
An Analytical Study and Review of open

Source Chatbot framework, RASA

Rakesh Kumar Sharma
Scientist-D

National Informatics Center (NIC)

India

Manoj Joshi
Scientist-E

National Informatics Center (NIC)

India

Abstract— In the era of chatbots, besides imitating humans

they can also perform complex tasks like booking tickets for

movie etc. Out of various implementations, RASA is open source

implementation for NLU and DIET model. It can interact with

database, api, conversational flow, interactive learning with

reinforcement Neural network. In this study, various features of

rasa core are studied and upto much extent it can perform

complex tasks. Implementation details are studied like

interaction with database, API. Tracker Store has been

examined with modifying the socket.io core file adding metadata

to the user message data, so that user ip and port can be

captured. Furthermore, the action, interactive learning and

implementation details are tested on windows Pycharm IDE.

Keywords—Chatbot,Rasa,open source,NLP

I. INTRODUCTION

Rasa Conversational AI assistant is quiet different than earlier

traditional FAQ interactions as it is based on natural

conversations means like how humans interact with each

other by considering what earlier the context was sent and

what actions are to be taken in reference to the contexts and

gracefully handling the unexpected conversation and driving

the conversation when the user drifts from normal

conversation path and also improve over time thus its far

beyond the FAQ Interactions.

Rasa Conversational AI assistant normally consists of two

components and they are Rasa NLU and Rasa Core. Rasa

NLU can be just treated like ear which is taking inputs from

user and Rasa Core is just like the brain which will take

decisions based on user input.

II. RECENT WORK

Chatbots are software that behaves like human answering

the question which are asked,Now a days , development in

this field going to scale up , now chatbots not only answer

simple questions but can perform complex task like fetching

the results from api, booking tickets and various management

tasks.For the development of a chatbot, it requires a team of

many experts but to overcome the scarcity of time and

resources, re-use of open source software is done.

In this paper[1], Bocklisch, T et al introduced the rasa

NLU and core for the first time with open source license. The

aim of this study was to provide a dialogue system based on

machine learning and understanding the language to the

enthusiast whoare no such expert in technology. The

package[2] they developed was of minimal size and

advancement is done in the package. With the efforts of 344

contributers , 244 releases of rasa have been released with

total of 18023 commits.

In his work [3], Lacerda used the core of rasa and

presented a new software stack called as Rasa-ptbr-boilerplate

for the non specialist who doesn’t much about the internals of

the chatbot , considering the chatbot as blackbox.

Now, chatbots are intelligent systems which can perform

complex task and has many application in robotics and natural

language processing.In the recent time, there is development

in the field of artificial intelligence, so the chatbots are acting

as customer service agents. In this study [4], Jiao designed a

functional framework which implements the principle of

RASA NLU and further more he integrated the RASA NLU

with the neural network methods resulting into an entity

extraction system and later on recognizes the intents and

related entities. This study showed that Neural network

outperforms in with RASA NLU.

In the study[5], rasa chatbot is compared with Microsoft

Bot, RASA, and Google Dialogflow and the various

performance metrics have been tested, the extensibility and

open source license makes RASA more versatile than other

enterprise softwares.

This paper examines[6],the available technologies and

implemented the use case prototype to give up insight that

chatbot can be used with social networks so that smart chat

system can be employed.

In the study[7], a social chatbot for the football has been

designed which answer the questions to the Spanish football

league. Chatbot is deployed with slack client, having text

based interaction. It extracts the information about football

players, team and their trainers.

III. FLOW CHART

1.The message from the end user is fed to the Rasa NLU

(Interpreter) whose output is structured output containing the

original text, the intent and entities if any, shown in Fig

Fig. 1. Rasa architecture flow chart

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS060723
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 06, June-2020

1011

www.ijert.org
www.ijert.org
www.ijert.org

2. The tracker maintains the conversation state and

receives the structured output from interpreter.

3. The output from tracker fed to the Policy, which acts on

the current state of tracker.

4. The policy decides which appropriate next action is to

be performed.

5. The log of selected action is maintained by tracker.

6. The appropriate response is provided to the user, using

intents defined in nlu.md, like utter_response.

IV. FEATURES

A. Policies

The class rasa.core.policies.policy decides what action is

to be taken during each conversation steps with bot.There are

many training policies in rasa core like MemoizationPolicy,

MappingPolicy, KerasPolicy, TEDPolicy, EmbeddingPolicy,

Form Policy, FallbackPolicy and TwoStageFallbackPolicy.For

obtaining best results and performance of our model these

policies should be used in combination. These policies are

configured in config.yml. Two parameters Max_History and

Data Augmentation affect the performance of model so they

need to be setup considering performance.

The execution of the policy will be based on the priority;

highest priority policy will be executed first and so on.

Priority is calculated on the basis of confidence score of each

policy, which having higher score given higher priority.

The default policies are:

If MappingPolicy and MemoizationPolicy predict the next

action with same confidence score then the action related to

MemoizationPolicy will be executed provided other

parameters remain same.

B. Slots

To fill the forms, the entities value to be retained in the

memory. They can store the values which are supplied by

user. Slots can be of Text, Float, Boolean, categorical and

unfeaturised. Based on type of entity, they are used in

different scenarios.

C. Forms

It is analogus to web forms but they are filled by Bot from

the inputs of user.If a user wants to ask for restauarant search

from chatbot assistant and in response to that our assistant

wants to avail information like Type of food, number of

people, seating arrangement etc so here comes the need of

Forms and policy defined for this,FormsPolicy which is

having highest priority as per the rasa.

Form name to be defined in domain.yml as:

D. Interactive Supervised Learning

To improve the efficiency of bot, by learning ,called

supervised reinforcement learning.In which the bot action

predicted based on confidence score, we can change the

predicted intent action to guide the bot.

In the url http://localhost:5006/visualization.html, we can

see the states of the dialog flow, and we can proceed for the

intended dialog. New stories are generated as the dialog flow

is modified, so they are generated automatically by interactive

mode of rasa.

Fig. 2. States of the chatbot with supervised learning

E. Tracker Store

It is just like a kind of storage which will keep record of all

the conversations with the chatbot in your database. There are

many Tracker Stores provided by Rasa Core like

If we restart the rasa core entire history data in memory

will be lost, this is the reason we are not using

InMemoryTrackerStore. Depending upon the database you

have accordingly TrackerStore can be used.

The entries of endpoints.yml are shown below:

V. PROCEDURE TO MAINTAIN CUSTOM LOGS

If a client/customer wants to connect rasa core, there is

some requirement of Network service to be used by

client/customer and some protocols are also required like http

protocol,web socket etc. In addition to this for interaction of

client with Rasa Core, open port must be allotted to the

5. FormPolicy

4. FallbackPolicy and TwoStageFallbackPolicy

3. MemoizationPolicy and AugmentedMemoizationPolicy

2. MappingPolicy

1. TEDPolicy, EmbeddingPolicy, KerasPolicy,

and SklearnPolicy

forms:

- restaurant_form

InMemoryTrackerStore(Default)

SQLTrackerStore

RedisTrackerStore

MongoTrackerStore

CustomTrackerStore

action_endpoint:

url: http://localhost:5055/webhook

tracker_store:

type: SQL

dialect: "postgresql" # the dialect used to interact with the db

url: "127.0.0.1" # (optional) host of the sqldb, e.g.

"localhost"

port: "5432"

db: "rasa_func" # path to your db

username: "postgres" # username used for authentication
password: "postgres" # password used for authentication

query: # optional dictionary to be added as a query string to

the connection URL

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS060723
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 06, June-2020

1012

www.ijert.org
www.ijert.org
www.ijert.org

individual client. To achieve this interaction with Rasa Core, a

different mechanism is required by client. So how RASA Core

Process will communicate with Network? The answer is

provided by socketio.py which will serve the purpose here. In

Nutshell, the socketio.py will provide the interprocess

communication between Core and Network Socket and

providing unique identification based on sender id to all the

clients who are interacting with core simultaneously and thus

maintaining their states.

Here we have captured only Remote_Addr and

Remote_Port but we can gather much more information also.

Fig. 3. Schematic Diagram of working of socketio.py

A. Modification of Socketio.py

In the socketio.py there is a class named

SocketIOInput(InputChannel) we have taken two more

members of class and these are client_ip and client_port and at

the time of connection when the bot receives messages values

were assigned by environ['REMOTE_ADDR'] &

environ['REMOTE_PORT'] in the connection method

Thus when the connection established with client, the table

‘events’ in ‘rasa_func’ database of pgAdmin4 will have the

‘metadata’ entry under column ‘data’. The table ‘events’ have

seven fields and can be observed in Fig.

Fig. 4. Event table details

And the metadata in data field look like this

VI. INTEGRATING WITH API AND DATABASE

 When query or data is received by rasa from the end user,

rasa will predict the values of entities and intents from the

message, all this handling is done by RASA NLU unit.

Fig. 5. API communication procedure

Intent is classified from the message and rasa stack will act

on the action that is defined in the domain.yml .Based on this

action, request will be done to the defined api in action.py, to

get the updates requested by the user.

After this rasa core tries to predict what to do next, this

decision will be based on various learning paradigms and

dialog flow in the stories.yml.

A. Defining Actions

Intent is classified from the message and rasa stack will act

on the action that is defined in the domain.yml .Based on this

action, request will be done to the defined api in action.py, to

get the updates requested by the user.

After this rasa core tries to predict what to do next, this

decision will be based on various learning paradigms and

dialog flow in the stories.yml. As the work of the action is

based upon requirements, here we assume fetching data from

API. A get request is sent to the API, and rasa action class will

work on the response received from the API.

Based on the response code, processing on the response

can be done to provide the expected result to the user.

RASA CORE Socketio.py

Network

Services like

Http

protocol

Client 1st

Client 2nd

Client nth

{"event": "user", "timestamp": 1588086203.2976427,

"metadata": {"client_ip_address": "127.0.0.1", "client_port":

"0"}, "text": "hello", "parse_data": {"intent": {"name":

"greet", "confidence": 0.9857399463653564}, "entities": [],

"intent_ranking": [{"name": "greet", "confidence":

0.9857399463653564}, {"name": "inform", "confidence":

0.003557391930371523}, {"name": "request_restaurant",

"confidence": 0.0023641688749194145}, {"name":

"bot_challenge", "confidence": 0.002120556542649865},

{"name": "affirm", "confidence": 0.0019410221138969064},

{"name": "stop", "confidence": 0.0015613293508067727},

{"name": "thankyou", "confidence":

0.001515000592917204}, {"name": "deny", "confidence":

0.0009625948732718825}, {"name": "chitchat",

"confidence": 0.00023804829106666148}], "text": "hello"},

"input_channel": "socketio", "message_id":

"abf0cc8d44014c9d95ad043d0aa6dea9"}

async def connect(sid: Text,environ) -> None:

 self.client_ip = environ['REMOTE_ADDR'] #capture IP

 self.client_port = environ['REMOTE_PORT']#capture Port

async def handle_message(sid: Text, data: Dict) -> Any:

metadata={'client_ip_address':self.client_ip,'client_port':

self.client_port,}

message=UserMessage(data["message"],output_channel

,sender_id,input_channel=self.name(),metadata=metada

ta)

 #Adds metadata collected to the message packet

Rasa NLU

Intent: get_available_tickets

API Web Service

Rasa Core

Next_action:

utter_api_response

RASA

STACK

Req

Res

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS060723
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 06, June-2020

1013

www.ijert.org
www.ijert.org
www.ijert.org

B. Configuration with Database

Based on the database like postgres, oracle etc required

python dependencies need to be installed, like for posgres

pycopg2 is the driver adapter. Its configuration is defined in

endpoints.yml

Fig. 6. Database adapter driver configuration in endpoints.yml

The data needed to be fetched from the database, this

processing can be done in defined action as explained above.

An instance of connection on which cursor is defined , is used

to execute the sql query. Based on the result from database,

the response is given to end user.

VII. CONCLUSION AND FUTURE SCOPE

From the study it is concluded that rasa core features like

slots, forms, supervised interactive learning, api integration,

and database makes it a complete framework that can be used

to perform highly complex tasks. The chatbot based on rasa

has more capabilities than any open source alternative.

Futher, in this paper, internals of rasa has been modified to

carry out custom data logging of client ip and port.All

internals and custom action has been studied which further

states that rasa is a complete open source framework for the

development of chatbots and for the developers who don’t

want to dig into the internals of natural language processing.

The future scope of this study, voice and face recognition

engines can be integrated for more complex task like ATM

cash withdrawal. Performance may be enhanced with use of

various learning procedures of machine learning.

REFERENCES
[1] Bocklisch, T., Faulkner, J., Pawlowski, N., & Nichol, A. (2017). Rasa:

Open source language understanding and dialogue management. arXiv

preprint arXiv:1712.05181.

[2] https://github.com/RasaHQ/rasa
[3] Lacerda, A. R. T. D. (2019). Rasa-ptbr-boilerplate: FLOSS project that

enables brazilianportuguese chatbot development by non-experts.

[4] Jiao, A. (2020). An Intelligent Chatbot System Based on Entity
Extraction Using RASA NLU and Neural Network. JPhCS, 1487(1),

012014.

[5] Singh, A., Ramasubramanian, K., &Shivam, S. (2019). Introduction to

Microsoft Bot, RASA, and Google Dialogflow. In Building an

Enterprise Chatbot (pp. 281-302). Apress, Berkeley, CA.

[6] Frommert, C., Häfner, A., Friedrich, J., & Zinke, C. (2018, September).
Using chatbots to assist communication in collaborative networks.

In Working Conference on Virtual Enterprises (pp. 257-265). Springer,

Cham.
[7] Segura, C., Palau, A., Luque, J., Costa-Jussà, M. R., &Banchs, R. E.

(2019). Chatbol, a chatbot for the Spanish “La Liga”. In 9th

International Workshop on Spoken Dialogue System Technology (pp.
319-330). Springer, Singapore.

Fig. 7. Database configuration with postgres

class ApiTicketsAction(Action):

def name(self):

return "ticketaction"

def run(self, dispatcher, tracker, domain):

res = requests.get(API_URL + "destination" +

"?apikey=" + API_KEY)

if res.status_code == 200:

data = res.json()["records"]

out_message = "Buses available for

the destination

{}:\n1".format(data["destination"],)

dispatcher.utter_message(out_messag

e)

out_message =

"{}".format(data["buses"])

dispatcher.utter_message(out_messag

e)

return []

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS060723
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 06, June-2020

1014

www.ijert.org
www.ijert.org
www.ijert.org

