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An analytical study of sound 
transmission loss of functionally 
graded sandwich cylindrical 
nanoshell integrated 
with piezoelectric layers
Chanachai Thongchom1, Pouyan Roodgar Saffari1*, Nima Refahati2*, 
Peyman Roudgar Saffari1, Hossein Pourbashash3, Sayan Sirimontree1 & 
Suraparb Keawsawasvong1*

The multidisciplinary nature of piezoelectric (PZ) structures necessitates precise and efficient 
methods to express their behavior under different conditions. This article extends the general usage 
of PZ materials by introducing acoustic and fluid loading effects in a way that an unfilled multilayer 
cylindrical nanoshell with a functionally graded (FG) material core and PZ layers is subjected to 
preliminary external electric load, acoustic waves and external flow motion. As the properties of a 
functionally graded material changes along the shell thickness, a power law model is assumed to be 
governing such variations of desired characteristics. Evidently, this system includes different types of 
couplings and a comprehensive approach is required to describe the structural response. To this aim, 
the first-order shear deformation theory (FSDT) is used to define different displacement components. 
Next, the coupled size-dependent vibroacoustic equations are derived based on in conjunction with 
nonlocal strain gradient theory (NSGT) with the aid of Hamilton’s variational principle and fluid/
structure compatibility conditions. NSGT is complemented with hardening and softening material 
effects which can greatly enhance the precision of results. It is expected to use the findings of this 
paper in the optimization of similar systems by selecting suitable FG index, incident angle of sound 
waves, flow Mach number, nonlocal and strain gradient parameters, starting electric potential and 
geometric features. One of the important findings of this study is that increasing the electric voltage 
can obtain better sound insulation at small frequencies, specially prior to the ring frequency.

Nowadays, there is hardly any industry where thin cylindrical shells cannot be found. It is no secret that such 
thin structures are prone to different types of vibrations, and mitigating them is of great concern to engineers and 
technicians. These vibrations are closely associated with acoustic problems, and one area where near-field acoustic 
radiation must be carefully considered is concealing the whole system from various radar  technologies1–5. When 
a system benefiting from cylindrical shells is susceptible to any type of dynamic loads, a complete evaluation of 
its vibration behavior is indispensable. There is a rich collection of analytical, numerical and experimental studies 
targeting the vibration of various types of shells using different simplifying  assumptions6–9.

The concept of PZ has been extensively addressed in electrical and mechanical engineering. Many devices have 
been built around these materials, either using their direct or reverse effects so that they can be used as sensors 
or actuators,  respectively10–12. As an inorganic compound, lead zirconate titanate constitutes a common type of 
PZ  ceramics13,14. These special ceramics are also used in the production of PZ sensors (patches)15,16 and actuators 
(stacks)17,18. Almost as famous as PZ ceramics, PZ  polymers19,20 comprise another commonplace category of PZ 
materials with specific advantages. Polyvinylidene difluoride (PVDF) is a well-known PZ polymer that offers 
flexibility and lightness unlike most PZ  ceramics21,22. Sheng and  Wang23 presented buckling and thermoelastic 
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vibration characteristics of the FG PZ cylindrical subjected to the initial external electric voltage. Xu et al.24 
analyzed the coupled vibration of a radially polarized PZ cylindrical transducer using mechanical coupling 
coefficient method. Bisheh and  Wu25 investigated the wave propagation problem of PZ cylindrical composite 
shells reinforced with carbon nanotubes utilizing FSDT and Mori–Tanaka method. Li et al.26 suggested a smart 
model for the vibration control of discontinuous PZ laminated shell with point supported elastic boundary 
conditions based FSDT and the Chebyshev polynomial. The nonlinear dynamic response of fluid-conveying 
FG cylindrical shells with PZ actuator layer is presented by Wang et al.27 based on von-Karman geometrical 
nonlinearity. Li et al.28 applied FSDT to vibration suppression of laminated cylindrical shells with discontinuous 
PZ layer with the negative velocity feedback adjustment.

Functionally graded materials (FGMs), similar to many other types of composites, provide superior perfor-
mance in comparison with homogeneous materials by combining the required properties of each constituent 
 phase29–37. This advantage in the case of FGMs is realized by the gradual changeover of components/microstruc-
tures including porosity and texture in one or more directions. It is thus expected to see a notable change in one 
or more properties. The continuous and smooth variations of different mechanical and thermal properties give 
FGMs a great power for implementation in applications where uniform characteristics are not desirable. Ghadiri 
and  Safarpour38 employed the FSDT to examine the thermo-mechanical vibration response of FG microshell 
with porosity. They assumed that according to a power-law model, the remarkable material properties are asso-
ciated with the porosity volume fraction and are considered to be constantly changeable through the thickness 
direction. Ninh et al.39 calculated the dynamic response of the conveying-fluid toroidal shell segments made 
of FG graphene nanoplatelets with PZ layers. But they did not study the effect of initial electric voltage on the 
variation of dynamic response in the frequency range. A wave-based is proposed by Liu et al.40 to analytically 
determine the free vibration properties of FGM cylindrical shells with arbitrary boundary conditions (i.e., both 
elastic support boundary conditions and classical boundary conditions) based on FSDT.  Sofiyev41 presented 
an analytical method to study the dynamic behavior of the infinitely-long FGM cylindrical shell under moving 
loads. Ye and  Wang42 obtained the nonlinear dynamical response of cylindrical shells reinforced with FG gra-
phene platelets using Donnell’s nonlinear shell theory. Belabed et al.43 employed an efficient higher order shear 
deformation theory to investigate the natyral frequencies of FG shells.

Nanotechnology is the use of any matter at very small scales. By doing so, one can gain exceptional benefits 
that would otherwise be impossible to achieve at macroscale. Today, most engineering fields have considered 
the use of nanomaterials for different purposes. Understanding the mechanical response of nanostructures is 
the key to their successful implementation in different applications. Despite the popularity of classic continuum 
theories, they simply fail at such small  scales44–47. The purpose of nonlocal continuum theories is to fill this gap. 
In addition, non-classical continuum theories are notably useful and practical compared to atomistic models. 
They are also employed to deal with such small-scale phenomena. This class of theories have many branches, 
some of which include the nonlocal elasticity  theory48,49, modified couple stress  theory50,51, modified strain 
gradient  theory52–56, and  NSGT57–60. So far, these nonclassical theories have been used by some researchers 
to predict small scale size effect of macro/nanostructures. For example, Liu et al.61 discussed the influence of 
NSGT on nonlinear dynamic of FG multilayer beam-type nanostructures reinforced by graphene nanoplatelet 
considering the initial geometric imperfection. Based on the NSGT in conjunction with FSDT, Liu and  Lyu62 
presented the theoretical modeling for investigating the frequency shift behavior of nano-mass sensor system 
composed of smart core integrated with graphene layers. Zhang and  Liu63 used modified couple stress theory 
and power-law distribution form to study the dynamic behavior of FG microbeams with different porosity dis-
tributions under moving harmonic load. The nonlocal theory and Love’s thin shell are carried out by Ke et al.64 
to investigate thermo-electro-mechanical free vibration of PZ cylindrical nanoshells. One of the drawbacks of 
this study is that the authors did not consider the shear effect on the dynamic behavior of the proposed system. 
Mohammadi et al.65 used NSGT in conjunction with FSDT to study the natural frequencies of FG nanoshells. 
Ebrahimi-Mamaghani et al.66 investigated the vibration reduction in piping structures attached to a nonlinear 
absorber. They determined the dynamical response and stability threshold of the considered system. Also, they 
demonstrated that nonlinear absorber has an appropriate efficiency in the vibration mitigation of pipes. Saffari 
et al.67 The literature is study dealing with the effects of small-scale phenomena on the free and force vibrations 
as well as static and dynamic stability problems of plates, and BNNTs. Zarabimanesh et al.68 investigated the 
size-dependent free vibration of two vertically aligned single-walled boron nitride nanotubes conveying fluid 
subjected to hygrothermal environment using NSGT.

The transmission of sound waves after hitting an object has been of notable significance for acoustic and 
mechanical engineers. So far, analytical relationships have been obtained for almost any practical structure 
(for example multi-layer plates) in any viable scenario (such as submarines and concrete walls). However, most 
analytical solutions pose serious difficulties when trying to obtain their exact solution. To tackle this issue, 
approximate approaches for acoustic problems have gained popularity in recent years.  Heckl69 gave a thorough 
account of sound transmission through different types of building walls almost a century ago. A review of acoustic 
estimation methods has been published by Pellicier and  Trompette70, and gives readers valuable information on 
the wave approach. Sound transmission loss (STL) is a quantitative description of how a structure attenuates the 
incident sound waves, and is thus a quantity of interest in noise control  applications71–79. Yang et al.80 proposed the 
extension of a wave and finite element (WFE) method for predicting sound radiation and transmission charac-
teristics of infinite panels. Kingan et al.81 analyzed sound transmission through, and radiation from, an infinitely 
long cylindrical structure using the WFE. Lee and  Kim82 analytically and experimentally analyzed the properties 
of STL across a cylindrical shell using classical shell theory. Daneshjou et al.83 presented an analytical method 
for predicting the STL across thick cylindrical shells made of FGMs using third order shear deformation the-
ory. Golzari and  Jafari84 used Biot’s theory for modeling porous material in triple-walled sandwich cylindrical 
shells. The main results of their work denoted a better efficiency in the noise improvement for the triple-walled 
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cylindrical shell, noticeably at mid-high and high frequencies, in comparison with its double-walled cylindrical 
shell. Heydari et al.85 studied the STL of cylindrical FG nanoshell considering porous materials using NSGT 
in conjunction with FSDT. One of the drawbacks of these studies is that the simultaneous effects of small scale 
and electric voltage of piezoelectric layers on the STL behavior of cylindrical shells have not been investigated. 
Nowadays, it is no secret that nanoscience is critically important in various fields of engineering, medicine 
and treatment of diseases, in particular cancer. Cylindrical nanoshells constitute a type of nanostructures with 
numerous applications in the field of drug delivery in the body thanks to the acceptable balance between their 
structural weight and mechanical strength. Nanoshells are exposed to sound waves in fluids, resulting in fatigue 
and cracking over time. Hence, investigating the effects of acoustic waves on the dynamic behavior of nanoshells 
is of considerable importance.

In light of the presented literature review and the lack of any comprehensive study on the sound transmission/
wave propagation in FG-PZ cylindrical nanoshells, this article first obtains the relationships of STL for a sand-
wich cylindrical nanoshell benefiting from FGMs and PZ layers when exposed to outer flow in certain velocity 
ranges using NSGT and FSDT. Based on the power law developed for FGMs, the properties of core layer vary in 
the thickness direction, while imposing proper boundary conditions between the structure and encompassing 
medium allows us to capture acoustic effects.

Theoretical formulations
The Fig. 1 was drawn by Pouyan Roodgar Saffari in which sound waves hit the sandwich cylindrical shell at the 
incident angle 0 < α < π/2 . Both the exterior and interior of the sandwich cylindrical shell are filled with air of 
the characteristic impedance (ρ, c) . The sandwich cylindrical shell includes an FG core (including a ceramic phase 
and a metal phase) of thickness h and radius R while being surrounded by external and internal piezoelectric 
layers of thickness hp . Noteworthy is that the outer piezoelectric layer is treated as an actuator with a specific 
input voltage φ0 , while the internal piezoelectric layer is modeled as a sensor. In addition, a steady flow of air 
passes over the structure at the velocity V .

Acoustic field equations. A proper approach to deal with the system at hand is to consider two distinct 
incident and transmitted fields, with the incident pI1 and reflected pR1  waves satisfying the wave equation in the 
external medium  as86

Figure 1.  The schematic of a sandwich FG-PZ cylindrical nanoshell under incidence wave.
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where the Laplace operator in the cylindrical coordinates signified with ∇2 = 1
r

∂
∂r

(

r ∂
∂r

)

+ 1
r2

∂2

∂θ2
+ ∂2

∂x2
 . Fur-

thermore, the external flow velocity is indicated with V. Concerning the interior of the structure, the transmitted 
wave pT2  is all that exists. Consequently, the wave equation of this anechoic cavity expresses as

For cylindrical coordinate system, the terms of time-harmonic pressure waves are defined  as86

where p0 refers to the amplitude of pressure of the incident wave, ω shows the angular frequency, 
ε0 = 1, εn = 2(n ≥ 1) , i =

√
−1, Jn denotes the cylindrical Bessel function of the first kind and n-th order, 

H
(1)
n  and H(2)

n  signify, respectively, the cylindrical Hankel functions of the first and second kinds. Additionally, 
(P̃R1n, P̃

T
2n, P̃

R
2n, P̃

T
3n) are unknown complex coefficients. Furthermore, the radial and axial components of the 

wavenumbers are stated as

where M = V/c is the Mach number of the external flow.

Structural field equations. There are a number of conflicts in the FSDT which could grow to be vital in 
certain thick laminates or sandwich systems that possess a small transverse shear modulus. To compensate the 
lack of varying transverse shear strains along the thickness in this theory, substitute transverse shear strains are 
assumed on the laminate surfaces, although such stresses are zero in reality. However, different components of 
displacement are expressed  as66

in which the in-plane deflections of the mid-surface along x and θ directions are denoted with u and v , respec-
tively, and w is the transverse deflection of the nanoshell in z-direction. Furthermore, the rotation angles of the 
middle plane along θ and x directions signify, respectively, with ψθ and ψx . The expanded form of displacements 
and rotations are expressed  as87,88

where �ũ,
∼
ψx , ṽ,

∼
ψθ , w̃� are the unknown modal coefficients. Based on the concept of FSDT, the relationships 

between different strain and displacement/rotation components for a sandwich FG-PZ cylindrical shell are 
presented as 
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where (γxθ , γxz , γθz) refer to the shear strains and (εxx , εθθ ) are the normal strain components. As referred to 
earlier in the article, the core of sandwich structure is made from FGM comprised of metal and ceramic. This 
article relies on a power law model with the following description 

where m and c signify, respectively, metal and ceramic phases. Furthermore, the Young’s modulus, mass density, 
Poisson’s ratio, respectively, specify with E , ρ , ϑ . The always-positive gradient index ( �) is used in this study to 
determine the changes of a specific property in the thickness direction. The greater the gradient index, the more 
metallic the structure. Thus, an isotropic ceramic is obtained by assuming a very small gradient index. Based 
on NSGT, the nonclassical constituent relations between stress and strain tensors for heterogeneous core layer 
are presented  as89

where the terms l  and e0a signify the strain gradient and nonlocal parameter, respectively. e0 refers to the calibra-
tion constant and a denotes the internal characteristic length. The polling direction for the considered piezoelec-
tric material lies along the positive z-axis. According to the NSGT, the general constitutive equations for inner 
and outer PZ layers can be presented  as90,91

where c66 = c11−c12
2  and the internal and external PZ layers are expressed with in and ex . Also, term [D] expresses, 

the electric displacement. Furthermore, [κ], [e] , and [c] denote the dielectric, piezoelectric, and the elastic constant 
matrices, respectively. Moreover, [F] represents the electric field. A common method for expressing the changes 
of different electric ( � ) potential in the thickness direction of internal and external PZ layers, as described in 
several previous studies, is presented  as92

in which φ denotes the two-dimensional electric potential of external and internal PZ layers. However, the 
expanded forms of electric potential can be presented as
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To satisfy Maxwell’s equations in the proposed procedure, two assumptions are made: the electric field pre-
sents as the negative gradient of � . Accordingly, one can  write92

However, in order to obtain the vibroacoustic equations, one needs to carefully implement Hamilton’s prin-
ciple and its different dependencies to be able to arrive at equilibrium equations of motion. This procedure is 
stated as

where ( ŴK,Ŵf ,Ŵs ) indicate the kinetic energy per unit volume of the cylindrical nanoshell, the work done by 
external forces (the work applied by the incidence sound wave) per unit area, and strain energy per unit volume. 
However, the variation of kinetic energy for the system is expressed based on the FSDT as

where 

in which ρPZT denotes to the mass density for each PZ layer, and A is the cross-sectional area of the sandwich 
FG-PZ cylindrical nanoshell. The strain energy variation is expressed as

It is notable that the only external forces acting on the nanoshell are the incoming sound pressure and the 
returned sound pressure in the external acoustic medium as well as the transferred sound pressure inside shell. 
Consequently, the variation of the work done by external forces is presented as
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Later replacing Eqs. (15), (17) and (18) into (14) and carrying out some manipulations, the final form of 
vibroacoustic equations of motion is written as

where the resultant axial forces ( Nxx ,Nxθ ,Nθθ ) , bending moments ( Mxx ,Mxθ ,Mθθ ), and transverse shear forces 
( Qxz ,Qθz ) are provided in Appendix A. Finally, substituting equation (A) (with respect to Eqs. (7) and (9–10)) 
into Eq. (19), the size-dependent equilibrium equations in terms of displacement is derived and detailed in 
Appendix B.

Fluid/structure compatibility conditions. Another noteworthy point is the lack of boundary condi-
tions on the z axis as the cylindrical shell length is practically infinite in this case. In contrast, there is indeed a 
coupling along the r axis between the acoustic and structural domains, as  in86,87

Finally, substituting Eqs. (3), (6) and (12) in the governing (B1) –(B7), and Eq. (20), after some manipulation, 
leads to the equilibrium equations in a 9× 9 matrix format as

where terms Ki,j , f3, and f10 are stated in Appendix C.

STL factor
Here, it is necessary to define the transmission coefficient (τ ) which is the quotient obtained by dividing the 
transmitted (�tr ) to incident (�inc) acoustic powers. STL is defined as a logarithmic ratio of the transmission 
coefficient as 

where the superscript “*” and Re[.] indicate the complex conjugate and the real part of the argument.

(19)
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Numerical results
In this section, the correctness of the presented approach is shown here via a set of validations and simplifying 
assumptions, then the main outcomes are discussed.

Mode convergence diagram. Since the expansions used for the incoming and outgoing acoustic pressures 
and the displacement fields have infinite number of modes, the convergence of results for the STL for certain 
excitation frequencies at the incident angle of α = 45◦ is shown here. As noted in Fig. 2, with increasing excitation 
frequency, a higher number of modes is suggested to attain acceptable convergence. Table  164,71,93,94 lists the 
mechanical, geometric and acoustic properties used in this analysis. Furthermore, R = 15 nm, h = 0.04 nm,

hp = 0.02 mm, � = 1, p0 = 1 Pa, φ0 = 0, e0a = 0, l = 0,M = 0.

Verification study. Owing to the intricacy of the developed procedure, a set of verifications are performed 
here to ensure the correctness of formulation. First, acoustic effects and PZ layers are assumed to be nonexistent, 
then the natural frequencies (Hz) of the FGM structure are obtained for certain indexes of power law model 
based on the present formulation. The results alongside other numerical findings in the literature (Ref.95) are 
shown in Table 2, indicating the acceptable accuracy of the derived equations.

In the next verification study, in Fig. 3, first the FG core layer as well as acoustic effects are assumed to be 
absent. Then, the primary natural frequency (THz) of a PZ nanoshell ( L = R, (e0a)

2 = 3.3 nm2, hp = 0.05R ) is 
obtained with respect to strain gradient according to the present formulation. Comparing the obtained results 
with Ref.96 and estimating the error, once again shows that the developed formulation is capable of accommo-
dating piezoelectric effects.

A comparison based on the classic shell theory is also presented here to further corroborate the accuracy of 
the described formulation. To this end, an incoming sound wave at an angle of α = 45◦ hits a plain cylindrical 
shell made of aluminum in the presence of external air/fluid flow. Under these assumptions, the STL is obtained 
and shown in Fig. 4 along with the numerical reports previously presented by Ref.86 (classical shell theory). 
Evidently, there is almost no tangible difference between the two sets of results.

Figure 2.  Mode convergence diagram.

Table 1.  Material properties of the sandwich FG-PZ cylindrical nanoshell.

Properties (PZT layer) PZT− 4

Elastic (GPa) c11 = 132, c12 = 71, c22 = 132, c13 = 73, c33 = 115, c44 = c55 = 30.5

Piezoelectric ( Cm−2) e31 = −4.1, e32 = −4.1, e24 = 10.5, e15 = 10.5 , e33 = 14.1

Dielectric ( 10−9
CV

−1
m

−1) κ11 = 5.841, κ22 = 5.841, κ33 = 7.124

Mass density ( Kg m−3) ρm = 7500

Properties (FG core) Alumina (ceramic) Steel (metal)

Elastic (GPa) Ec = 390 E = 210

Poisson’s ratio ϑc = 0.24 ϑ = 0.3

Mass density ( Kg m−3) ρc = 3960 ρ = 7800

Properties (acoustic medium) Air

Sound speed ( ms
−1) c = 343

Mass density ( Kg m−3) ρ = 1.21
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Finally, in Fig. 5, the STL of an FG cylindrical nanoshell ( h = 0.05 nm, R = 18.4 nm, (e0a) = 0.03 nm,

l = 0.02 nm, α = 45
◦) by ignoring PZ layers, and external flow is computed based on the present formulations 

and compared with those reported in Ref.85.

Main results. Figure 6 displays the variations of STL across a sandwich FG-PZ cylindrical versus different 
the incidence angles over a wide frequency range (1 < f < 1000 GHz) when R = 15 nm, h = 0.04 nm, hp = 0.02 mm,

� = 1, p0 = 1 Pa, φ0 = 0, e0a = 0, l = 0, M = 0 . Understanding the plots of STL is dependent on the main 

Table 2.  A comparative study of the natural frequencies of an FG cylindrical shell.

Power law index (�) Mode number ( n) Present Ref.95

0

1 19.905 12.917

2 31.578 31.603

3 88.002 88.267

1

1 13.189 13.234

2 32.267 32.418

3 90.345 90.569

2

1 13.317 13.344

2 32.549 32.683

3 91.066 91.309

Figure 3.  Comparison study of STL curves for a PZ nanoshell.

Figure 4.  Comparison study of STL curves for single elastic cylindrical shell.
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dips of such curves. Generally, three main dips are identified over the considered spectrum, starting with ring 
frequency ( fr ), then critical frequency ( fcr ), and finally coincidence frequency ( fco ). The ring frequency indicates 
the smallest value corresponding to a structural breathing mode resonance. The stiffness-controlled region lies 
below the ring frequency. At the critical frequency, the mode number and circumferential wave number become 
equal. Lastly, at the coincidence frequency, the structural wave number and the acoustic wave number become 
equal. While the region between the critical and coincidence is defined as mass-controlled region, any zone 
above the coincidence frequency is called the coincidence-controlled region. Only the coincidence frequency is 
affected by the angle of incoming sound wave as observed in the plots, in a way that greater incidence angles 
reduce the coincidence frequency. Further, an inverse relationship between the STL and the incidence angle is 
visible.

To investigate the effect of gradient index on the STL curves of a sandwich FG-PZ cylindrical nanoshell, Fig. 7 
is presented when R = 15 nm, h = 0.04 nm, hp = 0.02 mm, α = 30

◦
, p0 = 1 Pa, φ0 = 0, e0a = 0, l = 0, M = 0 . The 

important comments from Fig. 6 are as follows. An effective method to increase the STL at the onset of plots, 
i.e., the stiffness-controlled zone, is lowering the FG index. As a result, the change from ceramic to metallic state, 
which indicates a growth in FG index and a decrease in stiffness, reduces the sound transmission loss. In contrast, 
the sound transmission loss experiences a rise in the mass-controlled region with increasing FG index. It should 
be noted that varying the parameters of power law distribution can easily change the exact location of three 
characteristic frequencies.

The effect of the external flow Mach on the performance of the STL is depicted in Fig.  8 when 
R = 15 nm, h = 0.04 nm, hp = 0.02 mm, α = 30

◦
, p0 = 1 Pa, φ0 = 0, e0a = 0, l = 0, � = 1 . The radiation damping 

which comes into play after fr can augment the STL as the Mach number grows. As a result, the locations of fcr 
and fco are affected by varying the Mach number. This can be attributed to the total internal reflection and the 
acoustic radiation damping due to the altered acoustic impedance of the external convective fluid region.

Figure 9 shows the effect of the average radius of the sandwich FG-PZ nanoshell on the STL curve for 
h = 0.04 nm, hp = 0.02 mm, α = 30◦, p0 = 1 Pa, φ0 = 0, e0a = 0, l = 0, M = 0 . One expects a larger reduc-
tion in STL plots with growing radius prior to fr . In contrast, any change in the radius of the structure has no 

Figure 5.  Comparison study of STL curves for an FG cylindrical nanoshell.

Figure 6.  Effect of elevation angle on the variations of the STL.
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practical effect on the STL curve. At the high frequencies where the wavelengths become shorter the average 
radius would incorporate no effect on the STL. It should also be noted that increasing the radius of the structure 
decreases the fr value, while the fcr and fco stay unchanged.

The effect of the initial electric voltage in the external PZ layer on the performance of the STL is indicated in 
Fig. 10 when R = 15 nm, h = 0.04 nm, hp = 0.02 mm, α = 30

◦
, p0 = 1 Pa, e0a = 0, l = 0, � = 1, M = 0 . As noted 

Figure 7.  Effect of gradient index on the STL of sandwich FG-PZ nanoshell.

Figure 8.  Effect of the external flow Mach number on the changes of STL.

Figure 9.  Effect of the average radius on the changes of STL.
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from the figure, increasing the electric voltage is a suitable means to obtain better sound insulation at small 
frequencies, specially prior to the ring frequency. This behavior is due to the fact that by imposing positive electric 
voltage to the structure, tensile in-plane and compressive forces created. Nevertheless, the precise location of the 
three characteristic frequencies remains independent of electric potential.

In Fig. 11, the effect of the nonlocal parameter on the performance of the STL is investigated when 
R = 15 nm, h = 0.04 nm, hp = 0.02 mm, α = 30

◦
, p0 = 1 Pa, φ0 = 0, M = 0, l = 0, � = 1 . Some prominent research-

ers have formerly shown that higher values of non-local term can decrease the structural vibration frequency, 
which is attributed to the effect of stiffness. Interestingly, Fig. 11 shows that the STL curve is almost unaffected 
by the nonlocal term prior to fr , whereas this effect becomes more prominent when the excitation frequency 
grows, particularly after the fcr . Furthermore, the increasing nonlocal parameter is the reason behind the decrease 
in STL over the coincidence zone.

Figure 12 describes the variation of the STL under different values of the strain gradient parameter when 
R = 15 nm, h = 0.04 nm, hp = 0.02 mm, α = 30

◦
, p0 = 1 Pa, φ0 = 0, e0a = 0, M = 0, � = 1 . As stated in earlier stud-

ies, it is expected to see a rise in vibration frequency with growing strain gradient parameter. To describe this 
phenomenon, one must pay attention to the stronger bounds between nanoparticle’s atoms, hence the stiffer 
structure. Once again, prior to fr , the impact of strain gradient parameter on the STL curves resembles that of 
the nonlocal parameter. By contrast, the more rigid nature of the structure (as a result of higher strain gradient 
parameter) in the coincidence zone brings about a higher value of STL.

Conclusion
The FSDT is shown to provide accurate results in acoustic problems. Accordingly, this article combines this 
theory with the NSGT to consider the response of PZ layers on the STL through FG nanoshell subjected to 
external flow. As already stated, the mechanical characteristics vary according to the power law in the thickness 
direction. Compatibility equations of fluid medium and cylindrical nanoshell allow us to obtain the final form of 
acoustic-structure equations using Hamilton’s principle. Additionally, the accuracy of this procedure is verified 

Figure 10.  Effect of the initial electric potential on the changes of STL.

Figure 11.  Effect of the nonlocal parameter on the changes of STL.
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using a set of simulations and comparisons. The acoustic response over different frequency regions particularly 
the important regions of fr , fcr , and fco is also evaluated. The important results are discussed in the following.

• Increasing the electric voltage is a suitable means to obtain better sound insulation at small frequencies, 
specially prior to the ring frequency.

• The radiation damping which comes into play after fr can augment the STL as the Mach number grows.
• The change from ceramic to metallic state, which indicates a growth in FG index and a decrease in stiffness, 

reduces the STL. In contrast, the STL experiences a rise in the mass-controlled region with increasing FG 
index.

• STL curve is almost unaffected by the nonlocal term prior to fr , whereas this effect becomes more prominent 
when the excitation frequency grows, particularly after the fcr.

• Prior to fr , the impact of strain gradient parameter on the STL curves resembles that of the nonlocal param-
eter. By contrast, the more rigid nature of the structure (as a result of higher strain gradient parameter) in 
the coincidence zone brings about a higher value of STL.
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