÞ ¼
vijðrÞ

X

n

i¼1

X

n

j¼1

vijðrÞ

: ð21Þ

In Eq (20), e = [1 1 . . . 1]T refers to the “constant” vector with components ei = 1 (i = 1,. . .,

n) [6], which is also termed the n-by-1 vector of ones [21]. The unitization property of spatial

weight matrices remain unchanged, i.e.,

X

n

i¼1

X

n

j¼1

wijðrÞ ¼ 1: ð22Þ

The global spatial autocorrelation function (SACF) based on the cumulative correlation can

be defined as

IcðrÞ ¼ zTWðrÞz; ð23Þ

in which Ic(r) refers to cumulative ACF. Eq (23) comes from the global Moran’s index and rel-

ative staircase function, Eqs (5) and (17).

The distance threshold is a type of displacement parameter, which correspond to the time

lag parameter in the temporal autocorrelation models of time series analysis. In this frame-

work, Moran’s index is no longer a spatial autocorrelation coefficient. It becomes a function of

spatial displacement r. By means of the spatial autocorrelation function, we can make quantita-

tive analyses of geographical spatial dynamics. The distance threshold can be discretized as rk
= r0+ks, where k = 1, 2, 3,. . .,m represents natural numbers, s refers to step length, and r0 is a

constant. Empirically, the distance threshold comes between the minimum distance and the

maximum distance, namely, min(dij)�r�max(dij). The global spatial autocorrelation function
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(SACF) based on density correlation can be computed by

IdðrÞ ¼
IðrkÞ ¼ zTWðr

1
Þz; k ¼ 1

DIðrkÞ ¼ zTWðrkÞz � zTWðrk�1
Þz; k > 1

; ð24Þ

(

which indicates that the density correlation function is the differences of cumulative correla-

tion function.

2.3 Generalized spatial autocorrelation function based on Moran’s I

In the above defined spatial autocorrelation function, each value represents an autocorrelation

coefficient. In other words, if a distance threshold value r is given, then we have a standard

Moran’s index. Spatial autocorrelation analysis originated from time series analysis. However,

this kind of autocorrelation function does not bear the same structure with the temporal auto-

correlation function in time series analysis. If we construct a “weight matrix” to compute the

autocorrelation function of a time series, the “weight matrix” is a quasi-unitized matrix instead

of a strict unitized matrix. Actually, by analogy with the temporal autocorrelation function, we

can improve the spatial autocorrelation function by revising the spatial weight matrix. The key

lies in Eq (20). According to the property of the spatial contiguity matrix based on the relative

staircase function, the maximum of V0(r) is

maxðV
0
ðrÞÞ ¼ lim

r!maxðdijÞ

X

n

i¼1

X

n

j¼1

vijðrÞ ¼ nðn� 1Þ: ð25Þ

Thus the spatial weight matrix, Eq (19), can be revised as
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Based on Eq (26), the spatial autocorrelation function can be re-defined as

I�ðrÞ ¼ zTW�ðrÞz ¼
1

nðn� 1Þ
zTVðrÞz; ð27Þ

which bears a strict analogy with the temporal autocorrelation function of time series analysis.

The difference between Eqs (23) and (27) is as follows, for I(r), V0(r) is a variable which

depends on the distance threshold r, while for I�(r), V0(r) is a constant which is independent of

r. In this case, the spatial weight matrix does not always satisfy the unitization condition, and

we have an inequality as below

X

n

i¼1

X

n

j¼1

w�
ijðrÞ � 1: ð28Þ

This implies that the summation of the elements inW�(r) is equal to or less than 1.

2.4 Partial spatial autocorrelation function based on Moran’s I

Autocorrelation coefficients reflect both direct correlation and indirect correlation between

the elements in a sample. If we want to measure the pure direct autocorrelation and neglect
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the indirect autocorrelation, we should compute the partial autocorrelation coefficients. A set

of ordered partial autocorrelation coefficients compose an autocorrelation function. Generally

speaking, the partial spatial autocorrelation function (PSACF) should be calculated by the

SACF based on density correlation function. In fact, we transform the spatial autocorrelation

functions into the partial autocorrelation functions by means of the Yule-Walker recursive

equation [30,31]
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: ð29Þ

where Ik denotes the kth order autocorrelation coefficient, and the parameter Hk is the corre-

sponding auto-regression coefficients. The Yule-Walker equation associates the autocorrela-

tion with the auto-regression equations. The last auto-regression coefficient, Hm, is equal to

themth order partial autocorrelation coefficient (k = 1, 2, 3,. . .,m). Ifm = 1, we have the first-

order partial autocorrelation coefficient, which can be given by

½J
1
� ¼ ½1� � ½H

1
� ¼ ½H

1
�; ð30Þ

in which J1 =H1 is the first-order partial autocorrelation coefficient. Ifm = 2, we have the sec-

ond-order partial autocorrelation coefficient, which can be given by the following matrix equa-

tion
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" #

¼
1 I

1

I
1

1

" #

�
H

1

H
2

" #

; ð31Þ

where J2 =H2 is the second-order partial autocorrelation coefficient. Ifm = 3, we have the

third-order partial autocorrelation coefficient, which can be given by
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in which J3 =H3 is the third-order partial autocorrelation coefficient. Among these matrix

equations, Eq (30) is a special case. It suggests that the first-order autocorrelation coefficient

equals the first-order partial autocorrelation coefficient, which in turn equals the first-order

auto-regression coefficient. For Eqs (31) and (32), we can calculate the autoregressive coeffi-

cient by means of finding the inverse matrix of the autocorrelation coefficient matrix. The last

autoregressive coefficient gives the partial autocorrelation coefficient value. The others can be

obtained by analogy. Applying Eqs (23) to (29) yields the partial spatial autocorrelation func-

tion based on cumulative correlation, and applying Eqs (24) to (29) yields the partial spatial

autocorrelation function based on density correlation. For n spatial elements, the correlation

number is n�n. Thus, based on significance level of 0.05, the standard deviation of the spatial

SACF and PSACF can be estimated by the formula, 1/n.
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2.5 Spatial autocorrelation functions based on Geary’s C and Getis’ G

In order to carry out more comprehensive spatial autocorrelation analysis, the spatial autocor-

relation functions can be extended to more spatial statistical measurements. Besides Moran’s

index, the common spatial autocorrelation measurements include Geary’s coefficient and

Getis-Ord’s index [11,32]. The former is often termed Geary’s C, and the latter is also termed

Getis’s G for short in the literature [6,8,33]. It is easy to generalize the 2-dimensional spatial

autocorrelation functions to Geary’s coefficient according to the association of Moran’s index

with Geary’s coefficient. In theory, Geary’s coefficient is equivalent to Moran’s index, but in

practice, the former is based on a sample, while the latter is based on the population [14,15].

Geary’s coefficient can be expressed in the following form [32]:

C ¼

ðn� 1Þ
X

n

i¼1

X

n

j¼1

vijðxi � xjÞ
2

2

X

n

i¼1

X

n

j¼1

vij
X

n

i¼1

ðxi � �xÞ
2

¼

ðn� 1Þ
X

n

i¼1

X

n

j¼1

wijðxi � xjÞ
2

2

X

n

i¼1

ðxi � �xÞ
2

: ð33Þ

Based on matrix and vector, Eq (33) can be simplified to the following form

C ¼
n� 1

n
ðeTWz2 � zTWzÞ ¼

n� 1

n
ðeTWz2 � IÞ; ð34Þ

where e = [1 1 . . . 1]T, and z2 = D(z)z = [z1
2 z2

2
. . . zn

2]T. Here D(z) is the diagonal matrix con-

sisting of the elements of z. Eq (34) gives the exact relation between Moran’s index I and

Geary’s coefficient C. Introducing the spatial displacement parameter into Eq (34) yields two

autocorrelation functions as follows

CðrÞ ¼
n� 1

n
½eTWðrÞz2 � IðrÞ� ¼

n� 1

n
½eTWðrÞz2 � zTWðrÞz�; ð35Þ

C�ðrÞ ¼
n� 1

n
½eTW�ðrÞz2 � I�ðrÞ� ¼

n� 1

n
½eTW�ðrÞz2 � zTW�ðrÞz�: ð36Þ

Clearly, Eq (35) is based on the standard unitized spatial weight matrix, corresponding to

Eq (23), while Eq (36) is based on the quasi-unitized spatial weight matrix, corresponding to

Eq (27).

Further, the analytical process of spatial autocorrelation functions can be generalized to

Getis’ index. Based on the unitized size vector, the formula of Getis’ index can be simplified to

the form similar to the new expression of Moran’s index, Eq (5). Generally speaking, Getis’s

index, G, is expressed as below [11]:

G ¼

X

n

i¼1

X

n

j¼1

wijxixj

X

n

i¼1

X

n

j¼1

xixj

: ð37Þ

The notation is the same as those in Eq (1). Suppose that for the outer product xixj, i = j can

be kept, but for weight, wij, i = j is rejected. Using unitized matrix and unitized vector, we can

rewrite Eq (37) in the following simple form [34]

G ¼ yTWy; ð38Þ
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where y = x/S = [y1, y2, . . ., yn]
T represents the unitized vector of x. The elements of y is defined

as below:

yi ¼
xi
S
¼ xi=

X

n

i¼1

xi ¼
xi
n�x

; ð39Þ

where the sum of x is

S ¼
X

n

i¼1

xi: ð40Þ

Now, introducing the spatial displacement parameter r into Eq (38) produces two autocor-

relation functions as below

GðrÞ ¼ yTWðrÞy; ð41Þ

G�ðrÞ ¼ yTW�ðrÞy: ð42Þ

Similar to Eqs (35), (36) and (41) is based on the standard unitized spatial weight matrix,

corresponding to Eq (23), while Eq (42) is based on the quasi-unitized spatial weight matrix,

corresponding to Eq (27).

3 Materials andmethods

3.1 Data and analytical approach

The analytical process of spatial autocorrelation functions can be used to research the dynamic

spatial structure of China’s system of cities. As a case demonstration of our methodology, only

the capital cities of the 31 provinces, autonomous regions, and municipalities directly under

the Central Government of China are taken into consideration for simplicity. The urban popu-

lation is employed as a size measurement, while the distances by train between any two cities

act as a spatial contiguity measurement. The census data of the urban population in 2000 and

2010 are available from the Chinese website, and the railroad distance matrix can be found in

many Chinese traffic atlases [14,15,34]. The cities of Haikou and Lhasa are not taken into

account in this study. Located in Hainan Island, Haikou is the capital of Hainan Province and

do not be linked to other cities by railway (lack of traffic mileage data of Haikou to other cities

in the atlas). Lhasa is the capital of the Tibetan Autonomous Region, located on the Qinghai

Tibet Plateau. Because of the plateau climate, Lhasa is loosely connected with other mainland

cities of China. In fact, the Qinghai Tibet railway is still under construction. Therefore, 29 Chi-

nese capital cities are actually included in the datasets. In this case, the spatial sample size of

the urban population is n = 29 (See S1 and S2 Files). First of all, the staircase function was used

to determine a spatial contiguity matrix based on a threshold distance r. Then, the three-step

method was employed to calculate Moran’s index and Getis-Ord’s index [14,34]. The process

is as follows. Step 1: standardizing the size vector x yields standardized size vector z. Step 2:

unitizing the spatial contiguity matrix based on a threshold distance r yields a spatial weight

matrixW(r). Step 3: computing Moran’s index using Eq (23). The values of Moran’s index can

be converted into the corresponding values of Geary’s coefficient with Eq (34). As for Getis’s

index, the standardized size variable z should be replaced by the utilized size variable y, and the

formula is Eq (38). Changing the distance threshold r value yields different values of Moran’s

index, Geary’s coefficient, and Getis’s index. Thus we have spatial autocorrelation functions

based on cumulative distributions (correlation cumulation). The differences of cumulative dis-

tributions give the spatial autocorrelation functions base on density distribution (correlation
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density). The main calculation process of spatial autocorrelation functions can be illustrated as

follows (Fig 1). It is easy to realize the whole calculation process by computer programming

(See S3 File).

The spatial analytical process and results rely heavily on the definition and structure of the

spatial contiguity matrix. Two aspects of factors in its structure significantly impact the analyti-

cal process. One is the diagonal elements, and the other is the sum of the spatial contiguity val-

ues. (1) Diagonal elements of spatial contiguity matrix. For conventional spatial autocorrelation

analysis, the diagonal elements should be removed; while for spatial correlation dimension

analysis, the diagonal elements must be taken into account. As a matter of fact, theoretical

geographers and spatial statisticians have taken into account the diagonal elements for the spa-

tial weight matrix [11,13]. Where generalized spatial autocorrelation functions are concerned,

the diagonal elements of the spatial contiguity matrix should not be zero. As for special fractal

analysis, the diagonal element can be overlooked. (2) The sum of spatial contiguity matrix. For

the theoretical spatial autocorrelation function, the sum varies with the yardstick length.

Fig 1. A flow chart of data processing, parameter estimation, and spatial autocorrelation function analyses. (Note: The
analytical process is based on the improved mathematical expressions of Moran’s I, Geary’s C and Getis-Ord’sG.
Compared with x, y represents the unitized size variable, and z, the standardized variable).

https://doi.org/10.1371/journal.pone.0249589.g001
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However, for a practical spatial autocorrelation function, the sum of spatial contiguity matrix

should be fixed to the original sum value. Different diagonal elements plus different definitions

of the sum of the spatial contiguity matrix lead to four approaches to autocorrelation function

analyses (Table 1).

3.2 Empirical analysis of spatial autocorrelation

The spatial contiguity matrix in spatial autocorrelation analysis bears analogy with the time lag

parameter in time series analysis. Normalizing a spatial contiguity matrix yields a spatial

weight matrix, and the former is equivalent to the latter. Therefore, the spatial weight matrix is

always confused with the spatial contiguity matrix in the literature. A spatial contiguity matrix

is based on the generalized distance matrix and must satisfy the axiom of distance. This sug-

gests that a spatial weight matrix must be a nonnegative definite symmetric matrix. It is easy to

generate a spatial contiguity matrix by using a weight function [26,29]. For n elements in a

geographical system, a spatial contiguity matrix, V(r), can be produced by means of Eq (17).

Normalizing the matrix V(r) yields the spatial weight matrixW(r). Changing the distance

threshold, i.e., the yardstick length r, results in a different weight matrixW(r), and thus results

in a different Moran’s index I(r). A set of Moran’s index values compose Moran’s function.

The spatial autocorrelation functions based on cumulative correlation can be converted into

those based on density correlation by using difference method. Moran’s autocorrelation func-

tion can be turned into Moran’s partial autocorrelation function through the Yule-Walker

recursive equation. The results are tabulated as below (Table 2). The significance of the auto-

correlation function can be judged by the double values of positive and negative standard

errors. The standard error value can be estimated with the reciprocal of the square root of the

number of sampling points [35]. For spatial autocorrelation, if n geographical elements are

taken into account, the maximum number of sampling points can be treated as n2, and thus,

based on the significance level α = 0.05, the standard errors can is about 1/n. Adding the posi-

tive and negative double standard error lines to correlograms yields what is called “two-stan-

dard-error bands” [35] (Figs 2–5).

First of all, let us investigate the generalized spatial autocorrelation function based on cumu-

lative correlation and the corresponding partial spatial autocorrelation function. These func-

tions reflect the distance decay effect. The generalized autocorrelation function is based on the

spatial contiguity matrix with nonzero diagonal elements, and the sum of the matrix elements is

fixed to a constant n2 = 29�29 = 841. That is to say, for every yardstick r, the number 841 is

employed to divide the sum of the spatial contiguity matrix elements, and the normalized results

represent the spatial weight matrix. This autocorrelation coefficient includes two parts: one is i

correlates i and j correlates j (based on diagonal elements), and the other, i correlates j and j cor-

relates i (based on the elements outside the diagonal of the matrix). The dynamic properties of

the generalized spatial autocorrelation are as below. (1) With the increase of threshold distance,

both the autocorrelation function and partial autocorrelation function show wave attenuation.

Table 1. Four possible types of calculation approaches to spatial autocorrelation functions based on different diagonal elements and means of spatial contiguity
matrix.

Variable sum of distance matrix [V] Fixed sum of distance matrix [F]

All elements (including diagonal
elements) [D]

[D+V] Generalized Moran’s function, I�(r); the sum of spatial
contiguity matrix elements is N(r)

[D+F] Generalized Moran’s function, If
�(r), the sum of spatial

contiguity matrix elements is N2

Partial elements (excluding
diagonal elements) [N]

[N+V] Conventional Moran’s function, I(r); the sum of spatial
contiguity matrix elements is N(r)-N

[N+F] Conventional Moran’s function, If(r); the sum of spatial
contiguity matrix elements is N(N-1)

Application direction Theoretical study and fractal analysis Practical study and spatial autocorrelation analysis

https://doi.org/10.1371/journal.pone.0249589.t001
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(2) The shape of the autocorrelation function curve is similar to that of partial autocorrelation

function curve. (3) From 2000 to 2010, the shape of the autocorrelation function curve showed

no significant change (Figs 2 and 3). Therefore, it can be concluded that the spatial relationship

between Chinese cities is relatively stable, and the direct relationship between different cities is

relatively weak. From about 2750 km to 2950 km, the positive correlation becomes weak and

even turns to negative correlation. This indicates that the distance 150 to 2950 km is a signifi-

cant correlation range in the spatial distribution of Chinese cities.

Secondly, let us examine the standard spatial autocorrelation function based on density cor-

relation and partial autocorrelation function. These functions reflect the spatial transition and

Table 2. Datasets for spatial autocorrelation function (ACF) and partial spatial autocorrelation function (PACF) based onMoran’s index (partial results).

Scale 2000 (Fifth census data) 2010 (Sixth census data)

r (km) D+F N+F D+F N+F

ACF I
�

(r) PACF J
�

(r) ACF ΔI(r) PACF ΔJ(r) ACF I
�

(r) PACF J
�

(r) ACF ΔI(r) PACF ΔJ(r)

150 0.0384 0.0384 0.0040 0.0040 0.0412 0.0412 0.0069 0.0069

250 0.0372 0.0357 -0.0013 -0.0013 0.0424 0.0408 0.0012 0.0012

350 0.0344 0.0318 -0.0028 -0.0028 0.0404 0.0372 -0.0021 -0.0021

450 0.0309 0.0273 -0.0036 -0.0036 0.0375 0.0329 -0.0030 -0.0029

550 0.0291 0.0248 -0.0019 -0.0019 0.0334 0.0278 -0.0043 -0.0042

650 0.0264 0.0216 -0.0027 -0.0027 0.0327 0.0264 -0.0007 -0.0007

750 0.0254 0.0202 -0.0011 -0.0011 0.0294 0.0225 -0.0034 -0.0034

850 0.0176 0.0120 -0.0081 -0.0081 0.0201 0.0127 -0.0097 -0.0096

950 0.0199 0.0145 0.0024 0.0024 0.0230 0.0159 0.0031 0.0032

1050 0.0109 0.0054 -0.0094 -0.0094 0.0121 0.0049 -0.0114 -0.0114

1150 0.0119 0.0069 0.0011 0.0011 0.0117 0.0052 -0.0004 -0.0003

1250 0.0203 0.0157 0.0087 0.0086 0.0143 0.0085 0.0027 0.0026

1350 0.0125 0.0076 -0.0080 -0.0082 0.0110 0.0055 -0.0034 -0.0035

1450 0.0122 0.0075 -0.0003 -0.0003 0.0078 0.0027 -0.0033 -0.0034

1550 0.0301 0.0257 0.0185 0.0185 0.0270 0.0227 0.0199 0.0198

1650 0.0222 0.0167 -0.0082 -0.0084 0.0214 0.0161 -0.0058 -0.0062

1750 0.0176 0.0115 -0.0048 -0.0047 0.0170 0.0112 -0.0045 -0.0045

1850 0.0255 0.0193 0.0082 0.0082 0.0224 0.0163 0.0056 0.0055

1950 0.0195 0.0126 -0.0062 -0.0062 0.0185 0.0119 -0.0040 -0.0039

2050 0.0243 0.0173 0.0050 0.0050 0.0224 0.0155 0.0040 0.0041

2150 0.0116 0.0040 -0.0131 -0.0132 0.0098 0.0022 -0.0131 -0.0132

2250 0.0029 -0.0043 -0.0090 -0.0087 0.0003 -0.0071 -0.0098 -0.0095

2350 0.0157 0.0097 0.0133 0.0134 0.0128 0.0068 0.0129 0.0134

2450 0.0034 -0.0030 -0.0128 -0.0133 0.0032 -0.0028 -0.0100 -0.0106

2550 0.0139 0.0087 0.0109 0.0114 0.0135 0.0086 0.0107 0.0112

2650 0.0078 0.0026 -0.0064 -0.0066 0.0076 0.0028 -0.0061 -0.0064

2750 0.0039 -0.0013 -0.0040 -0.0046 0.0025 -0.0021 -0.0053 -0.0056

2850 0.0019 -0.0025 -0.0021 -0.0014 0.0006 -0.0032 -0.0020 -0.0015

2950 0.0022 -0.0016 0.0004 0.0000 0.0016 -0.0015 0.0011 0.0008

3050 -0.0046 -0.0085 -0.0071 -0.0077 -0.0046 -0.0076 -0.0064 -0.0069

Note: (1) Only partial results are tabulated. See the Supporting Information files for more results. (2)D implies that diagonal elements are taken into account,N denotes

that diagonal elements are deleted, and Fmeans fixed mean values of spatial contiguity matrix elements. (3) ACF represents spatial autocorrelation function, and PACF

refers to partial spatial autocorrelation function. (4) For [D+F] type, ACF and PACF are based on cumulative correlation, while for [N+F] type, ACF and PACF are

based on density correlation. (5) The unit of distance is kilometer (km).

https://doi.org/10.1371/journal.pone.0249589.t002
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oscillation between positive autocorrelation and negative autocorrelation. The standard auto-

correlation function is based on the spatial contiguity matrix with zero diagonal elements, and

the sum of the matrix elements is fixed to a constant (n-1)n = 28�29 = 812 for different yard-

stick r. That is, the sum of spatial contiguity matrix elements is divided by the number 812,

and the normalized results serve as the spatial weight matrix. This autocorrelation coefficient

includes only one part, namely, i correlates j and j correlates i (based on the elements outside

the diagonal of the matrix). Another part, i.e., i correlates i and j correlates j (based on diagonal

elements), is ignored. To reflect the sensitivity of spatial correlation, the cumulative autocorre-

lation functions are transformed into density autocorrelation functions. The dynamic proper-

ties of the standard spatial autocorrelation are as follows. (1) If the distance is too short and too

remote, the autocorrelation is very weak. Only when the distance is proper is the autocorrela-

tion significant. (2) The pattern of indirect correlation reflected by the autocorrelation func-

tion looks very like the pattern of direct correlation reflected by the partial autocorrelation

function. (3) From 2000 to 2010, the autocorrelation and partial autocorrelation patterns have

no significant change (Figs 4 and 5).

However, if we calculate the ratio of the spatial autocorrelation function and the partial spa-

tial autocorrelation function, we will find the inherent regularities. When the curves of auto-

correlation function and partial autocorrelation function fluctuate sharply, their ratio is very

stable. On the contrary, when the autocorrelation function and partial autocorrelation func-

tion seem to be stable, their ratio changes sharply (Fig 6). Combining the results of two auto-

correlation functions, the characteristic correlation ranges can be obtained. This can be treated

Fig 2. Spatial autocorrelation function and partial autocorrelation function of Chinese cities based on generalized
Moran’s index and correlation cumulation (2000). (Note: The blue lines in the histograms are termed “two-
standard-error bands”, according to which we can know whether or not there is significant difference between ACF or
PACF values and zero. The same below.).

https://doi.org/10.1371/journal.pone.0249589.g002
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as the scaling ranges of spatial correlation of Chinese cities. For 2000, the scaling range comes

between about 250 km and 2850 km. For 2010, the scaling range comes between about 250 km

and 3350 km. In fact, based on the scales ranging 250 to 2750, a scaling exponent, spatial corre-

lation dimension, can be revealed from the relationships between yardstick lengths and corre-

sponding correlation numbers of cities, and the result is about D = 1.7.

If a geographical system has a typical scale, we can utilize the parameter indicating charac-

teristic length to perform spatial analysis. In this case, we can find the characteristic scale of

spatial autocorrelation [8]. In contrast, if the autocorrelation coefficient values depend on

measurement scale and no determinate typical value of Moran’s index can be found, we meet a

scale-free system, and the characteristic length should be replaced by a scaling process. Scaling

range is important for geographical spatial analysis from the perspective of spatial complexity.

An interesting finding in this work is that, within the scaling range, all the autocorrelation

measurements based on density correlation change sharply over distance, but the ratio of the

autocorrelation function to the corresponding partial autocorrelation function is very stable.

Besides Moran’s index, the changing feature of spatial autocorrelation can be reflected by Mor-

an’s scatterplots. Based on spatial autocorrelation functions, a series of canonical Moran’s scat-

terplots can be drawn by means of Eqs (14) and (16). These graphs can reflect the positive and

negative alternation process and local characteristics of spatial autocorrelation (Fig 7).

By using spatial ACF and PACF, we can show that the spatial autocorrelation characteristics

of Chinese cities are as follows. First, the spatial autocorrelation of population among the prin-

cipal cities in China is weak. Most absolute values of autocorrelation coefficients are less than

the double value of the standard error, 1.96/29, i.e., 0.0676. The reason lies in two aspects: one

Fig 3. Spatial autocorrelation function and partial autocorrelation function of Chinese cities based on generalized
Moran’s index and correlation cumulation (2010).

https://doi.org/10.1371/journal.pone.0249589.g003
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is the large territory of China, and the other is the strict registered residence management sys-

tem. Therefore, on the national dimension, population migration between large cities is not

free. Second, population flow among Chinese cities takes on self-correlation, namely, a city

influences itself. As indicated above, the self-correlation is reflected by the diagonal elements.

If the diagonal elements are taken into account, there is no significant difference between the

spatial ACF and to the spatial PACF. On the other, the correlogram based on zero diagonal

weight matrix differ significantly from that based on nonzero diagonal weight matrix. This

suggests that the diagonal elements indicative of self-correlation play a significant part in the

calculation of spatial ACF and PACF. Third, the spatial autocorrelation fluctuates sharply

within a certain scale range. This can be seen by the standard spatial ACF and PACF. When

the distance is less than 2750 km, the spatial autocorrelation changes significantly with dis-

tance, but when the distance is more than 3350 km, the spatial autocorrelation does not change

significantly with distance. The maximum effective distance of urban spatial correlation in

China seems to be about 3000 km (2750–3350 km). This can be treated as a characteristic

length of spatial autocorrelation of Chinese cities.

3.3 Scaling analysis of spatial autocorrelation

The autocorrelation functions based on Moran’s index involves negative values, and cannot be

directly associated with scaling relation. The solution to a scaling equation is always a power

law. So the power law is the basic mark of scaling in empirical studies. In Eq (12), if T repre-

sents a contraction-dilation transformation, and a function satisfies Eq (12), we will say it fol-

lows the scaling law. The values of Geary’s coefficient and Getis-Ord’s index are greater than 0

in empirical studies and may follow a power law. For the autocorrelation function based on

Fig 4. Spatial autocorrelation function and partial autocorrelation function of Chinese cities based on
conventional Moran’s index and correlation density (2000).

https://doi.org/10.1371/journal.pone.0249589.g004
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Fig 6. The ratios of SACF to PSACF based on correlation density for the main cities of China. (Note: Inside the
scaling ranges of spatial correlation dimension, the ratios of spatial autocorrelation function to the partial spatial
autocorrelation function are stable; In contrast, outside the scaling range, the ratio curves fluctuate significantly. From
2000 to 2010, the scaling range extended from about 2850 to 3350 km.).

https://doi.org/10.1371/journal.pone.0249589.g006

Fig 5. Spatial autocorrelation function and partial autocorrelation function of Chinese cities based on
conventional Moran’s index and correlation density (2010).

https://doi.org/10.1371/journal.pone.0249589.g005
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Geary’s coefficient, the power law relation is as below

CðrÞ ¼
n� 1

n
½eTWðrÞz2 � IðrÞ� ¼ C

0
ra; ð43Þ

where C0 refers to the proportionality coefficient, and a to a scaling exponent. For the Getis-

Ord’s index, the power law relation is as follows

GðrÞ ¼ yTWðrÞy ¼ G
0
rb; ð44Þ

in which G0 refers to the proportionality coefficient, and b to a scaling exponent. The empirical

analyses show that both the spatial cumulative autocorrelation function based on Geary’s coef-

ficient and that based on Getis-Ord’s index follow power law if scaling range is taken into

Fig 7. The canonical Moran’s scatterplots of spatial autocorrelation based on correlation density function for the main
cities of China (examples for 2010). (Note: The scatter points are based on the inner product correlation, zTzWz = Iz, and the
relation is Eq (14). The trend line is based on the outer product correlation, zzTWz = Iz, and the relation is Eq (16). The
Moran’s index difference values are as follows. (a) For 450<r�550, ΔI = -0.0043; (b) For 1050<r�1150, ΔI = -0.0004; (c) For
1450<r�1550, ΔI = 0.0199; (d) For 2550<r�2650, ΔI = 0.0061.).

https://doi.org/10.1371/journal.pone.0249589.g007

PLOS ONE Spatial autocorrelation function analyses

PLOSONE | https://doi.org/10.1371/journal.pone.0249589 April 14, 2021 18 / 27

https://doi.org/10.1371/journal.pone.0249589.g007
https://doi.org/10.1371/journal.pone.0249589


account (Figs 8 and 9). For Geary’s coefficient, the scaling ranges from 250 to 2750 km. The

scaling exponent is about 1.5479 in 2000 and about 1.5863 in 2010 (Fig 8). For Getis-Ord’s

index, the scaling range come between 150 and 2750 km. The scaling exponent is about 1.5811

in 2000 and about 1.4986 in 2010 (Fig 9).

Using a difference function, we can transform the cumulative autocorrelation functions

based on Geary’s coefficient and Getis-Ord’s index into density autocorrelation functions. For

Geary’s coefficient, the formula for the autocorrelation function based on density correlation

Fig 8. The scaling relations for the spatial autocorrelation function based on cumulative correlation and Geary’s
coefficient. Note: The solid dots represent all points of spatial autocorrelation functions, and the hollow blocks
represent the points within the scaling range. The scaling range comes between 250 and 2750 km.

https://doi.org/10.1371/journal.pone.0249589.g008

Fig 9. The scaling relations for the spatial autocorrelation function based on cumulative correlation and Getis-Ord’s
index. Note: The solid dots represent all points of spatial autocorrelation functions, and the hollow blocks represent the
points within the scaling range. The scaling range comes between 150 and 2750 km.

https://doi.org/10.1371/journal.pone.0249589.g009
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is as follows

CdðrÞ ¼
CðrkÞ; k ¼ 1

DCðrkÞ ¼ CðrkÞ � Cðrk�1
Þ; k > 1

; ð45Þ

(

For Getis-Ord’s coefficient, the formula for the autocorrelation function based on density

correlation is as below

GdðrÞ ¼
GðrkÞ ¼ yTWðrkÞy; k ¼ 1

DGðrkÞ ¼ GðrkÞ � Gðrk�1
Þ; k > 1

; ð46Þ

(

In Eqs (45) and (46), the distance r is discretized as rk = r0+ks, in which k = 1, 2, 3,. . .,m rep-

resents natural numbers, s refers to step length, and r0 is a constant.

The autocorrelation function based on density correlation can reflect the scaling range of

spatial dependence from another angle of view. The density correlation function curves are a

random fluctuation curves, and the autocorrelation function curve based on Geary’s coeffi-

cient looks like that based on Getis-Ord’s index (Figs 10 and 11). Within the scaling range, spa-

tial correlation changes greatly with distance, while outside the scaling range, spatial

correlation changes slightly over distance. This feature is similar to the change trend of the

density autocorrelation function based on Moran’s index. The scaling range suggested by

Geary’s coefficient and Getis-Ord’s index corresponds to that suggested by Moran’s index (150

or 250 km -2750 or 3350 km).

4 Discussion

This work concerns two aspects of innovation in spatial modeling and analysis. First, in theory,

the idea of spatial scaling is introduced into spatial autocorrelation modeling. Conventional

spatial autocorrelation analysis is based on a fixed distance threshold and characteristic scales.

Moran’s I is actually an eigenvalue of the generalized spatial correlation matrix. If and only if

an eigenvalue bears no scale dependence, it can serve as a characteristic length in spatial analy-

sis. Unfortunately, in many cases, Moran’s I depends on the spatial measurement scale. In this

paper, spatial autocorrelation modeling is based on variable distance threshold and scaling.

Moran’s I can be associated with the spatial correlation dimension. Second, in methodology,

the spatial correlation coefficients were generalized to spatial autocorrelation functions and

partial autocorrelation functions. Using these functions, we can perform analyses of the spatial

dynamics of complex geographical systems. As we know, the modeling methods of ACF and

PACF as well as the related spectrums have been developed for time series analysis. A time

series is in fact a 1-dimensional variable based on ordered point sets. The methods for time

series analysis can be applied to 1-dimensional spatial series based on isotropic ordered spatial

point sets, but the methods cannot be directly generalized to the 2-dimensional spatial data

based on anisotropic random spatial point sets (Table 3). A correlogram is a basic way of illus-

trating ACF and PACF in time series analysis. It is natural for this tool to be introduced into

spatial autocorrelation analysis based on variable distance. However, the development of spa-

tial autocorrelation function analysis is systems engineering. The methodology cannot be

completely represented by correlograms and autocorrelation coefficients based on variable dis-

tance. Developing spatial autocorrelation functions relies heavily on three necessary condi-

tions. First, introduction of a spatial displacement parameter into the spatial contiguity matrix.

This step is easy to do, and, as mentioned above, many scholars have already done so [9,11–

13]. The key is to select a proper distance decay function. Second, definition of the spatial con-

tiguity matrix. This seems to be an easy problem to solve, but it is not. This involves the
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treatment of diagonal elements of the spatial weight matrix. Third, conversion of the spatial

contiguity matrix to a weight matrix. If and only if the spatial contiguity matrix is normalized

to yield a weight matrix, the key step can be revealed clearly, that is, the sum used to normalize

the spatial contiguity matrix does not change over the spatial displacement parameter. Other-

wise, the spatial autocorrelation functions cannot correspond to the temporal autocorrelation

functions of time series analysis.

Fig 10. The curves of Geary’s C based on correlation density for the main cities of China. (Note: Inside the scaling ranges of
spatial correlation dimension, the curves of Geary’s C fluctuate sharply. From 2000 to 2010, the curve shapes have no significant
change.).

https://doi.org/10.1371/journal.pone.0249589.g010

Fig 11. The curves of Getis-Ord’s G based on correlation density for the main cities of China. (Note: Inside the scaling
ranges of spatial correlation dimension, the curves of Getis-Ord’sG fluctuate significantly. From 2000 to 2010, the curve shapes
have slight change.).

https://doi.org/10.1371/journal.pone.0249589.g011
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Spatial autocorrelation analysis has gone through two stages. The first stage is reflected in

biometrics. At this stage, spatial autocorrelation measurements are mainly used as an auxiliary

means of traditional statistical analysis. The prerequisite or basic guarantee of statistical analy-

sis is that the sample elements are independent of each other [8]. To measure the indepen-

dence of spatial sampling results, Moran’s index was presented by analogy with Pearson’s

product-moment correlation coefficient and the autocorrelation coefficient in time series anal-

ysis [36,37]. Moran’s I is based on spatial populations (universes) rather than spatial samples

[14]. As an addition, Geary’s coefficient was proposed by analogy with the Durbin-Watson sta-

tistic [32], and this index is for spatial sample analysis [14]. The second stage is reflected in

human geography. At this stage, spatial autocorrelation becomes one of the leading tools of

geospatial modeling and statistical analysis. In the period of the geographical quantitative revo-

lution (1953–1976), autocorrelation measurements were introduced into geography [7,38].

Geographers have found that few types of geospatial phenomena do not have spatial correla-

tions, so traditional statistical analysis often fails in geographical research [8,38]. Geographers

changed their thinking and decided to develop a set of analytical processes based on spatial

autocorrelation [8,24,28,39–42]. A number of new measurements and methods emerged,

including the Getis-Ord’s index (Getis’s G) [11,29], local Moran’s indexes and Moran’s scatter-

plot [33,43], spatial filtering [24], and spatial auto-regression modeling [44,45]. At the same

time, spatial autocorrelation analysis continued to develop in biometrics and ecology

[9,10,12,22,46–48]. At present, autocorrelation analysis seems to enter the third stage. Based

on spatial autocorrelation measures and analytical processes, spatial statistics have been devel-

oped rapidly and applied to many areas [21,49–56]. However, if the spatial statistics are con-

fined to autocorrelation coefficients and related measures, it will be difficult to further extend

the applications and functions of spatial modeling and analysis.

Spatial autocorrelation methods open new ways of geographical statistical analysis under

the conditions of existing inherent correlation among spatial sampling points. In particular, it

lays the foundation for spatial autoregressive modeling. However, growing evidence shows

that the measurement values of spatial autocorrelation indexes depend on size, shape, and spa-

tial scales of geographical systems [8,9,11,12]. At least two approaches can be used to solve this

problem. One is to make spatial scaling analysis based on spatial autocorrelation indexes, and

the other is develop spatial autocorrelation function analysis. One basic method of developing

spatial autocorrelation functions is to make use of variable distance. Based on the variable dis-

tance defined in spatial contiguity matrices, spatial correlation function, structure function,

spatial correlogram, spline correlogram, and so on, have been introduced into spatial autocor-

relation processes [8,9,12]. Spatial correlogram is just a result from analogy with the correla-

tion function histogram in time series analysis. Among various methods of spatial analyses

based on variable distance, the structure function advanced by Legendre and Legendre [12]

looks like the spatial autocorrelation function developed in this work. However, there is an

essential difference between structure function and autocorrelation function. A comparison

Table 3. A comparison of the analytical processes of autocorrelation functions and related methods.

Domain Dimension Object ACF PACF Spectral
analysis

Time
domain

1-dimension time (one
independent direction)

Time series Temporal ACF analysis and auto-
regressive process

Temporal PACF analysis and auto-
regressive process

Power
spectrum

Spatial
domain

1-dimension space (one
independent direction)

Isotropic ordered spatial
series

Spatial ACF analysis and auto-
regressive process

Spatial PACF analysis and auto-
regressive process

Wave
spectrum

2-dimension space (two
independent directions)

Anisotropic random
spatial series

To be developed To be developed To be
developed

https://doi.org/10.1371/journal.pone.0249589.t003
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can be drawn by tabulating the similarities and differences between structure function and

spatial autocorrelation function (Table 4). In short, the structure function is based on the idea

of characteristic scales, while the spatial autocorrelation function is associated with scaling

analysis for geographical systems. In fact, the variable distance can be employed to find the

characteristic scale of spatial autocorrelation processes [8].

The empirical analysis results demonstrate that the 2-dimensional spatial autocorrelation

coefficients and the related statistics can be generalized to 2-dimensional spatial autocorrela-

tion functions and related functions. A preliminary framework of spatial analysis based on

autocorrelation functions was put forward. The main contributions of this study can be out-

lined as three aspects. First, construction of 2-dimensional spatial autocorrelation functions.

Based onMoran’s index and the relative staircase function with a spatial displacement parame-

ter, two sets of spatial autocorrelation functions are constructed. Second, definition of partial

spatial autocorrelation functions. By means of the Yule-Walker recursive equation, the calcula-

tion approach of partial autocorrelation functions is proposed. Third, generalization of the

spatial autocorrelation functions. The 2-dimensional spatial autocorrelation function are gen-

eralized to Geary’s coefficient and Getis’ index and the extended autocorrelation functions are

established. Moreover, the spatial autocorrelation analysis based on characteristic scales is gen-

eralized to that based on scaling. The concept of scaling was associated with spatial autocorre-

lation [10]. However, the substantial research on scaling in spatial autocorrelation process has

not been reported. The main mathematical expressions can be tabulated for comparison

(Table 5). The significance of developing this mathematical framework for spatial autocorrela-

tion lies in three respects. First, spatial information mining of geographical systems. The spatial

autocorrelation functions can be used to reveal more geographical spatial information and

express more complex dynamic processes than the spatial autocorrelation coefficients. Second,

Table 4. The differences and similarities between structure function and spatial autocorrelation function.

Item Legendres’ work Work in this paper

Objective Finding typical autocorrelation index Find spatial scaling and relations to fractal dimension

Basic postulate Characteristic scale Scaling invariance

Statistic hypothesis Gaussian distribution Pareto distribution

Spatial contiguity definition Kronecker’s delta Heaviside function (step function)

Distance conversion Metric variable! Rank variable! Categorical variable Metric variable! Categorical variable

Spatial weight matrix (1) Based on variable mean; (2) Diagonals are zeros (1) Based on fixed mean; (2) Diagonals are zeros or ones

Spatial correlation Correlation density Correlation cumulation

Measurement method Variable distance Variance distance

Measurement result Autocorrelation coefficients Autocorrelation and partial autocorrelation coefficients

Modeling result Structure function Autocorrelation function partial autocorrelation function

Representation way Correlogram Correlogram

Function Spatial structure analysis based on characteristic scale Spatial dynamics analysis based on scaling idea

https://doi.org/10.1371/journal.pone.0249589.t004

Table 5. Collections of two types of spatial autocorrelation functions and the extended results.

Type Base Standard SACF (i 6¼j) Generalized SACF (i = j)

Basic functions Moran’s I: SACF I(r) = zTW(r)z I�(r) = zTW�(r)z

PSACF J(r) = f(I(r)) J�(r) = f(I�(r))

Extended functions Geary’s C CðrÞ ¼ n�1

n
½eTWðrÞz2 � IðrÞ� C�ðrÞ ¼ n�1

n
½eTW�ðrÞz2 � I�ðrÞ�

Getis’s G G(r) = yTW(r)y G�(r) = yTW�(r)y

Difference SWM W(r) = V(r)/V0(r) W�(r) = V(r)/(n(n-1))

https://doi.org/10.1371/journal.pone.0249589.t005
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foundation of scale and scaling analysis. If a geographical system bears characteristic scales, the

spatial autocorrelation functions can be used to bring to light the characteristic length; if a geo-

graphical system has no characteristic scale, the spatial autocorrelation functions can be

employed to perform scaling analysis. Third, future development of spectral analysis. Autocor-

relation functions and power/wave spectral density represents two different sides of the same

coin. Based on the spatial autocorrelation functions, the method of 2-dimensional spectral

analysis can be developed for geographical research.

The new development of a theory or a method always gives rise to a series of new problems.

New problems will lead to further exploration about the theory or the method. The main

shortcomings of this work are as follows. First, the local spatial autocorrelation functions have

not been taken into consideration. Moran’s index, Geary’s coefficient, and Getis’ index can be

used to measure local spatial autocorrelation. However, local spatial coefficients have not been

generalized to local spatial autocorrelation functions. Second, the auto-regression models have

not been built. Autocorrelation and auto-regression represent two different sides of the same

coin. How can the auto-regression models, which can give the partial autocorrelation coeffi-

cients, be conducted? This is a pending question. Third, the case study is based on 29 provin-

cial capital cities rather than a system of cities based on certain size threshold. The system of

provincial capital cities are in the administrative sense instead of pure geographical sense. This

type of spatial sample can be used to generate an example to illustrate the research method. If

we perform a spatial analysis of Chinese cities, we should make a spatial sampling according to

certain scale threshold.

5 Conclusions

A new analytical framework based on a series of spatial autocorrelation functions has been

demonstrated with its mathematical derivation. A case study is presented to show how to

make use of this analytical process. Next, we further improve the related spatial analytical

methods based on spatial autocorrelation functions, including spatial cross-correlation func-

tions, spatial auto-regression modeling, and spatial wave-spectral analysis. The main points

can be summarized as follows. First, a new spatial analytical process can be developed by spa-

tial autocorrelation functions based on the relation staircase function. By introducing a spatial

displacement parameter into spatial weight functions, we can transform the spatial autocorre-

lation coefficients such as Moran’s index into spatial autocorrelation functions on the analogy

of the corresponding methods in time series analysis. An autocorrelation function is a parame-

ter set comprising a series of autocorrelation coefficients. A spatial autocorrelation coefficient

can be used to characterize the simple spatial correlation and structure, while a spatial autocor-

relation function can be employed to describe the complex spatial correlation and dynamics.

Second, partial spatial autocorrelation functions can be used to assist spatial autocorrelation

function analysis. Using the Yule-Walker recursive equation, we can convert the spatial auto-

correlation function based on Moran’s index into partial spatial autocorrelation functions.

Spatial autocorrelation functions reflect both direct and indirect spatial autocorrelation pro-

cesses in a system, while partial spatial autocorrelation functions can be employed to display

the pure direct autocorrelation process. Third, the spatial autocorrelation function can be

extended by means of more spatial autocorrelation measurements. The spatial autocorrelation

functions can be generalized to the autocorrelation functions based on Geary’s coefficient and

Getis-Ord’ index. Different autocorrelation functions have different uses in spatial analysis.

Using the spatial autocorrelation functions, we can mine more geographical spatial informa-

tion, seek the characteristic scales for spatial modeling and quantitative analysis, or reveal the

hidden scaling in complex geographical patterns and processes.
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Supporting information

S1 File. Datasets of urban population and railway distances in 2000 for calculating spatial

autocorrelation and partial autocorrelation functions. This file contains the original or pre-

liminarily processed data of 2000 used in this paper. It provides two complete processes of

computing spatial autocorrelation function (ACF) and partial autocorrelation function

(PACF).

(XLSX)

S2 File. Datasets of urban population and railway distances in 2010 for calculating spatial

autocorrelation and partial autocorrelation functions. This file contains the original or pre-

liminarily processed data of 2010 used in this paper.

(XLSX)

S3 File. Four Matlab programs for computing the spatial autocorrelation and partial auto-

correlation function analysis based on Moran’s index. It provides four Matlab programs for

calculating spatial autocorrelation function (ACF) and partial autocorrelation function

(PACF). Among the four programs, two are significant: one is based on diagonal elements and

variable weights, and the other is based on zero diagonal elements and fixed weights. Readers

can employ the programs to carry out spatial ACF and PACF analyses by substituting the

author’s data with their own data.
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