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Abstract

The Rayleigh–Benard situation in Boussinesq–Stokes suspensions is investigated using both linear and non-linear stability
analyses. The linear and non-linear analyses are based on a normal mode solution and minimal representation of double
Fourier series, respectively. The e4ect of suspended particles on convection is delineated against the background of the
results of the clean 5uid. The realm of non-linear convection warrants the quanti6cation of heat transfer and this has been
achieved on the Rayleigh–Nusselt plane. Possibility of aperiodic convection is discussed.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many non-isothermal problems of practical interest
involving 5uids as a working medium have attracted
engineers, physicists and mathematicians alike. These
problems pose either challenging non-linearity in
the governing equations, in addition to coupling, or
complex boundary conditions. In the presence of
micron-sized suspended particles these problems en-
dear themselves all the more to researchers who yearn
for challenges. Depending upon the concentration
and size of these suspended particles the available
literature o4ers the following choice of mathematical
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models for the suspensions:

(i) Sa4man’s dusty gas model (see [1]).
(ii) Non-Newtonian 5uid model

(a) Fluids with stress non-linearily proportional
to the symmetric part of the velocity gradient
(see [2,3]).

(b) Fluids with internal angular momentum but
the stress being linearly proportional to rate
of strain (see [4–6]).

In the 6rst model the suspended particles (dust) are
visible and are in low concentrations. In the sec-
ond model the almost invisible tiny-sized suspended
particles which are in high concentration identify
themselves with the carrier 5uid almost to the point of
camou5age. Most of these suspensions are naturally
available (see [3]) and some important technologi-
cally important ones are synthesized (see [7]). We
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Nomenclature

Amn (t) amplitudes of streamlines perturba-
tion

Bmn (t) amplitudes of the thermal perturba-
tion

C couple stress parameter
(
=

�′

�d2

)
d depth of the 5uid layer
g̃ acceleration due to gravity
K2 (= 
2(�2 + 1))
Nu Nusselt number
p; pb; p′ actual, basic and perturbation pres-

sures

Pr Prandtl number
(
=

�
�

)
q̃; q̃b; q̃′ actual, basic and perturbation veloci-

ties
R; Rs, actual, stationary, oscillatory and
Ro; Rsc critical stationary

Rayleigh number (R= �gHTd3=��)
t; t∗ actual and non-dimensional time vari-

ables
T; Tb; T ,
T0; T ∗ actual, basic, perturbation, reference

and non-dimensional temperatures

(x; z)(x∗; z∗) actual and non-dimensional space
variables

�; �c actual and critical wave number
� co-eIcient of thermal expansion

� kinematic viscosity
(
=

�
�

)

∇ î
@
@x

+ k̂
@
@z

(vector di4erential

operator)
HT temperature di4erence between the

two horizontal plates
� (=1 + CK2)
�0 non-dimensional amplitude of

temperature perturbation
� dynamic viscosity
�′ couple stress viscosity
�; �b,
�′; �0 actual, basic, perturbation and refer-

ence densities
 growth rate
� thermal di4usivity
 ;  ∗;  0 actual, reference and non-

dimensional stream function
! frequency

note here that Rosensweig’s [7] work concerns mag-
netorheological 5uids.
Rayleigh–Benard convection in 5uids without sus-

pended particles is well investigated (see [8,9]). The
corresponding problem in Sa4man’s 5uid is also well
understood (see [9]), but only to the extent of predict-
ing onset of convection. Recently, Siddheshwar and
Chan [10] have made a non-linear study of the prob-
lem.
Rayleigh–Benard convection in 5uids whose

stress is non-linearly proportional to the symmet-
ric part of the velocity gradient fairly well investi-
gated (see [11] and references therein). This is true
of 5uids with internal angular momentum as well
(see [12–16] and references therein). In addition
to the above one also has the Boussinesq–Stokes
suspension model which is essentially Stokes’ [6]
couple stress model for suspensions along with
the Boussinesq approximation. This model con-
strains the spin of the microelements to match

with the vorticity of the carrier 5uid. The model was
recently considered by Umavathi and Malashetty [17]
to investigate an Oberbeck situation in the suspen-
sion saturating a porous matrix. In the present paper
we address ourselves to the daunting task of quan-
tifying heat transfer in a Rayleigh–Benard situation
involving the Boussinesq–Stokes’ suspension. The
important aspect of the study is that a closed-form
solution is obtained for the non-linear, coupled, steady
problem. The possibility of aperiodic convection is
also investigated.

2. Mathematical formulation

We consider a horizontal layer of thickness ‘d’
of a Boussinesq–Stokes suspension in a Rayleigh–
Benard situation. The Oberbeck–Boussinesq approxi-
mation even in the Navier–Stokes case is delicate (see
[3]) and hence there is a need to seek the status of the
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Fig. 1. Schematic diagram of the 5ow con6guration.

approximation in the present model. The consider-
ation of this is by no means straight forward and
hence we take an approach that convinces us into
assuming the same. The e4ect of suspended parti-
cles is to enhance the viscosity of the carrier 5uid
and does not in any foreseeable way work to violate
the Boussinesq–Stokes approximation. With this argu-
ment we accept the approximation for Boussinessq–
Stokes suspensions. The schematic of the same is
shown in Fig. 1 with a Cartesian co-ordinate sys-
tem as shown. The suspension is heated from be-
low and cooled from above as in a typical Rayleigh–
Benard problem, the temperature di4erence between
the bounding walls being HT . The governing equa-
tions are (see [6,8]):

∇ · q̃= 0; (2.1)

�0

[
@q̃
@t
+ (̃q · ∇)̃q

]

=−∇p+ �∇2q̃− �′∇4q̃+ �g̃; (2.2)

@T
@t
+ (̃q · ∇)T = �∇2T; (2.3)

�= �0[1− �(T − T0)]: (2.4)

The basic state of the 5uid is quiescent and is given
by

0 =−dpb
dz

− �bg; q̃b = (0; 0; 0);
d2Tb
dz2

= 0;

�= �b[1− �(Tb − T0)]; (2.5)

where the subscript ‘b’ denotes basic state. On this ba-
sic state we superpose 6nite-amplitude perturbations

in the form:

q̃= q̃b + q̃′; T = Tb(z) + T ′; p= pb(z) + p′;

�= �b(z) + �′; (2.6)

where primes indicate perturbations. Introducing (2.6)
in Eqs. (2.1)–(2.4) and using (2.5), we get

∇ · q̃′ = 0; (2.7)

�0

[
@q̃′

@t
+ (̃q′:∇)̃q′

]
=−∇p+ �∇2q̃′

− �′∇4q̃′ + �′g̃; (2.8)

@T ′

@t
+ (̃q′:∇)T ′ = w′ + �∇2T ′; (2.9)

�′ =−��0T ′: (2.10)

We consider only two-dimensional disturbances
and thus restrict ourselves to the xz-plane. We can
now introduce a stream function

u′ =
@ ′

@z
; w′ =−@ ′

@x
; (2.11)

which satis6es the continuity equation (2.7).
Operating curl on Eq. (2.8), to eliminate pressure,

introducing the stream function  and non-dimen-
sionalizing the resulting equation as well as Eq. (2.9)
using the following de6nition:

(x∗; z∗) =
( x
d
;
z
d

)
; t∗ =

t
d2=�

;  ∗ =
 ′

�=d

T ∗ =
T ′

HT
(2.12)

we get the dimensionless equations in the form

1
Pr

@
@t
(∇2 ) =−R

@T
@x
+∇4 − C∇6 

+
1
Pr

@( ;∇2 )
@(x; z)

; (2.13)

@T
@t
=−@ 

@x
+∇2T +

@( ; T )
@(x; z)

; (2.14)

where the asterisks have been dropped for simplicity.
In arriving at Eq. (2.13) use has been made of Eq.
(2.10).
Eqs. (2.13)–(2.14) are solved for stress-free,

isothermal, vanishing couple–stress boundaries and
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hence we have

 =
@2 
@z2

=
@4 
@z4

= T = 0 at z = 0; 1: (2.15)

3. Linear stability theory

In this section, we discuss the linear stability analy-
sis which is of great utility in the local non-linear sta-
bility analysis discussed in the next section. To make
this study we neglect the Jacobians in Eqs. (2.13) and
(2.14) and assume the solutions to be periodic waves
(see [8]) of the form[

 

T

]
= e t

[
 0 sin(
�x)

�0 cos(
�x)

]
sin(
z): (3.1)

Substituting Eq. (3.1) in the linearized version of Eqs.
(2.13) and (2.14), we get(  

Pr
+ �K2

)
K2 0 =−R
��0; (3.2)

( + K2)�0 =−
� 0; (3.3)

where �=1+CK2 and K2=
2(�2+1). � is represen-
tative of the viscosity of the 5uid. In the case of 5uids
having no suspended particles (i.e. Newtonian 5uids)
we have � = 1. Analysing the expression for � it is
obvious that the suspended particles add to the viscos-
ity in conformity with Einstein’s observation. Since
suspended particles enhance viscosity of the 5uid it
means that the enforcement of Bousinesq approxima-
tion in suspensions is better than in the Newtonian
5uid case. This is a sort of justi6cation for the assump-
tion of Boussinesq approximation in suspensions. For
a non-trivial solution of  0 and �0, we require

R=
( + K2)[ =Pr + �K2]K2


2�2
: (3.4)

3.1. Marginal state

If  is real, then marginal stability occurs when
 = 0. This gives the stationary Rayleigh number Rs
in the form

Rs =
�K6


2�2
: (3.5)

The critical wave number ac satis6es the equation

3C
2(�2c)
2 + 2(1 + C
2)�2c − (1 + C
2) = 0: (3.6)

Clearly the critical wave number �c depends on the
couple stress parameter C. In the absence of couple
stress i.e., C = 0, we get the classical result �2c = 0:5
and Rsc = 657:5 for clean 5uids (see [8]).

3.2. Oscillatory motions

We put  =i! (!: real) in Eq. (3.4) and rearranging
we get the oscillatory Rayleigh number Ro in the form

Ro =
�K6 − !2K2=Pr


2�2
+ i!

K4(�+ 1=Pr)

2�2

: (3.7)

Since Ro is real, either ! = 0 (marginal state) or
� + 1=Pr = 0 (! �= 0: oscillatory). The latter cannot
be true as C¿ 0 and hence overstable motions are
not possible in Boussinesq–Stokes suspensions. This
points to the fact that the principal of exchange of sta-
bility is valid in this case.
In the next section we perform a non-linear stability

analysis and quantify the heat transfer by conduction
and convection and see the e4ect of suspended parti-
cles, through C, on it.

4. Non-linear theory

The 6nite-amplitude analysis can be carried out via
a double Fourier series representation for the stream
function  and temperature T in the form

 =
∞∑
m=1

∞∑
n=1

Amn(t) sin(m
�x) sin(n
z); (4.1)

T =
∞∑
m=0

∞∑
n=1

Bmn(t) cos(m
�x) sin(n
z): (4.2)

Substituting Eqs. (4.1)–(4.2) into the set of two cou-
pled non-linear partial di4erential equations (2.13)–
(2.14), we get a system of coupled, non-linear ordi-
nary di4erential equations. It is however logical to use
the observed fact that laboratory systems and practical
situations involving suspensions often exhibit 5ows
dominated by a few spatial harmonics. This allows
one to choose a minimal representation from the above
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Fourier series. Further, these serve as starting values
for solving a more general non-linear convection prob-
lem.
The 6rst e4ect of non-linearity is to distort the tem-

perature 6eld through the interaction of  and T . The
distortion of the temperature 6eld will correspond to a
change in the horizontal mean, i.e., a component of the
form sin(2
z) will be generated. Thus a minimal dou-
ble Fourier series which describes the 6nite-amplitude
free convection is given by

 = A(t) sin(
�x) sin(
z); (4.3)

T = B(t) cos(
�x) sin(
z) + D(t) sin(2
z); (4.4)

where the amplitudes A; B and D are to be determined
from the dynamics of the system.
Substituting Eqs. (4.3)–(4.4) into Eqs. (2.13)–

(2.14) and equating the coeIcients of like terms we
obtain the following non-linear autonomous system
(generalized Lorenz model) of di4erential equations:

Ȧ=−R
�Pr
K2 B− � Pr K2A; (4.5)

Ḃ= 
�A− K2B− 
2�AD; (4.6)

Ḋ =−4
2D + 
2�
AB
2

; (4.7)

where the overdot denotes the time derivative.
The non-linear system of autonomous di4erential

equations is not amenable to analytical treatment for
the general time-dependent variable and we have to
solve it using a numerical method. However, one can
make qualitative predictions as discussed below.
The generalized Lorenz [18] model (4.5)–(4.7) is

uniformly bounded in time and possesses many prop-
erties of the full problem. Also the phase-space vol-
ume contracts at a uniform rate given by

@Ȧ
@A

+
@Ḃ
@B

+
@Ḋ
@D

=−[� Pr K2 + K2 + 4
2]; (4.8)

which is always negative and therefore the system
is bounded and dissipative. As a result, the trajec-
tories are attracted to a set of measure zero in the
phase-space; in particular they may be attracted to a
6xed point, a limit cycle or perhaps, a strange attrac-
tor.

5. Linear autonomous system

Before solving the non-linear system of equation,
we consider the linear system of autonomous system
and analyse the critical points. The nature of the criti-
cal points obtained from the linear system reveals in-
formation about the trajectories in the phase plane. The
nature of these trajectories is retained by the non-linear
system but with distortions dictated by the non-linear
terms.
The linearized system is

Ȧ=−R
� Pr
K2 B− � Pr K2A; (5.1)

Ḃ=−
�A− K2B; (5.2)

Ḋ =−4
2D: (5.3)

To 6nd the critical points of the above linear au-
tonomous system of equations, we follow Simmons
[19] and accordingly the auxiliary equation is obtained
from Eqs. (5.1)–(5.3).∣∣∣∣∣∣∣∣∣
−� Pr K2 − ) −R
� Pr

K2 0

−
� −K2 − ) 0

0 0 −4
2 − )

∣∣∣∣∣∣∣∣∣
= 0:

On simpli6cation, we get

)2 + (� Pr K2 + K2))

+
(
� Pr K4 − R
2�2 Pr

K2

)
= 0: (5.4)

Let )1 and )2 be the roots of Eq. (5.4). We now
discuss three cases based on the nature of the roots of
Eq. (5.4).
Case (i): For two real and equal roots i.e., )1 = )2
In this case

(� Pr + 1)2K4 = 4
(
� Pr K4 − R
2�2 Pr

K2

)
;

i.e.,

R=
[4� Pr − (� Pr + 1)2]K6

4
2�2 Pr
: (5.5)

For the above value of R critical point is a node and
system becomes stable as the path approach and enter
the critical point.
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Case (ii): For two real and distinct roots, i.e., )1 �=
)2
In this case

(� Pr + 1)2K4¿ 4
(
� Pr K4 − R
2�2 Pr

K2

)
;

i.e.,

R¿
[4� Pr − (� Pr + 1)2]K6

4
2�2 Pr
: (5.6)

For this value of R the critical point is a saddle point
and system becomes unstable as paths never approach
the critical points.
Case (iii): For two imaginary roots, i.e., )1 �= )2
In this case

(� Pr + 1)2K4¡ 4
(
� Pr K4 − R
2�2 Pr

K2

)
;

i.e.,

R¡
[4� Pr − (� Pr + 1)2]K6

4
2�2 Pr
: (5.7)

For this range of value of R the critical point is
a spiral and system is asymptotically stable if paths
approach the critical point as t → −∞ and system
becomes unstable for t → ∞ if path spirals out.
From qualitative predictions we now look into the

possibility of an analytical solution. In the case of
steady motions, Eqs. (4.5)–(4.7) can be solved in
closed form. Setting the left-hand sides of Eqs. (4.5)–
(4.7) equal to zero, we get

R
�B+ �K4A= 0; (5.8)


�A+ K2B+ 
2�AD = 0; (5.9)

8D − �AB= 0: (5.10)

Writing B and D in terms of A using Eqs. (5.8) and
(5.10) and substituting these in Eq. (4.10), we get

A
{

�− �K6

R
�
− 
�K4A2

8R

}
= 0: (5.11)

The solution A = 0 corresponds to pure conduction
which we know to be a possible solution though it is
unstable when R is suIciently large. The remaining

solutions are given by

A2

8
=

R
2�2 − �K6


2�2�K4 : (5.12)

6. Heat transport

In the study of convection in Boussinesq–Stokes
suspensions, the quanti6cation of heat transport is im-
portant. This is because the onset of convection, as
Rayleigh number is increased, is more readily detected
by its e4ect on the heat transport. In the basic state,
heat transport is by conduction alone.
If H is the rate of heat transport/unit area, then

H =−�
〈
@Ttotal
@z

〉
z=0

; (6.1)

where the angular bracket corresponds to a horizontal
average and

Ttotal = T0 −HT
z
d
+ T (x; z; t): (6.2)

Substituting Eq. (4.4) in (6.2) and using the resultant
equation in Eq. (6.1), we get

H =
�HT
d

− �HT
d

2
D: (6.3)

The Nusselt number Nu is de6ned by

Nu=
H

�HT=d
= 1− 2
D: (6.4)

Writing D in terms of A, using Eqs. (5.8)–(5.10), and
substituting in Eq. (6.4), we get

Nu= 1 +
2�K4

R

(
A2

8

)
: (6.5)

Substituting Eq. (5.12) in Eq. (6.5), we get

Nu= 1 +
2


2�R
(R
2�2 − �K6): (6.6)

The second term on the right-hand side of Eq. (6.6)
represents the convective contribution to heat trans-
port.

7. Results and discussion

A linear and non-linear stability analyses of con-
vection in Stokes’ couple stress 5uid is performed
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Fig. 2. Plot of critical Rayleigh number Rsc versus couple stress
parameter C.

Fig. 3. Plot of critical wave number ac versus C.

resulting in autonomous systems. The linear theory
gives us the critical Rayleigh number Rsc for the on-
set of convection. In the present problem oscillatory
convection is discounted and the stationary Rayleigh
number is applicable. A plot of Rsc versus the couple
stress parameters C is made in Fig. 2. We 6nd that Rsc
increases linearly with increase in C and the slope is
equal to k8=
2�2 (see Eq. (3.5)). For C = 0 the value
of Rsc is 657.5 classical (Rayleigh–Benard result).
Fig. 3 is the plot of the critical wave number ac

versus C. We 6nd from the 6gure that ac decreases

Fig. 4. Plot of Rayleigh number R versus Nusselt number Nu for
di4erent values C.

with increase in C. C is indicative of the concentration
of the suspended particles and the Fig. 3 thus implies
that the cell size increases with increase in C. This can
be anticipated because Rsc increases with increase in
C as shown in Fig. 2.
The realm of non-linear convection warrants the

quanti6cation of heat transfer. This is depicted in the
Nusselt–Rayleigh plane in Fig. 4. We 6nd from this
6gure that Nu increases with increase in R and de-
creases with increase in C. This can be looked at in
conjunction with the results of the Figs. 2 and 3.
A phase-space analysis is done on the autonomous

system, and this indicates the possibility of chaotic
motion. The same may be realized by numerically
solving the time-dependent non-linear autonomous
system of Eqs. (4.5)–(4.7). The condition under
which a saddle point, node or spiral may be obtained
for the time dependent system has been discussed in
Section 5.
It is clear from the above results that suspended

particles whose spin matches with the vorticity of the
5uid make the system stable.
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