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Abstract. The linear Kelvin-Helmholtz instability of tangential velocity disconti-
nuities in high velocity magnetized plasmas with isotropic or anisotropic pressure is
investigated. A new analytical technique applied to the magnetohydrodynamic equa-
tions with generalized polytrope laws (for the pressure parallel and perpendicular to the
magnetic field) yields the complete structure of the unstable, standing waves in the (in-
verse plasma beta, Mach number) plane for modes at arbitrary angles to the flow and
the magnetic field. The stable regions in the (inverse plasma beta, propagation angle)
plane are mapped out via a level curve analysis, thus clarifying the stabilizing effects of
both the magnetic field and the compressibility. For polytrope indices corresponding to
the double adiabatic and magnetohydrodynamic equations, the results reduce to those
obtained earlier using these models. Detailed numerical results are presented for other
cases not considered earlier, including the cases of isothermal and mixed waves. Also,
for modes propagating along or opposite to the magnetic field direction and at general
angles to the flow, a criterion is derived for the absence of standing wave instability—in
the isotropic MHD case, this condition corresponds to (plasma beta) < 1.

1. Introduction. The Kelvin-Helmholtz (K-H) instability caused by tangential ve-
locity discontinuities in homogeneous plasma is of crucial interest in modeling many
problems in space, astrophysical, and geophysical situations involving sheared plasma
flows. A detailed understanding of the structure and dynamics of magnetopause regions,
such as the presence of the magnetospheric boundary layer and of rapid boundary mo-
tions, has been obtained from the recent satellite observations of particles and fields.
Many investigators have treated the instability of the interface between the solar wind
and the magnetosphere [1]-{5], coronal streamers moving through the solar wind, the
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boundaries between the adjacent sectors in the solar wind, the structure of the tails of
comets [6], [7], and the boundaries of the jets propagating from the nuclei of extragalactic
double radio sources into their lobes [8]-[9]. The linear K-H instability of non-magnetized
shear layer has been studied for flows with a subsonic velocity change by Chandrasekhar,
Syrovatskii, and Northrop [10], and with an abrupt jump in v, of arbitrary magnitude
by Gerwin [11]. Ray and Ershkovich [12] and Miura [13] have discussed the stability
of compressible, magnetized, finite width shear layers for a linear and hyperbolic tan-
gent velocity profile. The K-H instability of a finite width, ideal magnetohydrodynamic
shear layer with linear and hyperbolic tangent velocity profiles in the transition region
has been discussed by Roy Choudhury and Lovelace, Miura and Pritchett [14], and by
Roy Choudhury [15] considering arbitrary magnetic field in (y, z)-plane. Uberoi [16] has
investigated the finite thickness and angle effects on the marginal instability considering
the three layered structure of plasma regions: the magnetosheath, the boundary layer,
and the magnetosphere. Fujimoto and Terasawa [17] have carried out the study of ion
inertia effect on the K-H instability of two fluids plasma arising from the Hall term.
Sharma and Shrivastava [18] have presented the nonlinear analysis of drift K-H instabil-
ity for electrostatic perturbations. Malik and Singh [19] have studied chaos in the K-H
instability in superposed magnetic fluids with uniform relative motion.

In the above studies, most of the treatments used the collision dominated hydromag-
netic equations with scalar gas pressure approximation. The scalar gas pressure approx-
imation is not appropriate in dilute plasmas such as the coronal streamers and the solar
wind. The plasma in the interplanetary medium, earth’s magnetosphere, and the po-
lar exosphere are collisionless. There is a transition zone in solar wind where plasma
is neither fully collisional nor collisionless. The K-H instability has been discussed in
anisotropic plasma using Chew, Goldberg, and Low (CGL) equations for the situations
where collisions are not sufficiently strong to keep the pressure a scalar but sufficiently
strong to prevent the heat flow and other transport processes. Roy Choudhury and Pa-
tel [20] have considered the K-H instability of an anisotropic, finite width, supersonic
shear layer and investigated the nonlocal coupling of the firehose and mirror instabilities
via a spatially varying velocity. Duhau et al. [21], [22] have discussed the problem of a
tangential velocity discontinuity in a collisionless hydromagnetic region using CGL ap-
proximation. Duhau and Gratton [23] have investigated the effect of compressibility on
the stability of a vortex sheet in an ideal magnetofluid. Rajaram et al. [24], [25] have
examined the contact discontinuities on two collisionless fluids in the magnetosphere
across the cusp region of the solar wind magnetosphere boundary. Talwar [26], [27] has
presented a study of K-H instability of two streams of homogeneous anisotropic plasma.
Pu [28] has developed a new approach called the drift kinetic approximation (DKA) for
collisionless space plasmas.

However, more general anisotropic models than the CGL model are necessary in treat-
ing low collision regimes, such as in the transitional region of the solar wind. In this
connection, we employ the plasma model with generalized polytrope laws for the par-
allel and perpendicular pressures. This model, proposed by Abraham-Shrauner [29],
uses double adiabatic pressure laws with generalized polytrope indices together with the
other magnetohydrodynamic (MHD) equations. For specific choices of polytrope indices,
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it contains both the MHD and CGL models as special cases. This model has been
employed to consider various anisotropic plasma instabilities, including gravitational in-
stability [30], symmetric spherical flow [31], the effects of Hall current and finite electrical
resistivity on the magnetogravitational instability [32], and the standing and traveling
wave instabilities of anisotropic finite width shear layers [33].

In this paper, we use this model with generalized polytrope laws to investigate the
instability of velocity shear layers of zero width analytically and numerically. This gener-
alizes the results obtained in [34] for the instability structure to general polytrope indices,
and is able to recover the results derived separately for the CGL and MHD cases in [34]
in one, unified formulation (with the choice of the appropriate polytrope indices for each
case). In addition to the CGL and MHD cases, we are also able to derive results for the
general structure of the standing wave instability for the cases of isothermal and mixed
waves.

The remainder of this paper is organized as follows. Section 2 contains the governing
equations. Analytic criteria for unstable modes are derived in Section 3. Modes along
(or opposite to) the magnetic field are considered in Section 4, while Section 5 treats
modes propagating at arbitrary angles to the equilibrium magnetic field and equilibrium
velocity. Section 6 re-derives the criterion for standing wave modes in an alternative way.

2. Anisotropic plasma equations with generalized polytrope laws. The equa-
tions for a compressible inviscid, infinitely conducting plasma are:

dv - 1

p=pil+ (p —pL)nn
I = unit dyadic

and the adiabatic equations of state with generalized polytrope exponents «, 3, €, and

v are [29]:
d (PHB ) ~0
dt oY

d(pL)_,
dt \ p°BP '

and

Here, || and L denote components parallel and perpendicular to the magnetic field,
respectively. For the special choices (a) & =0, 8 =0, =5, vy =5, r=1, and (b)
a=2,0=1e¢=1,~v =3, this model reduces to the MHD and CGL models respectively.
The equilibrium we consider (Fig. 1) has a flow velocity vo(z) = voy(2)g + vo. ()2, a
uniform magnetic field B = ByZ, constant density p, and pressures p; and p;. In
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FiG. 1. Geometry of the equilibrium configuration and flow for the
compressible tangential velocity discontinuity. The wave vector k
for the perturbation quantities is shown. Perturbations +62 are
degenerate.

Section 3 we specialize the velocity to the form v = (vym¥ + v.m2) for  # 0. Here
6, = tan™! (%%1) is the angle made by the flow velocity with the magnetic field, and

6y = tan™! (%) is the angle of propagation of the mode with respect to the magnetic
field.

The first order perturbation quantities are of the form f(z)expli(kyy + k.z — wt)).
The frequency w is assumed to have at least a small positive imaginary part, so that the
solutions correspond to those of an initial-value problem. Linearizing equations (1), we
obtain:

iQp = —p(duy, + tkyduy + ik, 0v,), (2a)
0B,
iQpdv, + ik, dp) + (pL — pu)isz— =0, (2b)
B k B
iQpdug + 0p', + —05B'z : OéB < > Py > (2¢)
B3 /4w
) ) zk BO zk Bo PL — Py
0 B, - — 41 = 2
iQpdvy + ikydpL + ) 0B, ( BZ/an + 0, (2d)
(5 ) (5Bz
%1 _ 5 5%B: (2)
P p Bo
opj dp 0B,
opy _ 0 _ 9B 2f
o 7 B, (2f)
6B, = ik, Bodvs, (2g)

iQ9B, = ik, Bodv, + SuidB,, (2h)




AN ANALYTICAL STUDY OF THE KELVIN-HELMHOLTZ INSTABILITIES 605

iQ6B, = ik,Bobv, + Cv)dB, — Bo[5v), + iky0v, + ik,0v,), (21)
8B, + iky6B, + ik,6B, = 0. (2j)

Here the prime denotes a derivative with respect to z, C = cos(6;), S = sin(6;), and
Q = (kyvoS + k,v0C — w). The equilibrium quantities are py, py, p, and vo(z).

Now, what we wish to do is to take these linearized equations and combine them into
one equation that is dependent upon one variable only. Since we want to ensure that
none of the physical properties are lost, we shall make use of all the equations in the
process. The resulting composite equation is [33]:

ipQ%6B, ie(x20B. + x30B, éB,]' B .
’L,Dk—B I |:2€(X2 a X3 ) +IBB—] _ 4_0[X7(5B;+lkyx46B:c)],
210 0 u (3)
_%:Bo (PLZPI L 1Y sp g
4\ BE/4m o
where 0B, is given by
(5Bz = —X7(5B; + ZkyX4(5Bm) (4)
Here, we use the symbols
x1 = ik;{(1+a)py —pr} — o2, (5a)
x2 = pPCQuy, (5b)
X3 = Qle (5C)
-1
~vkZBop
Q= [PQBO - T”] : (5d)
2 B3 2
Xe = k3 (PL -p+ E) — 1pQ°, (5e)
_ekyk.Bopyxs | ikyk.BZ + ik k
o= e Tl (50)
6
k,k.B kyk.BZ
XsXe = —— QOPLXS 42 y47T % +ikyk.p1 5,
_ €kyk:Bopix2 QSv! ek, k,B
xom 0 L o= ARG ogy g
x7 = (ikyxs +ik,) "L (5h)

Notice that we have used all the perturbation equations (2) in deriving Eq. (3). Also
notice that all the physical quantities characterizing the perturbation (dv, éB, dp, dpj,
dp.) may be obtained in terms of B, evaluated from Eq. (3). For the polytrope indices
a =2, f=¢c=1,and vy = 3 corresponding to the CGL model, Eq. (3) reduces to Eq.
(4) of [34].

The singular points of Eq. (3), as well as the regimes of hyperbolic and elliptic behavior
of the equation external to the region of velocity shear, are analogous to the earlier
discussion for modes propagating parallel to both the magnetic field and the flow [20].

Outside the region of velocity shear (in the infinite medium: for the vortex sheet,
this corresponds to £ > 0 or x < 0), vo = constant. For k, = 0 and 6; = 0, Eq. (3)
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reduces to Eq. (18) of [27] for the CGL polytrope indices « = 2, 3 =¢ =1, and vy = 3,
and when Eq. (2g) is used. In the absence of velocity shear, d%:; = —k2 and we recover
the dispersion relation for Alfvén wave propagation in a static, infinite, homogeneous,
anisotropic plasma [35]. This leads to firehose and mirror instabilities, with these modes
being coupled when velocity shear is included. For nonzero values of k, and 6, external
to the region of velocity shear, Eq. (3) reduces to:

e{(r-1-ap+1)

ix7+ks e+ B+ad + 3

- oo 6BL 4+ k2[udy — (1 —r% 4+ ¢%)]6B, =0,
D+ —

where we have used the fact that xo = x4 = 0 for vy = constant. The + subscripts
denote the two sides external to the region of velocity shear. This equation has solutions
6B, = constant exp{xik_zx) and §B, = constant exp(+ik,x) in the two external regions,
where,

CR(udy =y {udy ~ (1= 12+ ¢})} - THB + a3)(uhy — ) —e((L+a)r? =1 —u, )}
B (B+e+ap)(uhy — 12 +e{l(y—1—-a)r? +1} '
(6)

Here, T = tanfy = <El) and 05 is the angle of propagation of the mode to the magnetic

K3

k;
field. Perturbations 60, are equivalent, and only positive 65 values are considered. In
a reference frame comoving with the fluid, Eq. (6) is simply the dispersion relation for
sound waves propagation along the magnetic field, and for the firehose and mirror modes
[20], [36]. Here, we introduce the dimensionless frequency

w
W = =W, +1iW;, 7
7S, + 1 (7a)
and the dimensionless flow velocity
Q MF
= =+— — Wp, b
Up = g~ 5 D (7b)

1
where §) , = (p'—'l;l—) * are the sound speeds parallel and perpendicular to the magnetic

field. We also define the dimensionless anisotropy parameter
S)

=1 7
=g (7c)
and the ratio of the magnetic field-energy density to the perpendicular thermal energy
density (the inverse plasma beta)
2
vA
B=(2) . (7a)
where the Alfvén speed is
B2
v = ﬁ. (7e)

In the external regions, the full dependencies are
0B, = constant exp(i(tk.-z + kyy + k.2 — wt)]

and

0B, = constant exp[i(tkix + kyy + k.2 — wt)]
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on the two sides of the region of velocity shear. Here, w = w, + iw;, in general, with
w; > 0 for unstable wave solutions. The correct choice of the * signs in the external
regions is determined by dual considerations. The x component of the magnetic field
perturbation B, should correspond to a spatially damping (in z), and outgoing mode
at £ — +oo in the comoving frame of the plasma in each of the external regions [14]. The
solutions for k% in Eq. (6) may be considered in an analogous manner to earlier work
[14], [20], applying these criteria. However, this will not be necessary in the remainder
of this paper.

3. Solutions for three-dimensional anisotropic vortex sheet. We now consider
an anisotropic velocity discontinuity (vortex sheet), vo = £(vVym§ +v;m2) for £ > 0 and
x < 0. In order to treat this case, the straightforward approach is to start with the
perturbation equations (2) and match quantities on the two sides of the discontinuity at
x = 0 so as to satisfy the boundary conditions [10]: i) the normal velocity is continuous;
ii) the normal magnetic field is continuous; and iii) the normal total, Reynolds’ (fluid)
plus Maxwell (electromagnetic), stress is continuous across the interface. However, the
dispersion relation obtained in this manner is more easily derived by integrating the
composite Eq. (3) across the discontinuity at 2 = 0. In performing the integration, it
is necessary to remember that all quantities are continuous across the jump, with the
exception of vg, so that (%ﬂ‘l) contains a Kronecker delta. This procedure automati-
cally takes into account the boundary conditions mentioned above, as may be explicitly
verified, since all the perturbation equations (2) are incorporated in (3).

Integrating (3) across the jump at £ = 0, and denoting quantities for x > 0 and x < 0
respectively by subscripts + and — as before, we obtain

x7+0B., [pl (% + Bﬁ()) + %L = x7-0B; [PJ. (% + Bﬁo) + 4B—7(:] R (8a)
which reduces to
xr+ky e+ B+ ah + ale ;21 __a):z 1
D {(7 1 " (8b)
=+4x7_k_ e+ B+ + S & —a7);2 1} )

where we have used the fact that 6B, = constant exp{—ik+z} on the two sides of the
discontinuity. For the CGL values of the polytrope indices, ¢ = 8 = 1, @ = 2, and
v = 3, Eq. (8b) reduces to exactly Eq. (7a) of [34]. For modes propagating parallel or
antiparallel to the magnetic field 6, = 0, 7(k, = 0 or T = 0), and Eq. (8b) reduces to

e{(y-1-a)y?+1}
ug,, —r?

(8c)

€ —1-a)r’+1

=ik_[5+ﬁ+q123+ o 5 )2 }].
ufy_ —or

The + sign is picked on the right-hand sides of equations (8) since the correct spatially

damping and outgoing solutions (in the comoving frame) on the two sides are 6B, =



608 KEVIN G. BROWN a~np S. ROY CHOUDHURY

constant exp{—ikyz) [20]. However, in practice, the dispersion relation Eq. (8b) or (8c) is
squared in order to obtain solutions. The solutions are then “tested out” by substituting
back into equations (8) and the spurious solutions introduced by squaring are discarded
[14]. The spurious solutions may also be identified since their growth rates do not vanish
when one lets the velocity discontinuity tend to zero.

For the vortex sheet velocity profile,

MF
up = iT — WD, (ga)
where
COS(Ol — 02)

F=—=
cos b, (9b)

For § =6, =0, F = 1. For 6, =0, F = cos ;. Here,
M = (velocity discontinuity /S, ) = (2;_0) (10)

1

is the Mach number of the anisotropic vortex sheet.

A. Modes propagating parallel or antiparallel to the magnetic field. Squaring
and solving Eq. (8¢) for 8, = 0 (ky = 0 or T = 0), employing Eq. (9a) in the solution,
and picking out the valid solution, one recovers a generalized form of Eq. (27) of [27] for
61 # 0 (][27] uses 6; = 0). The difference due to 8; # 0 is that M is changed to M cos8;
everywhere. Therefore, the criteria for unstable traveling and standing wave instability,
for modes propagating along or opposite to the magnetic field direction, are given by
inequalities (12) of [20] with M replaced by Mcos#, and q replaced by qp (from the
change in notation) everywhere.

B. |[Wp| < MF solutions. Squaring Eq. (8b) (for general values of ; and f;) and
using Eq. (6) for k2 we obtain the dispersion relation for modes propagating at arbitrary
angles to the flow and the magnetic field:

(B+e+qb)ul, =y +e{(v—1-a)r? + 1}J(1 - 12 + ¢} —ud,)?
[(1-12+6¢% —up  )(uh, — ) + TH(B+ap)(uh, —1r2) —e((L+a)r? =1 —uh )}
_ (B+e+ab)uh_ =) +e{(v—1-a)r? +1}J(1 —1? + ¢} —u} )2
Tl =r2+¢% —ud )(wh_ — )+ TH(B+eh)(uh_ —yr?) —e((1+ )r? — 1 - w3 )}

(11)

For the CGL values of the polytrope indices, ¢ = 8 = 1, « = 2, and v = 3, Eq. (11)
reduces to exactly Eq. (10) of [34]. Substituting Eq. (9a) in Eq. (11), we obtain an
equation which is quadratic in W2 (ignoring the trivial Wp = 0 solution). Therefore,
in general, a solution would require the use of the roots of a quartic equation. This is
unlike the case for 2 = 0 when a fourth-order equation (a biquadratic) in Wp results.
For this case, the roots of the quartic (in W) Eq. (11) yielded seventy-two pages of
Mathematica output, making it virtually impossible to distinguish the genuine solutions
from the spurious ones introduced by squaring Eq. (8b) to obtain Eq. (11). However,
guided by the consideration that |[Wp| <« MF for the unstable standing wave solutions
in the case with §; = 6, = 0 [20], we look for unstable solutions of Eq. (11) satisfying
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the inequality |Wp| <« MF. The validity of this inequality is justified a posteriori. This
approach turns out to be very fruitful. It results in simple, general analytical solutions
for the unstable standing models of Eq. (11).

For |Wp| < MF, using Eq. (9a) we expand u%, =~ M24F2 FMFWp. Substituting these
equations in Eq. (11), we obtain

bsW — bsW3 +b; =0, (12a)

where
bs = M*F*y1,
bz = M2F2yath3 + M2F24p 92 — eM?F240, T2 4 2eM2F 24,43 T2
— M?F2ho1p4 T2 + 2M2F24p19h3904T? — M2F29p1p5 T2
+ M2F24pp X — eM?F29; T?X + M2F24); X2, (12b)
b1 = 9293 + e T? + otp§vhaT? — 2uhothstps T? + by 9h5 s T?
+ P23 X + e YR TZX + 200939a T2X — 29919395 T2X
+ P1aX? + 21 s T2X?,
and
M2F?2
4
Y1 =B +e+qp,
Yo =e{(y—1—-a)r® +1},
M2F? (12c)
7

X:

2
-,

Y3=1-1"+gp -
¢4=ﬁ+q2Da

¢5=e{(1+a)r2—1—

W3 = [bg — /b3 - 4b1b5] /2bs. (13)

Here we have omitted the spurious solution introduced by squaring the dispersion relation
(8b). One must check that |Wp| (given by Eq. (13)) « MF. Here, |Wp| may be
maximized with respect to MF, 81, and 63 using Eq. (13). However, we will not pursue
this here. For unstable standing waves (Wp, = 0, Wp; > 0), we require W% to be real
and negative. For by < 0 this is satisfied if b2 > 4b,bs. Therefore, we require (b;bs) < 0
for bs > 0 and (b;bs) > 0 for by < 0 with the expression under the square root in Eq.
(13) being positive. The criteria for unstable standing wave solutions in Eq. (13) are
therefore, since bs > 0 under the assumption |Wp| < MF,

(i) by < 0 only if by > 0

M2F?
1

Therefore,

and

(ii) b2 > 4b;bs, (14a)
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which may be written as
W3 {wa 1 X? + (X + a)] + [291 (91 — €)X?
+ (e¥1v3 + 2919y — 2e9p2 — 2¢195)X (14b)
+ (Y13hats — 20995 + Y1315 )| T2} < O
and
[M?F?4y1)3 + MPF29195 — eM?F246, T + 2eM?F24h1 93T — M?F24pp1, T?
+ 2M2F29 93104 T — M2F 2901905 T? + M2F2X
— eM?F?9 T2X + M?F?4; X?)?
> AMYF4r [9293 + o3 T2 + Yoy a T? — 2000939 T2 + Py 9p39sT?
+ Y2t X + e Y5 T2 X + 20009031hs T?X — 2001 931h5 T2 X + 41 93X
+ 291 P39 T?X?).

Inequalities (14) will be used to map out the structure of the unstable standing modes
in the (MF,¢p) plane. For the CGL polytrope index values ¢ = 8 = 1, a = 2, and
v = 3, inequalities (14) reduce to inequalities (13) of [34]. Subsequently, in Section 6 we
prove analytically for the special case 8, = 0 that the criterion (14b) for instability is in
fact the general condition for standing wave instability without making the assumption
[Wp| <« MF considered here. Note that, for other values of 8; and 65, inequality (14b)
yields the criterion for standing wave instability.

(14c)

C. Criteria for stability and search for the most unstable directions of
propagation. In applications in astrophysics and geophysics, we are not particularly
interested in stability information along a specific direction (83) of the propagation vector
k (to Bg). Of greater interest [37], is (a) which directions of propagation are unstable,
and (b) whether flow parameters exist for which the tangential velocity discontinuity is
stable for all propagation directions 6. To consider these issues in detail, let us look first
for the conditions when no unstable standing waves exist, i.e., W in (13) is real and
positive. From (13) and noting that bs > 0, the conditions for stable standing waves are

(i) by > 0,

(ii) bz > 0, and

(111) bg — 4b;bs > 0,
with the b;’s given by (12b). Although by and bs are, respectively, quartic and cubic
in (MF)2, b% — 4b;bs contains (MF?)® = MSF!2. Thus, the inequalities are impos-
sible to solve in closed form. Instead, for any set of polytrope indices «, £, &, and
v, and chosen values of the anisotropy parameter r and A = Mcos(f; — 61) (so that
MF = M cos(f2 — 61)/ cosf2 = Av'1 + T?), we shall map out the region of (gp, 82)-space
where the inequalities are satisfied, so that no unstable standing wave modes exist. The
boundary of the stable region in (gp, 2) space will be given by the zero level curves of
b1, bz, and b2 — 4b; bs, i.e., the curves b; = 0, b3 = 0, and b% — 4b;bs = 0. The stable
region of (gp, 8s)-space will be that on the positive side of all three zero level curves,
where all three inequalities are satisfied.
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Before presenting the results of doing this, let us recover the classical fluid mechanical
result for the stable region [10], [11]. For the unmagnetized fluid-mechanical case with an
adiabatic law for the energy equation, qp =0, r=1,a=8=0,e =~ = % Since there is
no magnetic field, the angle 65 of the model k to the magnetic field is arbitrary. Picking
02 = 0 implies F = cosf; and T = 0. With all of the above, the conditions b; > 0,
bs > 0, and b3 — 4b;bs > 0 for stability yield (after some algebra) M2 cos? 6, > 2 and

MZ2cos?0; > %), Using the more restrictive condition M2cos?8; > %, together with

2 2
M=¢ and 8] = % = %i (cs is the adiabatic sound speed), yields
2v/2¢
cosf; > V2 =
Vo

which is the classical fluid dynamical stability criterion [10], [11], [37].

Returning now to delineating the stable regions of (gp,#2)-space for more general
cases, we employ the zero level curves of by, by, and b2 — 4b;bs as discussed above for
each set of o, 3, €, 7y, r, and A = Mcos(f2 — 61). In all the figures in this subsection the
stable region of the (¢p, §2)-plane is the white space.

Figures 2 through 5 are for the CGL indices (a = 2,0 = ¢ = 1,7 = 3). In Fig. 2,
the tangential discontinuity is unstable for all ¢p for 8, > 1.47. Figures 2 to 4 show the
effect (for A = 2) of increasing the anisotropy parameter r from 0.1 to 2 and then to 10.
Roughly speaking, the stable region shrinks as r is increased. In Figures 2 to 4, note the
unstable (black) band near 6, = 7. This is because the first stabilizing effect, due to the
magnetic field, is weakest near 6 = 7 and vanishes for k- By =0 or 8; = J.

However, Fig. 5 (which has r = 10 as for Fig. 4) where X\ has been increased from 2
to 10 demonstrates the other stabilizing effect, that due to compressibility (finite sound
speed cs). Now the narrow unstable region near §; = % in Fig. 4 (for small gp) has been

stabilized by the increased A. The classical hydrodynamics stability result cos 8, > 231/)%&
derived above has an MHD counterpart [38], which implies that for (2 —#,) large enough
{or A = Mcos(f2 — 6;) small enough), no stabilization due to compressibility results.
However, as (f2 — 6) decreases (or )\ increases), stabilization due to compressibility
occurs as seen for small gp near §, = 7 in Fig. 5. Note that there is no stabilization
due to the magnetic field line tension at 2 = 7. We have verified that as A is increased
further, the unstable (black) region of (¢p, 62)-space shrinks further, although the results
are not shown.

Figures 6 to 8 are for the MHD case (o« = 8 = 0,e = v = J,r = 1) for increasing A. As
discussed above for the CGL case, as A is increased from 2 to 10 from Fig. 6 to Fig. 7, the
stabilization due to compressibility is seen first at low ¢p. Then, as A is further increased
to 25 in Fig. 8, almost the entire (¢p, 82)-space becomes stable, except for a small sliver
in the upper right corner.

Fig. 9 shows the stable region of the (¢p,62)-space for the case of isothermal waves
(a=0=0,e=v=1) forr =2 and XA = 2. The structure of the stable space is similar
to Fig. 3 for the same r and A values, but with CGL polytrope indices. Fig. 10 shows
the stable region for mixed waves (a =0, 8 =¢ =+ = 1) with r = 0.1 and X = 2, which
is similar to Fig. 2 for the CGL case. In both Figures 9 and 10, note the unstable band
for all gp near , = 5 where the stabilizing effect of the magnetic field is weak. Also, for
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Stable region{white), CGL Case, r = 0.1, lambda = 2

theta 2
— 0.751}

qbD

FiG. 2. The stable region (white) in the (qp,#2)-space in the CGL
case (polytrope indices e = 8 =1, a = 2, and v = 3) with r = 0.1
and A = Mcos(f2 — 61) = 2.

both the isothermal and mixed wave cases, increasing A is found to expand the stable
region due to the effect of compressibility discussed earlier. Also, as for the CGL case,
the stable region is larger for small r values.

We next consider the special case of modes propagating along the magnetic field in
Sec. 4, before considering more general cases in Sec. 5.

4. Modes with |Wp| < MF propagating parallel or antiparallel to the mag-
netic field. Now we shall consider the special modes propagating parallel or antiparallel
to the magnetic field, so that 8, = +n7 where n is any integer. For §; = +nn we have
that T = 0 and F = cos#;. Thus inequality (14b) becomes

V311 X2 + o (X + 93)] < 0, (15a)
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Stable region(white), CGL Case, r = 2, lambda = 2

theta 2
- 0.75}

q D
Fic. 3. Asin Fig. 2 withr=2 and X = 2.

which may be written as

ey —1—a)yr? +1][B+e -1+ (y+ 1)1}

B+e+qgh < . .
P ey -1 —a)r? + 1] + [MEeost O yp2)2

(15b)

Inequality (15b) represents a generalization of inequality (14a) of [34], which is a special
case for the CGL indices ¢ = § =1, @ = 2, and v = 3. Inequality (15a) may be written
in the biquadratic form:

1 cost 6, ME P yr? cos? 6;
16 2
Noticing that the constant term of (15¢) is always positive and examining the discriminant
of the expression on the left-hand side of (15¢), we find that it is negative and inequalities
(15) cannot be satisfied for any value of 6; (and 63 = +nn) if

M? 4 [1ho(1 — 12 + ¢4 — 412) + 1y < 0. (15¢)

1724 (cos? 6; — 1) — ha(1 — 12 + g% — 4r%) < 0. (16)
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Stable region(white), CGL Case, r = 10, lambda = 2

—r Y T T

theta 2
- 0.75

q_D

FiG. 4. Asin Fig. 2 withr =10 and A = 2.

Using the MHD values of the polytrope indices, « =0, 3 =0, ¢ = %, v = %, and r =1,
and noticing that M4 = % and ¢% = eq?, inequality (16) reduces to inequality (23a) of
[34]. Also, at

w17’ (cos® 61 — 1) — (1 — 1% + ¢ — %) = 0,

both solutions for M coalesce to the value

1
4 2 2
M= ( ik ) or Mcosb, = 2r\/v.

cos? 6

Therefore, we have the significant result that for 8o = +nw, i.e., for modes propagating
along or opposite to the magnetic field direction, no unstable standing wave solutions
exist for vortex sheets with

2 o P1y2r*(cos? 6, — 1)

2
9p ™

—1+7"2—'yr,
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Stable region(white), CGL Case, r = 10, lambda = 10

theta 2
- 0.75}

gD
F1G. 5. As in Fig. 2 with r = 10 and X\ = 10.

for any angle 6,1 of propagation of the flow velocity to the magnetic field. For the MHD
indicesa=0=0,e =~v= —g— and r = 1 (for the isotropic, collision-dominated flow),
this implies that the modes propagating along or opposite to the magnetic field, and at
a general angle to the flow, do not exhibit standing wave instability for the plasma beta
<1.

5. Results for arbitrary #; and #;. More generally, for arbitrary values of 6,
and 6, we solve inequalities (14b) and (14c) numerically. In each case, we verify that
|Wp| <« MF from Eq. (13). The assumed inequality is valid, and Eq. (13) represents
a valid solution of Eq. (11), for all the results presented. Specifically, we pick values
of gp, r, and T, and solve for the range of X (see Eq. (12¢)), and therefore MF, in
which inequality (14b) is satisfied. This inequality defines the boundaries of the regime
of unstable standing modes in the (MF, gp) plane. Next, we verify that inequality (14c)
is satisfied in this range. And, finally we check, from Eq. (13), that the assumed ordering
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Stable region(white), MHD Case, lambda = 2

theta 2
- 0.75}

q D

F1G. 6. The stable region (white) in the (qp, 82)-space in the MHD
case (polytrope indices a = 3=0,e =v = %,r =1) with A= 2.

[Wp| <« MF is valid in this range. In the majority of cases, we pick 8, > 7/4 (T > 1),
so that the stabilizing effect of the magnetic field line tension is relatively small, and we
are in the more unstable regions of greater interest in physical problems.

In the rest of this section, we first consider CGL modes (polytrope indices ¢ = =1,
a =2, and v = 3), followed by MHD modes (polytrope indices a = § =0,e =v = %),
isothermal wave modes (polytrope indices & = f = 0, ¢ = v = 1), where we use an
isothermal equation of state for both pressures (parallel and perpendicular), mixed wave
modes (polytrope indices @ = 0, § = € = v = 1), where the first adiabatic invariant is
conserved but an isothermal equation is used for the parallel pressure [29], and finally
we shall look at an interesting instability diagram.

Let us consider the CGL case. For this case we have Figures 11 through 15. Fig. 11
shows the unstable standing wave regimes in the (MF, ¢p)-plane forr=0.1and T =1

1
(02 = 45°). The upper limiting curve is given by ¢p = (r2 -1+ Min) ’ (or, ¥3 =0, see

Eq. (12c)) in this figure since the radicand is positive for all values of MF. The nonzero
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Stable region(white), MHD Case,lambda = 10

theta 2
— 0.751}

qbD

F1G. 7. As in Fig. 6 with A = 10.

value of T alters the nature of the standing wave instability considerably. For T = 0,
the standing wave instability does not exist for r < %(1 + q%)é. Therefore, the standing
wave instability would be absent everywhere in the (MF, ¢p)-plane of Fig. 1 with T = 0.

Fig. 12 shows the unstable standing wave regimes for r = 0.1 and T = 10 (8, =

1
84.29°). The curve here is given by gp = (r2 -1+ M—Z—FZ *. The regime of standing
wave instability has enlarged greatly from that of Fig. 11. There is a lower limiting curve

for the regime of instability, from (14b), but it is not present for MF < 40.
Fig. 13 shows the unstable standing wave regimes for r = 2 and T = 0.5 (6, = 26.57°).

1
22\ 2
M 4F ) . The lower

The smooth upper limiting curve is again given by gp = <r2 -1+

limiting curve comes from the other factor of Eq. (14b) which is quadratic in MF. Notice
that the curves only cover MF > 1. This is to indicate that the assumed [Wp| <« MF
ordering, used in deriving Eq. (14b), is valid in this range. This case is the same as that
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Stable region(white), MHD Case, lambda = 25

theta 2
— 0.75}

-

qD

F1c. 8. As in Fig. 6 with A = 25.

of Fig. 3 in [34]. When comparing Fig. 13 to Fig. 3 of [34], please note that the axes
have been inverted.

Fig. 14 shows the unstable standing wave regimes for r = 2 and T = 10 (6, = 84.29°).
This figure is similar to Fig. 12, with the exception that the anisotropy parameter, r,
has been increased from 0.1 to 2. This has the effect of inverting the curve given by

1
qp = (r2 -1+ MZFZ) ‘) Again, there is a lower limiting curve, from (14b), that exists

for MF > 40.

Fig. 15 shows the unstable standing wave regimes for r = 10 and T = 0.5 (62 = 26.57°).
Here, the anisotropy parameter, r, has been increased to r = 10. We can see that the
region of instability, when compared to Fig. 13 (where T = 0), has been increased. The
region of instability has also been shifted to higher values of ¢p.

The criterion for unstable traveling wave modes is Eq. (14c) with the inequality re-
versed. For 8; = 6; = 0 [20], inequality (14c) is always satisfied and no traveling modes
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Stable region(white), Isothermal Wave Case, r = 2, lambda = 2

theta 2
= 0.75¢}

qbD

Fic. 9. The stable region (white) in the (qp,62)-space for the
isothermal wave case (polytrope indices @« = 8 =0, ¢ = v = 1)
withr =2 and A = 2.

satisfying the ordering |Wp| <« MF exist. Similarly, in all the cases considered numer-
ically here, inequality (14c) is always satisfied and traveling modes with the assumed
ordering for |Wp| and MF are absent. It appears that the |Wp| < MF solutions au-
tomatically exclude the traveling modes. This is borne out by the general analytical
solutions for T = 0 in Sec. 6 without the assumption |Wp| <« MF, where it is explicitly
found that the traveling modes violate the ordering |[Wp| <« MF, while the standing
modes satisfy it.

Next, let us consider the MHD case. For this case we have Figures 16 and 17. Fig. 16
shows the unstable standing wave regimes for r = 1 and T = 1 (6, = 45°). Again, when
comparing these figures to those of [34], note that the axes are inverted, and also note
that Ms = % and ¢%, = eq?, as mentioned in Sec. 4. For the collision-dominated MHD
case, the pressure is isotropic and r = 1. Here, we have large regions of stability with

MF

the unstable region being confined to values of gp that are slightly less than **. This

figure has a similar shape to that of Fig. 11 (CGL case) for the same value of T.
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Stable region{white), Mixed Wave Case, r = 0.1, lambda = 2

T

theta 2
- 0.75}

qD

FI1G. 10. The stable region (white) in the (qp, #2)-space in the mixed
wave case (polytrope indicesa =0, 3= = =1) withr = 0.1 and
A=2.

Fig. 17 shows the unstable standing wave regimes for T = 10 (0, = 84.29°). We see
that increasing the value of T from 1 to 10 has enlarged the region of instability from
that of Fig. 16. As for the CGL case, the criterion for unstable traveling wave modes,
Eq. (14c) with the inequality reversed, is never satisfied and thus no traveling modes
satisfying |Wp| < MF exist.

Figures 18 through 20 correspond to isothermal wave cases. Fig. 18 shows the unstable
standing wave regimes in the (MF, gp)-plane for r = 0.1 and T = 10 (6, = 84.29°). The

1

upper limiting curve is again given by gp = (r2 -1+ %F?) ’ (or, ¥3 = 0, see Eq.
(12¢)). The region of instability here is similar to that of Fig. 11 (for the CGL case with
the same r value), noting that the lower limiting curve has moved to larger values of MF
thus increasing the region of instability. The behavior of the two systems is virtually the
same. Note that this is certainly not obvious a priori since the polytrope indices for the
two cases are very different.
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{alpha,beta,epsilon,gamma} = {2,1,1,3}; r = 0.1, T = 1

7t «— stable

0 2 4 6 8 10 12 14
MF

Fi1c. 11. The unstable standing wave regimes in the (MF, gp )-plane
forr=0.1and T =1 (f2 = 45°), for the CGL wave case (polytrope
indices e = 8 = 1, @ = 2, and y = 3). In the intermediate region,
the vortex sheet is unstable and the growth rate is given by Eq.
(13) for all values of MF. The upper limiting curve is given by

2 M2F2\ 3
qp = (r -1+ = ) (or, ¥3 = 0, see Eq. (12¢)).

Fig. 19 is similar to Fig. 18. The value of r has been increased from 0.1 to 10 and this
has had the effect of inverting the upper limiting curve. However, the region of instability
in both figures has the same shape and equivalent size.

Fig. 20 shows the unstable standing wave regimes in the (MF, gp)-plane for r = 10
and T = 2 (8 = 63.43°). This figure is similar in shape to Fig. 13 (CGL case); the region
of instability has a branch that extends downward to ¢gp = 0. However, here the region
of instability is wider and seems to be opening up as MF increases, whereas in Fig. 13,
the boundaries appear to be remaining a fixed distance apart. It seems that an increase
in the anisotropy parameter, r, has the effect of enlarging the region of instability and
shifting it to higher values of ¢p.

Figures 21 and 22 correspond to the mixed wave case. Fig. 21, with r = 0.1 and
T = 10 (6, = 84.29°), is again similar to Fig. 17 (MHD case) as well as Figures 18 and
19 (isothermal case). Fig. 22, with r = 2 and T = 5 (#2 = 78.69°), has a similar shape
as Fig. 19 (isothermal case) with the upper limiting curve being inverted. The value of
r is the same as in Fig. 18 which accounts for the similarity of shape.

Fig. 23 is an interesting instability diagram. It has polytrope indices a = 3 = ¢ =
vy =1, withr =2, and T = 0.5 (f; = 26.57°). Inequality (14b) has three factors, 13
and two factors from the long curly bracket. The parabolic region of instability and the
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{alpha,beta,epsilon,gamma} = {2,1,1,3}; r = 0.1, T = 10

T

2 4 6 8 10 12 14
MF

FiG. 12. As in Fig. 11 with r = 0.1 and T = 10 (62 = 84.29°).

{alpha,beta,epsilon,gamma} = {2,1,1,3}; r =2, T = 0.5

T

MF

FI1G. 13. As in Fig. 11 with r =2 and T = 0.5 (62 = 26.57°).
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{alpha,beta,epsilon,gamma} = {2,1,1,3}; r = 2, T = 10
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FIG. 14. As in Fig. 11 withr =2 and T = 10 (2 = 84.29°).
{alpha,beta,epsilon,gamma} = {2,1,1,3}; r = 10, T = 0.5
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F1G. 15. As in Fig. 11 with r = 10 and T = 0.5 (03 = 26.57°).
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{alpha, beta, epsilon, gamma} = {0, 0, 5/3, 5/3}; r=1, T=1
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F1G. 16. The unstable standing wave regimes in the (MF, qp)-plane
forr=1and T =1 (62 = 45°), for the MHD wave case (polytrope
indices a = 8 =0, =~ = %) In the intermediate region, the
vortex sheet is unstable and the growth rate is given by Eq. (13) for
all values of MF.
{alpha, beta, epsilon, gamma} = {0, 0, 5/3, 5/3}; r=1, T=10
25} " " " " -]
20t :
stable
15 ¢ b
q D
10
unstable
5t
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0 10 20 30 40 50
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F1G. 17. Asin Fig. 16 withr =1 and T = 10 (62 = 84.29°).
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{alpha, beta, epsilon, gamma} = {0, 0, 1, 1}; r=0.] T=10

257

20 ¢t

stable
15}

10 +

unstable

a

0 10 20 30 40 50
MF

F1G. 18. The unstable standing wave regimes in the (MF, qp)-plane
for r = 0.1 and T = 10 (62 = 84.29°), for the isothermal wave case
(polytrope indices « = 3 = 0, ¢ = 4 = 1). In the intermediate
region, the vortex sheet is unstable and the growth rate is given by
Eq. (13) for all values of MF. The upper limiting curve is given by

1
qp = (r2 -1+ M—z‘iﬁ) % (or, 3 =0, see Eq. (12¢)).

lower limiting curve (with a cusp at MF a 4.2) come from the quadratic factor in the
curly bracket of Eq. (14b) and the smooth (almost linear) curve comes from 3. Figures
13 and 19 have corresponding values of r and T; however, the change in the polytrope
indices has produced a rather dramatic shift in the region of standing wave instability.

6. General instability criteria for §; = 0 and arbitrary |Wp|. In this section, we
consider the special case 6; = 0 when the general dispersion (11) relation is biquadratic.
Thus, we shall be able to derive the conditions for both standing wave and traveling wave
modes without making the assumption |[Wp| < MF of Sec. 3. We shall prove thereby
that (14b), derived under the assumption |Wp| <« MF, represents the general criterion
for standing wave instability.

For 8; = 0 we have that T = 0 and thus the general dispersion relation (11) becomes

[¥1(X — MWp + W3) + o] [tps + MWp — W2
(X —MWp + W3)
_ [$1(X+ MWp + W3) + 9y][s — MWp — W3]
(X +MWp + W3)

(17a)

After cross-multiplying, we get

2Mep WP + (4Mypy X — 2M34p )WE + (2Mapatps + 2Mepo X + 2Myy X)W = 0, (17b)
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FI1G. 19. As in Fig. 18 with r = 2 and T = 10 (62 = 84.29°).

{alpha, beta, epsilon, gamma} {0, 0, 1, 1}; r=10, T=2

stable

unstable

and dividing by (2MWp) results in

stable
stable
0 5 10 15 20 25 30
MF
F1G. 20. As in Fig. 18 withr = 10 and T = 2 (62 = 63.43°).
C5W4D + c3W% 4+¢1=0 (17¢)
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{alpha, beta, epsilon, gamma} = {0, 1, 1, 1}; r=0.] T=10
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Fi1G. 21. The unstable standing wave regimes in the (MF, qp)-plane
forr = 0.1 and T = 10 (62 = 84.29°), for the mixed wave case
(polytrope indices @ = 0, 8 = ¢ = v = 1). In the intermediate
region, the vortex sheet is unstable and the growth rate is given by
Eq. (13) for all values of MF.
{alpha, beta, epsilon, gamma} = {0, 1, 1, 1}; r=2, T=5
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20} 1
stable
15¢ .
q D
10 ¢+ 1
unstable
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Fi1G. 22. Asin Fig. 21 withr =2 and T =5 (62 = 78.69°).
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{alpha,beta,epsilon,gamma} = {1,1,1,1}; r = 2, T = 0.5
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Fi1G. 23. The unstable standing wave regimes in the (MF, qp)-plane
forr =2 and T = 0.5 (62 = 26.57°), for the interesting instability
diagram (polytrope indices @ = 8 = ¢ = v = 1). In the intermediate
region, the vortex sheet is unstable and the growth rate is given by
Eq. (13) for all values of MF.

which is biquadratic, with

cs =191,

c3 = 2¢1 X — My, (18)

1 = Y1 X2 + o (X + ¥3).
Similar to the argument in Sec. 3, we have that the condition for standing wave instability,
Wp pure imaginary, is

c1 <0, (19a)

which may be written as

1X2 + (X +1h3) < 0. (19b)

Now, inequality (14b) with T = 0 reduces exactly to inequality (19b). Thus criterion
(14b), which was derived under the assumption |Wp| <« MF, actually recovers the general
criterion for standing wave instability without making this assumption. This is because
the standing wave modes satisfy the assumption |Wp| < MF, as may be checked a
posteriori for the general values of #; in the examples considered in Sec. 5. On the
contrary, the traveling wave solutions violate the approximation |Wp| < MF, and are
thus omitted when the general quartic dispersion relation (11) is reduced to the quadratic
equation (12a) via this assumption. As mentioned in Sec. 5, this also shows up in the
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criterion b3 < 4b;bs (criterion (14c) reversed) for traveling wave modes in Eq. (13) never
being satisfied in our numerical investigations.
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