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PREFACE

This Memorandum is part of a continuing research effort on network
planning technigques for use in systems and project management. In this
- phase, the authors studied the PERT (Program Evaluation and Review
Technique) system and analyzed its chief mathematical assumptions which
have long been subject to question. This Memorandum presents the re-
sults of their attempt to evaluate the magnitude of the errors inherent
in these assumptions.

Work is conmtinuing on other applications of network planning,
extensions into resource (cost) management, and procedures for integra-
ting their product with current management information systems, for
example, those deseribed by Air Force Regulation 375 covering System
Package Programming.

The Memorandum should be of use to various Air Force and other
Govermmental organizations concerned with the application of PERT and
relatved systems. Offices which have requested an evaluation of this
subject include the Office of the Assistant Secretary for Financial
Management, the Directorate of Status Analysis at Systems Command, and
the Directorate of Management Research and Evaluation at Aeronautical
Systems Division.

K. R. MacCrimmon is a RAND consultant.
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SUMMARY

The purpose of this Memorandum is to present the results of a
mathematical analysis of the standard essumptions used in PERT calcu-
lations. The principal objective of this analysis was to obtain an
indication of the magnitude and direction of errors introduced by these
assumptions. A secondary goal was to restate the mathemstical aspects
of the PERT model in order to provide a better understanding on which
further study might be based.

This Memorandum is divided into two main sections. The first
gection deals with the analysis of those assumptions that are relevant
to the individual activities. Three possible sources of errors are
considered in this section: (1) the assumption of a beta distribution,
(2) imprecise time estimates, and (3) the assumption of the standard
deviation (one-sixth of the range) and the approximation formula for
calculating the mean time. Since these errors can be either positive
or negative, some degree of cancellation would be expected to occur
in a network.

The second section deals with the PERT network as & whole a&nd with
an analysis of those calculations that relate to the project mean,
variance, and probability statements. In general, a network with many
independently parallel paths having approximately equal durations is
found to give the largest errors in the PERT-calculated mean and vari-
ance. On the other hand, if many of the paths are cross=-connected or
if one path is significantly longer than any of the other paths, then
the errors are reduced considerably.

Techniques for network reduction are also suggested in the second
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section. Networks often contain many activities whose likelihood of
being on a critical path is very low. Elimipating these activities from
consideration may reduce the network considerably without affecting
significantly the final results. In general, if the sum of the minimm
times along one path is greater than the sum of the maximum times along
another paraliel pa{h, then the latter peth will not influence the
calculation of the time distribution et the common end node.

As a result of this study, the authors have suggested that the
concept of relatife eriticalness of an individual activity, regardless
of its association with the ecritieal path, may, perhaps, be more valid
for the stochastic model (PERT) than is the critical path concept. This
suggestion is based on the fact that the PERT-calculated critical path
does not necessarily contain the most eritical activities.

For computational ease, small network configurations containing
representative properties of larger networks are used throughout this
study. It is believed that the results obtained from this study, based
on these typical networks, are applicable, to some extent, to larger

and more complex networks.
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I. INTRODUCTION

NETWORK MODELS

During the past several years, new technigues based on network
models have been developed to aid management in planning and control-
ling large-scale projects. One such technigue, which is discussed in
this Memorandum, is PERT (Program Evaluation and Review Technique).
The PERT technique has received widespread interest and is currently
being used for many types of projects.

In general, the type of project for which PERT is often used
comprises numerous activities -- sometimes thousands -- many of which
may be interrelated in complex, and often subtle, ways. One of the
significant features of PERT and other similar techniques is that the
activities as well as the interrelationships are depicted in their
entirety by a network of directed arcs (arcs with arrows, which denote
the sequence of the activities they represent). The nodes, celled
events, represent instants in time when certain activities have been
completed and others can then be started. All inwardly-directed
activities at a node must be completed before any outwardly-directed
activity of that node can be started. A path is defined as an un-
broken chain of activities from the origin node (the beginning of
the project) to some other node. An event is said to have occurred
vhen all activities on all paths directed into the node representing

that event have been completed.

TIME ELEMENT

Each activity tekes time to perform. Thus, it will have some
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duration associated with it. The time at which an event occurs is the
maximum of the durations of the inwardly-directed paths* to that event,
since all of the activities directed into the event must have been
completed. The project duration is, then, the maximum of the elapsed
times along &ll paths from the origin to the terminal node (the event
marking the completion of the project). The path with the longest
duration is called the "critical path," and the activities on it,
"critical activities." Any delay in a critical activity will obviously
cause a corresponding delay in the entire project.

The duration associated with an activity can be a single nunmber
(the deterministic case), or, as in PERT, it can be a random variable
with some distribution (the stochastic case). The times used for each
activity duration are based on time estimates made by the managers or

engineers most directly concerned with the performance of the activity.

PERT OUTLINE

The study reported herein will deal with those aspects of the
PERT procedure which come after the establishment of the network it~
self. The following analysis assumes that a unique network representa-
tion has been established. However, whether or not a unique network
representation can be established a priori is open to question. Nearly
all of the assumptions made by PERT concerning its mathematical model

are discussed in this Memorandum. These assumptions will be analyzed

* N
Since the activities which form any path are connected serially,

the duration of a path is the sum of the durations of those activities
which compose it.
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according to the following outline, distinguishing between those on
the level of individual activities and those on the level of the whole
network.

1. Activities

a. Three time estimates are obtained for each activity.

b. A beta distribution with its standard deviation equal
to one-sixth of its range is fitted to the three time
estimates to obtain a mean and variance, which are then
used as the parameters of a normal distribution™ of
activity duration.

2. The Network

a. The critical path is then determined using only the
means of the activity durations.

b. The Central-ILimit Theorem is then invoked to obtain
a normal project distribution, whose mean and variance
are the sums of the means and variances, respectively,
of those activities on the critical path. Probability
statements concerning the project completion time are

made from the normal distribution so determined.

¥See first footnote on page 6.
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II. ACTIVITIES

UNCERTAINTY IN ACTIVITY DURATION

The activities in complex research and development programs are
‘usually unigue to & particular program and are seldom of a routine or
repetitive nature. Those people most directly involved in the per-
formance of these activities, however, usually have same experience in
doing similar jobs. Thus, on the basis of their experience, it is
felt that they can esfimate how long some new activity will take to
complete., On the other hand, the activities often require creative
ability -~ something which is hard to measure in individuals. By
the nature of these activities, then, any estimate of their length
must be an uncertain one.

In order to reflect this uncertainty, a stochastic model may be
used; that is, one in which some measure of the possible variation in
activity duration is given. This may take the form of a distribution
showing the various probabilities that an activity will be completed
in its various possible completion times. Altermatively, it may just
be scme number which represents the variance, or some other similar
concept of variation. This latter method does not make any assumption

about g distribution form.

PERT ACTIVITY DURATION

PERT handles uncertainty by assuming that the probable duration
of an activity is beta-distributed. The pi'obability density function
oA
of the beta distribution is £(t) = K+« (t-a) (b-—t)$. A few examples

are plotted in Fig. 1.
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Fig. 1 == Examples of Beta Distributions

In order to determine a unique beta distribution, the endpoints
a and b, and the exponents<and Fmust be specified. PERT uses two
time estimates (the optimistic time and the pessimistic time) to
specify a and b. The optimistic time is that time earlier than which
the activity could not be completed, and the pessimistic time _is the
longest time the activity could ever take to complete (barring "acts
of God").”" A third time estimate m, the most likely time, is also
obtained. The value of m is the mode of the distribution, and this
value, in conjunction with t;he PERT assumption that the standard
deviation of the distribution is 1/6 of its range, serves to determine
the two parameters, the exponents<and f.

It is often convenient to consider only the mean and variance of

a distribution, rather than the entire distribution. Sometimes these

*
All time estimates are based on the use of a given, unchanging
level of resources.

*%
There are slightly different interpretations of the meaning
of a and b.

*K¥
The beta distribution so determined has parameters,=<andf,
around 2, 3, or k., (See Appendix C.)
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. two values determine a unique distribution, as in the case of a normal
dist.ri'bution. With other distributions, such as the beta, the mean

and variance alone do not determine a unique distribution. Even though
PERT deals with a beta distribution, it is convenient to characterize
the activity duration in terms of a mean and variance. The variance

is (b-a.)a/ 36 (the square of the assumed standard deviation). In general,
the determination of the mean involves the solution of a cubic equa-
tion. Values of the mean were calculated from the roots of cubic
equations, and in order to simplify the future calculations of activity
means, a linear approximation, (a+imtb)/6, to these values was made.

These expressions for the mean and variance are used to represent the

*
activity duration in all future PERT calculations.

ACTUAL ACTIVITY DISTRIBUTIONS

Although the PERT model makes specific assumptions about the form
of the activity distributions, the true dis’cributions** are unknown.
However, once an activity has been specified precisely, the distribution
of that ectivity's duration has, thereby, been determined (although the
distribution may be, and probably is, unknown) S 1o the extent of
the authors' knowledge, no empirical study has been made to determine

the form of activity distributions. Indeed, there would be many problems

*Although these two expressions were derived from & beta distribu-
tion, PERT is inconsistent about whether the activity durations are
‘now normally or beta-distributed. This inconsistency appears in the
original PERT report[k]. Appendix A of that report centers its dis-
cussion on a normal distribution (p. A2: "Each activity has a time.

The time is stochastic and normally distributed ...."), whereas Ap-
pendix B discusses the beta distribution (p. B6: "As a model of the
distribution of an activity time, we introduce the beta distribution

17

= .
The term "distribution" used in this Memorandum will include the
special case of a distribution with zero variance.

HEK
It may be argued that there is no objective distribution a
priori because of the nature of the PERT activities.
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commected with such a study, not the least of which would be the non-
repetitive nature of the activities. The choice of a particular dis-
tribution, such as the beta, while seeming rather arbitrary, has a
heuristic justification, since it possesses certain features which

an actual activity distribution could be expected to possess.

EXPECTED PROPERTIES OF THE ACTUAL ACTIVITY DISTRIBUTION

Although a distribution may be polymodal, it is reasonable to
expect that it is usually unimodal, since the probability that an
activity will be campleted in some small interval near the endpoints
of the range of the activity duration is generally smaller than the
probability that it will be completed in a similar interval at same
intermediate point. Furthermore, as the interval moves to less extreme
times and approaches some average, or most likely time, the probebility
that the activity will be completed in the interval should get larger
and spproach some maximm value.

Secondly, although the distribution need not be continuous, a
distribution with this property is appropriate in many cases, and
serves &5 a good approximation in others. Continuity reflects the
property that if an activity has a particular probability of being
completed in a certain small interval, the probability is only slight-

ly increased when the size of the interval is slightly increased.

Lastly, the property that the distribution touches the abscissa

.at two non-negative points, although also not strictly necessary, has

same merit. An activity can never be completed in a negative time.
Therefore, the probability that an activity will be completed in the

%*
closed interval from minus infinity to zero is zero. On the other

*Since the normal distribution assigns a positive -~ although
possibly very small -- probability to the completion of an activity.
in this range, it should technically be ruled out as a possible activ-
ity distribution.



small interval about the most likely time, m, is certainly positive.
‘Thus, it is not unreasonzble to postulate the existence of a point,

a([O,m), at which the distribution function, f(t), satifies: f£(t) = 0,

"tE[-oo,a); £(t)20, ‘bé[a,m). A similar point, b, can also be postulated,
*
vhere bE(m,oo] . These two points, along with continuity, guarantee

the third property.

POSSIBLE ACTIVITY-BASED ERRORS

Three possible sources of error (due to the PERT assumptions) in
the PERT calculations of activity means and variances will be considered:

1. The true distribution of an activity (and its mean and stand=
ard deviation) is probablybnot known. Given that the distribution is
continuous, unimodal, and that it touches the abscissa at two non-
negative points, how much of an error would be introduced into the
over-all PERT calculations of an activity mean and standard deviation
by the assumption that the activity duration is beta-distributed?

2, If it is assumed that an activity is beta-distributed, with
mean and standard deviation given by (a+lm+b)/6 and (b-2)/6, respec-
tively, what errors can be introduced into the PERT calculations if the
estimates of a, m, and b are inexact?

3+ Finally, if it is assumed that an activity distribution is a beta,
and that the expression for this function is known exactly, what errors
are introduced into the PERT calculations by the assumption (o= (b-a)/6

and the estimate t_ = (a+km+b) /6, if a,m, and b are known exactly?

*The beta is an example of a distribution where b is finite. The
gammz is an example where b is infinite.
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POSSIBLE ERROR INTRODUCED BY THE ASSUMPTION OF A BETA DISTRIBUTION

If the actual activity distribution possesses the aforementioned
three properties (i.e., unimodality, continuity, and two non-negative
. abscissa intercepts), then the beta approximation to this distributicn
is at least correct with regard to its general shape. Different dis-
tributions, which merely possess these properties, however, could well
have very different means and variances; and hence -- at least theo-
retically =-- an imprecise knowledge of the actual activity distribution
could contribute significantly to any over-all error between the PERT-
calculated mean and variance of an activity and its actual mean and variance.

Consider, for example, three distributions shown in Fig. 2. Each of
these distributions possesses the three properties discussed previously;
and since the use of a bets distribution, bl’ préceeded from intuitive
grounds -- from the belief that the actual activity distribution should
satisfy the aforementioned three properties -=- then it can be assumed
that D, and D, can also be possible activity distributions. With this

2 3
assumption, the extent and direction of any possible errors due to the

f(t)

0] m i

Fig. 2 -- Examples of Possible Activity Distributions
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use of a beta distribution can be determined. The three distributions
have the range [0,1]* and have their modes at m.

| Dl represents a beta distribution with a standsrd deviation equal
to 1/6 of the range (the standard PERT assumption), D, represents a

épasi-unifonm distribution. Therefore, its mean and standard deviation
will be very close to 1/2 andV1/12 , respectively. D is & quasi-delta
function with its mean very close to its mode and its standard devia-
tion very close to zero. Although D2 and D3 are extreme examples of
possible activity distributions - and hence rather unlikely -~ they
serve to put bounds on possible errors in the calculation of an activity
mean and standard deviation due to the use of an incorrect activity
distribution.

It was found that this error depended upon the mode., If the mode
was allowed to vary between zero and one, it was found (see Appendix A)
that the PERT=~calculeted mean and standard deviation could be in error
by as much as 33 per cent and 16 per cent of the range, respectively.
It was also found that the errors could be both positive and negative;
and, thus, it could be expected that some degree of cancellation would
occur when the individual activities were combined in series in a net-
work. The extent, and the net result of such cancellation, are dependent
on three factors: (1) the number of activities in series; (2) the
ranges of the activity durations; and (3) the skewness of the activity
distributions. If, in a network, there are & large number of activities

in series, and if thelir ranges are sbout equal, then a relatively high

*

Zero and one were chosen as endpoints of the range for computa-
tional ease., The results, expressed as a per cent of the range, can
be extended to an arbitrary range[a,b].



degree of cancellation could be expected (assuming that the extent and
direction of the skewness of activity distributions are arbitrary). A
net error, equal to the sum of the worst positive and the worst negative
possible errors, has been calculated for this case. The values of the
net error in the mean and standard deviation are 17 per cent and 4.k
per cent of the range, respectively.*

It can be noted that in practice, however, the skewness of the
activities tends to be biased to the right** and that the range of
activity durations can often differ by an order of magnitude. Moreover,
many networks have a large number of activities in parallel, thus of-
fering no chance for error cancellation. For these reasons, there msy
be little cancellation of the above errors.

These errors, although possible, were felt to be a misleading rep-
resentation of the errors that could be expected in general, since the
extreme errors were found vhen the mode was close to the endpoints of
the range, whereas the mode is rather centralized in practice. Thus,
the possible errors in the mean were also calculated for modal values,

m, such that I%-m ¢1/6. 1In this case, the PERT-calculated mean could

be off from the actual mean by about 10 per cent of the range; and the
sum of the worst positive and the worst negative errors =-- or the net

error -- was found to be about 5 per cent of the range.

*
Note that the net error might be biased since 1/6 is not in the
middle of the total range of possible values the standard deviation

might assume (O¥1/12 ), and thus the PERT-assumed standard deviation
might be too low in general.

*%
The mean is to the right of the mode.



POSSIBLE ERROR IN THE THREE TIME ESTIMATES

Even if the random variable representing the duration of an ac-
tivity is assumed to be beta-distributed, it is highly unlikely that any
prbcedure could be devised to determine the exact paraméters of tﬁe
Vdistri'bution, ‘since, ultimately, any such procedure must rely on human
estimates.* Thus it is desirable to determine the contribution to the
error in the PERT-calcﬁlated mean and the PERT-assumed standard devia-
tion resulting from the PERT-estimating procedure itself.

In order to determine the magnitude and direction of possible
errors in the estimates, it ies assumed that the values a,m, and b are
the actual values of the lower bound, mode, and upper bound, respectively,
of a beta distrivution. The estimates of these values are ta, tm’ and
tb and it will be assumed that they could be incorrect to the follow-
ing extent: 0.8a¢tSl.la; O.9mét €1.lm; O.9b$tb$l.2b.** This is

depicted in Fig. 3.

f(t)

r r il |
L ag d L md L b J
r—ta——| th—| I‘tb—l

Fig.e 3 == Beta Distribution with Assumed Errors
ina, m and ®

*
In the case of a repetitive activity, it might be possible to

dispense with human estimates altogether; but as was previously pointed

out, very few of the activities handled by PERT will be of this nature.

These intervals are based on discussions with managers having
experience with PERT techniques. If the estimates are further in
error, the absolute error in the mean and standard deviation will be
increased.
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The sensitivity of the PERT expressions t_ = (a+4m+b)/6 and
q = (b=a)/6 to incorrect estimates of a, m, and b can be seen from
the data in Appendix B. Table 1 gives these results for values of

a, b where b = 2a.
Table 1

RESULTS OF IMPRECISE TIME ESTIMATES

Worst Possible Error Net Error
{% of Range) (% of Range)

Standard Standard

Mode Mean Deviation Mean Deviation
a 15.0 10 1.6 5
a+(b-a)/k 16.7 10 1.6 5
a+(b-a)/3 16.9 10 1.6 5
a+(b-a)/2 18.3 10 1.6 5
a+2(v-2)/3 19.5 10 1.6 5
a+3(v-a)/4 20.0 10 1.6 5
b 21.7 10 1.6 5

Although the worst possible absolute error in the mean runs be-
tween 15 per cent and 22 per cent of the range for b = 2a, the net
error (sum of the worst positive and negative errors) is only 1.6 per
cent of the range. Here, then, the possible effects of cancellation
are significent.

POSSIBLE ERROR DUE TO THE STANDARD DEVIATION ASSUMPTIONS AND THE AP-
PROXIMATION OF THE MEAN

Appendix C shows that the assumption J_ = (v-8)/6 and the approx-
imation t_ = (a+4m+b)/6 can introduce absolute errors in the mean and
standard deviation as great as 27.8 per cent end 12.1 per cent of the

*
range, respectively. These high values -~ especially that of the

%, 1
The range of the activity duration was agein assumed to be {O, 1 _] .
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21/6. For

mean -- are due to very unlikely values of the mode:|3-m

€1/6, the above errors reduce to

values of the mode satisfying | z-m

vll.l per cent and 12.1 per cent of the range. If partisl cancellation
can be assumed, these errors will be further reduced (to about T per

cent and 4 per cent of the range, respectively).

SUMMARY OF THE ACTIVITY SECTION

As has been shown, the three factors discussed previously can each
cause absolute errors in the PERT-calculated mean and the PERT-assumed
standard deviation on the order of 30 per cent and 15 per cent of the
range, respectively. The possible error due to one of these factors
- the estimates of a, m, and b -- was based on the assumption that
these estimates would be incorrect to only a certain extent, i.e.,

+ 10 or 20 per cent of the range. Although these figures are thought
to be conservative,* the degree to which the estimates of a, m, and b
are imprecise will vary with each individual activity. Thus, the errors
in the mean and standard deviation due to imprecise estimates will
likely be larger than the results obtained from the calculations in
this Memorandum (20 per cent, 10 per cent).

On the other hand, the errors in the mean and standard deviation
can either be positive or negative, so that it can be assumed that some
degree of cancellation of each of these errors will occur when all of
the activities are combined in a network.** Furthermore, since many

of the cases considered =~ although theoretically possible == are rather

ey :
Unless, of course, the individuals are working to schedule, i.e.,
they try to meet their estimate of m or the PERT-computed mean, te.

**An interesting experiment would be a Monte Carlo analysis of
the effects of the three types of activity errors on an actual network.
This might give same clue to the extent of possible cancellation of
activity errors, since the individurl activity errors themselves would
be known.
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unlikely to occur in practice, the possible errors in the mean and
standard deviation were calculated from cases which are more likely
to occur in practice (and assuming some cancellation in the network).
Under these conditions, the errors may be reduced from the 30 and

15 per cent stated above.

ADDENDUM

It is interesting to note that == except for the last type of
error discussed -=- the previous error analysis would have yielded ap-
proximately the same results if PERT had employed & triangular distri-
bution instead of & beta distribution in its stochastic model. There
would be no econtribution to the error in the mean and standard devia-
tion (or variance) from the third factor, since for a triangular dis-
tribution, the mean and variance are given exactly by t_ = (a+m+b)/3
and Us = I:(b—a.)2 + (m-a)-(m-b)] /18. (See Appendix D.) These are the
values that would be used in the calculation of the mean and variance,
rather than the approximations used now.

Furthermore, the possible range of the variance of & triangular
distribution is more centralized than is the PERT-assumed variance of
(b-)2/36 in the total range of possible variances O to (b-a)2/12
(again assuming the three properties discussed previously). However,
if it is known or observed in practice that ectivity variances cluster
more sbout (b-a)2/36 than about (b-a)2/18 to (b-a)>/2k (the range of
possible variances of a triangular distribution), then the use of a
beta over & triangular distribution would be supported on this point.

However, when the mode and the range of & triangular distribution

are specified (for exsmple, by three time estimates) the entire
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distribution is then determined ~- and so, of course, the variance is
also determined. This is not the case for the class of beta d.ié-
tributions: there are an infinite number of unimodal beta distribu-
tions with the same range and mode (their variances lie between O and
(v-2)%/12). Thus, the class of beta distributions is more flexible
than the class of triangular distributions since the former can handle
more activity data. PERT, however, does not take advantage of this
added flexibility, since it assumes that o'i = (b—a)2/36 in all cases.
With this assumption, a beta distribution is also campletely determined
when the range and mode are specified. Thus, since there is no &
priori justification for either function as an activity distribution,
and since the actual variances of activities ere unknown, the fact
that the mean and variance can be given exactly for a triangular
distribution meke it an equally meaningful and more manageable dis-

tribution.
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ITTI. THE NETWORK

NETWORK CONSIDERATIONS

Up to this point, this study has been on the level of the
individual activities within a PERT network. Now attention will be
directed to the network as a whole. After the mean and variance of
each activity have been computed, they can be used to determine some
measure of the criticalness of all activities taken together and to
aid in the estimation of the completion time distribution of the
whole project.*

As it has been shown, the possible errors in the individual
activities could, by themselves, cause errors in the calculation of
‘a project mean and variance, although the extent and direction of
these errors might be difficult to determine. However, even if
the data (i.e., the mean, variance, and distribution) that PERT
obtains for each activity are correct, significant errors can still
be introduced into the calculation of a network mean and variance.
As a result, probability statements concerning the various completion

times of a project can also be incorrect.

CRITICAINESS

To obtain a measure of the criticalness of each activity, PERT
uses the critical path concept discussed earlier. Criticalness of an
activity is a measure of the relative importance of the activity to the
on-time completion of the over-all project. Some activities can ob-

viously be delayed without delaying the project, while others cannot.

*¥Or the distribution of a selected sequence of milestones.
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In PERT, only the means of the activity durations are used in
determining the critical path. The stochastic element -- the var-
iance of the activity duration == is not incorporated. Thus, the
model is reduced to & deterministic form. In a deterministic model
(vhere no uncertainty in the activity durations is recognized) the
longest path can be calculated by simple addition.

In e stochastic model, each path has a specific probability (in
general, nonzero) of being the longest path at any particular time.
However, if the network is large, the probebility that any given path
is the critical one may be very small., (An analogous situation would
be one where a coin was tossed 1000 times. The most probable number
of heads is 500, but the probability of getting exactly 500 heads is
very small,) Thus, the most probable critical path may occur only rarely,
and an activity that has a high probability of being on a longest path
may not be on this most probable critical path. The following example

nay clarify these points.

Fig. 4 == PERT Network Showing Activities
with Associated Times
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Consider the network depicted in Fig. 4, with the customary time
estimates of a, m, and b shown beside the corresponding activity.
Using the PERT-calculated mean times (given in the circles below the
activities), the PERT procedure would choose ABDF as the critical path
because it has the maximm sum of means (13). If the activity time
estimates are assigned equal weight, for computational simplicity,
calculations (see Appendix E) will show that path ABF has the proba-
bility 0.33 of being the longest path, and this is a larger proba=-
bility than any of the other three paths. The probability of each
activity being on the longest path is: AB, 0.63; AC, 0.48; BF, 0.33;
BD(F), 0.30; CF, 0.26; CE(F), 0.22. Note that although path ABF is
the most probable longest path, it does not contain activity AC which
is more critical than activity BF, which is cn this most probable
longest pa‘bh.*

This example suggests that a critical activity concept may be
more valid in & stochastic model than a critical path concept, es-
pecially since the PERT-calculated critical path is not even neces-
sarily the most probable longest path. The computation of some sort
of index of criticalness, such as that indicated above, would sup-
plement (or possible replace) the slack determination, as done in the

present PERT procedure.

PROJECT DISTRIBUTTON -~ PERT AND ACTUAL

The PERT procedure for obtaining the project completion time

distribution may be stated as follows. Assume that in a network

¥
Similar results could be obtained using distributions other
than & uniform, such as & beta distribution.



there are n different paths Pl, Pe,... ’ Pn’ vhich gormect the origin
node and the terminal node.¥* Iet Pys Dpseses P denote the n randonm
| variables which represemt, respectively, the durations of the n paths
Pl’ P2,..., Pn' One of these random variables, say Py» will have an
expected value vhich is not less than the expected value of the other
n-1 variables, Py p3,..., P, Let the expected value and the var-
iance of p, be E(Pi) andc‘i , respectively. Thus, E(pl) is the ex-
pected or mean duration of path Pl, and o‘i is its variance,

PERT now uses E(pl) and O—i as the project mean and variance,
and assumes that the project duration is normally distributed and
given by F_(t) = K exp(- Ec-E(pl)] 2/20;2). Path P, is called the
eritical path.*¥* In actuslity, the project distribution is given
by F(t) = H(m%x piS t). Clearly, the expected value of the random
variable u = WEX Dy is not less than the expected value of any one
of the pi. Hence, the PERT-calculated mean is generally less than,
and never greater than, the true project mean. In general, the PERT-
calculated variance is greater than the actual variance., If the
distributions are symmetric, the variance of the random variable u
will be less than any of the o‘f. This result is shown for two identical
distributions in Appendix F, and can be extended to the general case.
However, if the distributions are considerably skewed to the right
(such as e't) the reverse may be true.

In order to determine the error in the mean and variance made

by PERT in a particular network, it is necessary to calculate the

¥
Some of these paths mgy have & portion of their activities in
common.

*%
If there is more than one path with the largest expected value,
PERT labels them all as critical paths, and uses the one with the
largest veriance as Pl.



actual project means and variances from the data of each of the
activities. The procedure used in this study to obtain the project
mean and variance relies exclusively on the calculation of an exact
project distribubion from the individual activity distributions by
analytical methods.* Buch a calculation is extremely difficult in
all but a few simple networks, regardless of the distributions on
the activities themselves. These difficulties are discussed in
Appendix G.

To get & feeling for the errors PERT makes by assuming that the
project mean and variance are given by E(pl) and Oi, respectively,
various simple networks are analyzed both analytically and according
to the PERT procedure.*¥* Since calculations with beta distributions
and other combinuous distributions are rather lengthy, the distribu-
tions used in the network analyses which follow are, in general, dis-
crete. Somes results, however, have been obtained for the befa, uni-

form, and normal distributions.

EXAMPIES OF NETWORK-BASED ERROR

The possible errors in PERT networks depend on the particular
network configurations; so generalizations can be made only to a
very limited extent. The examples studied in this paper are of a

very simple form because of the compubtational problems discussed

*An alternative method, which could provide a close approxima-

tion to the project mean and variance, would be to use Monte Carlo
- techniques.

**Tt is assumed thet the individual activity distributions are
known exactly. This allows the determination of the errors made on
the network level alone, without confounding them with possible
errors made in the activities.
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earlier, and because larger networks are really no more "typical”
than small networks. They were chosen because they possessed some
of the properties that may cause significant errors in regular PERT
networks. The emphasis is on the factors causing the errors, the
direction of the errors, and the magnitude of them. The subsection
on network decomposition discusses the possible application of the

results to much larger networks, such as those found in practice.

EXAMPLES -- SIMPLE SERIES AND PARALLEL

The Pirst network configuration to be considered -- a simple
path -~ is one in which PERT makes no errors in calculating the pro-
*
Ject mean and variance., This case, depicted in Fig. 5, will actually

occur when there is one path through a network that is so much longer

Fig. 5 -- Serles Path

than any of the other paths that all other paths have no effect what-
soever on the determination of the project completion time distribu-
tion. The Central-Limit Theorem is applicable here, and the correct
way to obtain the project mean and variance is by adding the activity
means and variances along this (eritical) path, the same procedure

that PERT uses. Thus, whenever the network reduces to one very much

*The path may be viewed as containing a large nunber of inter-
mediate nodes.
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longer* path, the only PERT errors that can occur will be on the
level of the individual activities.

Consider next the case where there are two paths of approxi-
mately the same length through the network. This results in the
parallel configuration shown in Fig. 6. One may wish to view a large
mmber of intermediate nodes on each path (however, there cannot be

any connection between any of the nodes of the two paths). The PERT

O
Fig. 6 -- Two Paths in Parallel

procedure will take as the mean and variance of the project, the sum
of the means and the sum of the variances along that path with the
largest mean. However, if the other path has a mean very close to
the first (for a limiting case assume they are equal), the activities
on this second path (the one PERT ignores) will also be a major
determinant of the project completion time distribution.

As an example, if paths** A and B are beta-distributed on the
interval [0,1] with parameters®=[ = 1, then each distribution has
a mean at 1/2. However, the mean of the maximm time distribution

XX
of the two distributions is not at 0.50, but rather 0.63. (See

*The meaning of "very much longer" will be discussed in the sub-
sections on the effect of slack and on network decompositione.

*%
A path may be a single activity.

The distributions are also independent, since it was assumed
that there is no cross connection between paths.
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Appendix H.,) Similaerly, if the distributions are assumed to be
.normally and identically distributed,¥* with mean‘p.and standard
deviation { , the mean of the maximum time distribution is

2 + (T/R{—.

‘ If a third path is present that is approximately as long as the
other two, and has no cross connections with them, then there are

~ three independent paths in parallel, and the error in the PERT-cal-
bculation mean increases. For example, in the beta distribution
example above, the presence of a third path, with the same distribution
ags the other two, would raise the mean of the waximm time distribu-

tion to 0.69,

EXAMPLES -- PARALLELS AND CROSS CONNECTIONS

As indicated sbove, the more parallelism in a network, fhe larger
will be the error in the PERT-calculated mean, other things being
eqﬁal. However, there is a counter-balancing factor -- correlation --
which tends to offset the error resulting from parallelism. When
activities are common tc two or more paths, the paths are correlated.
Thus, when one path has & very long duration, other paths which have
activities in common with this first path are likely to have a long
duration also.

The extent to which these two factors tend to compensate depends
“on the nebtwork configuration. BSince parallelism tends to cause the
’actual mean to be larger than the PERT-calculated mean, the more

*The distributions are also independent, since it was assumed
that there is no cross connection between paths.
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parallelism will result in a lé.rge: discrepency. On the other hand,
the more common are the activities in the network, the greater will
be the tendency for the PERT-calculated mean and the actual mean to
be closer together. A comparison between a parallel configuration and
a common activity configuration is given in the following example,
Consider the four-event example in Fig. T. There are four activ-
ities, and the particular discrete distribution used on each activity

can be identified by the corresponding mean on the network diagram.

f(t)
1/2
1/4 .
t
I 2 3
08
1/2
1/4
2 4 6 i

Fig., 7 == Four-event Parallel Network

There are two paths, ABD and ACD, both having & mean length of 6.%
The mean of the maximm time distribution is 6.89 (see Appendix I).
Thus the error in the PERT-calculated mean is 12.9 per cent of the
actual mean.

There are two possible ways a third path, with & mean length of
6,* may be created by adding one more activity. In one case the path
may be completely independent of the other two paths, thus resulting

in a third parallel element, AD, as depicted in Fig. 8(a). Alternatively,

These are extreme cases since &ll paths have the same expected
length.
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an activity BC can be added with a mean time of 2, thus creating path

ABCD, shovm in Fig. 8(b). In both cases there are three paths, all

(2) Three Parallel Paths (v) Cross=-Connected Paths

Fig. 8 =- Three~Path Networks

of mean length 6, and the network has four events and five activities.

The addition of the third path in parallel (Fig. 8(a)) leads to
an increase in the deviation of the PERT=-calculated mean (still 6)
fram the actual mean. The actual mean of the network in Fig. 8(a) is
7.336; thus the error has increased to 18.2 per cent.

Figure 8(b), on the other hand, is a network configuration where
there is a cross connection between two parallel paths. Since there
are three paths, one would expect & larger error than in a similar
network with only two paths (such as Fig. T), although not as large
an error as in Fig. 8(a), where the three paths are in parallel. The
correlation (resulting from the common activities) in the network
of Fig. 8(b) does indeed have the effect discussed, and the mean of
the maximm time distribution lies between these two bounds, 'beiné

T.0T4k. The error as a per cent of the actual mean is 15.2 per cent.



EFFECT OF SIACK TIl NETWORKS

The examples given in the two previous sections are extreme
cases since all the paths have the same expected duration -- hence,
they are all critical paths. If the durations of some paths are
shorter than the duration of the longest path, their effect on the
project mean and variance would not be as great. However, if they
have a mean duration very close to the mean duration of the eritical
path, they would not be critical but they would have an effect almost
as significant as the examples of the previous sections. The follow=-
ing examples shown in Fig. 9 indicate the effect of slack in a path
length.

The simple network has only two paths, ABC and AC. All activi-
ties are assumed to be normally distributed with variance equal to 1,

and the appropriate mean given on the diagram. Il may be noted from

Fig. 9 -- Networks with Slack Paths
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the diagrams that various lengths were assumed for paths ABC and AC,
ranging from both of them being of equal length, to path AC being
~only l/ll- the length of path ABC. Table 2 summarizes the results.

Further computational detail is furnished in Appendix J.

Table 2

SUMMARY OF RESULTS FROM FIGURE 9

. . path AC
Ratio of lengths: path ARC 1/1 3/4 1/2 1/k
PERT-calculated mean 4 4 6 8
Analytically-calculated mean 4.69 4,30 6.03 8.00

Per cent error
(PERT from actual mean) -17% -8% -0.5%}| -0.00%

PERT-calculated standard .
deviation 1 or L.4ah | L.hib | 1.bak| 1.hak

Analytically-calculated
standard deviation 1.015 1,149 | 1.364 | 1.h1k

Per cent error
(PERT from actual std. dev.)| -1% or +39% | + 23% | + 4% |+ 0.00%

This example indicates that the deviation of the PERT=-calculated
mean and variance from the actual mean and variance may be quite large
when the paths are about equal in length, but the difference decreases

substantially as the path lengths become farther apart.

FOUR-EVENT EXAMPLE -~ CONTINUOUS DISTRIBUTIONS

If a fourth node and two connecting activities are added to the
network configuration just studied for the effect of slécic, the network

of Fig. 8(b) may be obtained. This network, reproduced in Fig. 10,



Fig. 10 == Four-Event, Cross-Connected Network

has same desirable properties. It has three paths, maximms at two
nodes, and is the smallest network that has two activities in common
between two paths (activities AB and CD are common to two paths).
Various continuous distributions have been placed on the activi-
ties of this network. Complete results have pnly been obtained for
the uniform and normal distributions. In addition, results, which are
in agreement with the uniform and normal, for other networks have been

obtained for the gammsa, beta, sine, and a few polynomials.

(2) Uniform (b) Normal

FPig. 11 == Four-Event, Cross-Connected Networks
with Continuous Activity Distributions

The means of the activity distributions are all equal and are
shown in Fig. 11. It shouid be noted that the critical path, ABCD, has

& duration half again as long as the duration of either of the other
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*
two paths; so the calculations will not give an upper bound, but

rather will represent an intermediate situation in terms of possible
error. The results for the examples of Fig. 11 are given in Teble 3.

The details of the calculations are found in Appendix K.

Table 3

SUMMARY OF RESULTS FOR FIGURE 1l

Type of Distribution Uniform | Normal
Activity mean duration 0.50 1.00
PERT-calculated project mean 1.50 3.60
Analytically-calculated project mean| 1.59 3.48 '
Per cent error

(PERT from actual mean) 5.7 13.8

FOUR EVENT NETWORK AND ITS EXPANSION -- DISCRETE DISTRIBUTIONS

The examples of the previous section will now be expanded. In
order to simplify calculations, discrete distributions will be used.
The mean times and the corresponding discrete distributions are given
in Fig. 12.

f(t)

3/5

1/5

f(t)

1/5
! 3 5

Fig. 12 -- Four-Event, Cross-Connected Network with Mean
Times and Corresponding Discrete Distributions

*As they would if all paths had the same duration.
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Note that in this example, the noneritical paths have durations
5/6 as long as the critical path, in contrast to 2/3 as long for the
continuous ceses above. The results for this network, given in Table
L, can be seen to be similar to those of the continuous cases. Com-
putational details are given in Appendix L.
Table b

SUMMARY OF RESULTS FOR FIGURE 12

Event Event Event

Four Event-Five Activity Network B C D
PERT-calculated mean 2 4 6
Analytically-calculated mean 2 k.23 6.42
Per cent error

(PERT from actual mean) 0 =54 Tk
PERT-calculated standard deviation .63 .89 1.10

Analytically=-calculated standard
deviation .63 87 1.03

Per cent error
(PERT from actual standard
deviation) 0 +243 +6.8

If another event, E, 1s added to the network, along with two con-
necting activities, the configuration shown in Fig. 13 is obtained. The
distribution of the activity, BE, with the longer duration is given

beside the network.

f(t)

3/5
/5

Fig. 13 -- Expansion of Network in Fig. 12 to Five Events
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Table 5 summerizes the results.
Table 5

SUMMARY OF RESULTS FOR FIGURE 13

Five Event-Seven Activity Network Event E
PERT-calculated mean 8.0
Analytically-calculated mean 8.T7T
Per cent error

(PERT fram actusl meen) -9.5
PERT=-calculated standard deviation 1.26
Analytically-calculated standard deviation 1.25

Per cent error
(PERT from actual standard deviation) +0.8

Finally, if the origin and terminal nodes are connected, i.e.,
activity AE is added (with the distribution given below), the error
in the PERT-calculated mean goes up even more. The network is shown

in Fig. 14 and Table 6 sumarizes the results.

Fig. 14 -- Expansion of Network in Fig. 13
to Include Activity AE
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Table 6

SUMMARY OF RESULTS FOR FIGURE 1k

Five Node=-Eight Activity Network Event E
PERT~calculated mean 8.0
Analytically-calculated mean 9.23
Per cent error

(PERT from actual mean) -13.3
PERT=-calculated standard deviation 1.26
Analytically=-calculated standard deviation 1.39

Per cent error
(PERT from actual standard deviation) 9.4

Note that throughout this example, the error in the PERT-calcu-
lated mean has increased as the network has expanded. In addition,
one may observe that the error in the PERT=-calculated standard devia-
tion changed sign (i.e., it went from being larger than the actual

standard deviation to being smaller).

COMBINATIONS OF SIMPLE SERTES AND PARALLEL

The most elementary series and parallel elements discussed earlier
will now be studied again. Combinations of these elements will be taken.

Consider the network in Fig. 15, which is a simple connection of

e S

Fig. 15 - Simple Series~Parallel Network
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a series and parallel element.* As noted previously, no error will
be made in caumbining activities along the series element. However,
the two paths comprising the parallel element lead to error in the
PERT calculation. The error in the whole network is at some inter-
mediate value between these two extremes. The location of this inter-
mediate value in the possible interval of error depends on which element
is the dominant one. I the series element is dominant, the parallel
error would not have much effect, and the net error in the PERT-cal-
culated mean for the whole network will be small. However, if the
parallel combination is the dominant one, the error in the whole net-
work may be nearly as large as it is in the parallel configuration
alone.

Now suppose that two identical series-parallel combinations are
joined together in series. The per cent error in the total will be
the same as the per cent error in either individual one. This con=
figuration is shown in Fig. 16(a). However, if in another arrangement,
three identical combinations are joined in a series-parallel arrange-
ment, as shown in Fig. 16(b), the error in the total will be greater
than the error in any of the three individual series-parallel elements.

Some numerical results have been obtained when simple discrete
distributions were placed on the activities (see Appendix M). The
results are not surprising. When there is no error in the series

element, and a 19 per cent error in the parallel element, the error

*It is realized that this representation is not in accordance with
PERT networking techniques since a predecessor event and successor event
uniquely determine only one activity. However, throughout this Memo=
randum, an arc may be considered as the resultant of mmerous activities
or subnetworks. The purpose of this type of representation is to high-
light the symmetry of the particular network configuration.
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in the mean of the whole network is around one-half of 19 per cent =--
actually it is T per cent (slightly less than half since the series
element has a slightly lerger mean).‘ Taking two of these combinations
together, as in Fig. 16(a), still gives a per cent error in the mean of
7 per cent. Three of them, in a Fig. 16(b) configuration, produce an
error of 14 per cent. By a similar procedure one might be able to -
determine the approximate error in simple series and parallel com=
binations, if the error in the individual elements were known along

with the various relative values of the corresponding means.

(a) Arrangement of Two Identical Series-Parallel Combinations

(b) Arrangement of Three Identical Series-Parallel Combinations

Fig. 16 -- Series-Parallel Arrangements

PROBABILITY STATEMENTS

At this stage, it should be obvious that the PERT probability
statements concerning the various possible project completion times may
be considersbly in error. Since these statements are based on a normal
distribution having the PERT-calculated mean and variance as parameters,
and since it has been shown that these PERT calculations can be ser-
iously in error, considerable doubt is cast on the validity of these

statements. In addition, the normal approximation to the project
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distribution may be a poor one, since the parallelism in a network

will tend to skew the distribution to the left.

DECOMPOSITION OF NETWORKS

Although the networks analyzed in this Memorandum are very small,
the results obtained are applicable, to some extent, to much larger
networks. Most of the examples here have dealt with networks whose
activities were all critical (i.e., they all made some contribution
to the project distribution). However, in large networks many activ-
ities are not of & critical nature. Dropping all of the noncritical
activities from consideration may reduce the network substantially.
Another procedure would be to try to identify simple series and parallel
elements in & network and to collapse parts of the network on the basis
of the network configuration alone.

Examining this latter procedure first, one may find that some
networks, or at least parts of them, are composed of simple series and
parallel elements with few cross comnections. Two activities in series
can be treated as one larger activity by adding the two durations.

Two activities in parallel cen be treated as one activity by taking the
maximum of the two durations. By such reduction, a large network can
possibly be broken down into a number of small networks for which ap-
proximate results are known. Then, since the effects of combining
errors in simple series and parallel arrangements are roughly known,

an estimate of the error in the whole network may be cobtained.

Unfortunately, this technique does not generally reduce the PERT
network very much because of the numerous cross connectlions. However,

if use is made of the time estimates given for each activity, and not
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just the network configuration alone, many noncritical activities can
be eliminated from consideration. One method would be to compare the
sum of the minimum times (i.e., optimistic estimates) of all activities
along every path to a given node with the sum of the maximum times
(i.e., pessimistic estimates) of all activities along every path to the
same node. If the sum of the minimum times along one path is greater
than the sum of the maximum times along another path, then the latter
path cannot (by the definition of these times) be a determinant of the
time distribution at that node. The latter path can thus be disregarded -
in the computation of the distributlion at that node. The activities
that are unique to this latter path can be removed from the analysis

of distributions at the given node and all nodes further along.

SUMMARY OF NETWORK EXAMPLES

The examples of this section demonstrate the possible sources of
error in the PERT calculation of the project mean and va.rita.nce.;e They
should also provide an indication of the magnitude and direction of
the possible error in same very basic network configurations. The
errors in the PERT-calculated mean and standard deviation for the
examples studied were around 10 to 30 per cent.

The PERT-calculated mean will always be biased optimistically, but
the PERT=-calculated variance may be biased in either direction. Pre-
cise statements about the magnitude of the errors, however, cannot be
made since errors in the project mean and variance vary with different
network configurations. If there is one path through a network that
is significantly longer than any other path, then the PERT procedure

for calculating the project mean and variance will give approximately

*¥Assuming that individual activity distributions are known exactly.
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correct results. However, if there are a large number of paths having
approximately the same length, and baving few activities in common,
errors will be introduced in the PERT-calculated project mean and
variance. The more parallel paths there are through the network, the
iarger will be the errors. If, however, the paths share a large number
of common activities, the errors will tend to be lower. The extent

Yo vwhich these two factors compensate depends on the particular net-
work configuration.

The errors in the PERT-calculated project mean and variance will
tend to be large if many noncritical paths each have & duration ap-
proximately equal to the duration of the critical path. However, the
more slack there is in each of the noncritical paths, the smaller will
be the error.

Because of the possible errors in the PERT-calculated project mean
and variance, there may be correspondingly large errors in the proba-
bility statements that are based on these parameters.

It is suggested that for & stochastic model (such as PERT) a
eritical activity concept is more valid than, and probably as useful
as, a critical path concept. This is based on the fact that the PERT-
calculated critical path does not necessarily contain the most critical
activities.

Networks very often contain many activities that are not of a
critical nature., Eliminating these activities from consideration may
reduce the network considerably without affecting to any large extent
the final results. In general, if the sum of the minimm times aiong
one path is greater than the sum of the maximum times along a parallel
path, then the latter path will not influence the caleulation of the

time distribution at the common end node.



Appendix A

POSSIBLE ERROR INTRODUCED BY THE ASSUMPTION OF A BETA DISTRIBUTION

(1)
Range: [0,1]

D, Mode: 0<m<$3

D (PERT) beta distribution with mode at m and variance 1/36.

D Quasi-uniform distribution which can be made to have a mean
and variance as close to 1/2 and 1/12, respectively, as desired.
D Quasi-delta function which can be made to have & mean and

variance as close to m and O, respectively, as desired.

Mean:

Worst absolute error, as a proportion’ of the range.
max [|(tm+1)/6 - 1/2, |(4m2)/6 - m
nex [(bm-2)/6 [, | (1-2m)/6] ],
max [[(20-1)/3], |(2-20)/6]],
(1-2n)/3.

Net error (sum of worst positive error and worst negative error)

)
1

&s a proportion of the range.
[2(2n-1) + (1-2m)|/6 = (2u-1)/6,
- (1-2m)/6.

*
To convert from proportion of the range to per cent of the range
multiply the former by 100.
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Variance:

Worst esbsolute error as a proportion of the range.
ma.x“l/le - 1/36|, |o - 1/36”,
1/18.

Net error as a proportion of range.
1/12 - 1/36 + 0 - 1/36,
1/36.

Standard Deviation:

Worst absolute error as a proportion of the range.
maxl V1/i2 - 1/6, 0 - 1/6 |,
1/6 = 0.167.

Net error as a proportion of the range.
=V1i/12 - 1/6 + 0 - 1/6,
= =0.04k,
Since D2 and D, are unlikely distributions a comparison is

3
between a triangular and a beta distribution.

£(t)

made
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Beta (PERT) Trian
Mode Mean Variance Mean Variance
1/2 1/2 = .500 | 1/36 = .028 1/2 = .500 1/2k = .ok2
1/3 7/18 = .389 1/36 = .028 4/9 = Jllh 7/162 = .Ok3
1/k 1/3 = .333 1/36 = .028 5/12 = 417 13/16¢18 = .OU5
1/6 5/18 = .278 1/36 = .028 7/18 = .389 31/18¢36 = 048
1/12 2/9 = .222 1/36 = .028 | 13/36 = .361 | 133/18:14h = .051

The means of the triangular distribution are all greater than those of

the beta distribution for 0<m<3.

amount for modal values = le-m.

They are less by a corresponding
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Appendix B

POSSIBLE ERROR DUE TO IMPRECISE TIME ESTIMATES

Let a,m, and b be the true values for the least, most likely, and

greatest times at which the activity could be completed. Let a<m< 2,
Now consider: 0.8a¢ t,$1.1a
O.9astm$l.lm vwhere a,m, and b are such
that t <t < .
0.9b <t $1.2b O N
Mean: Estimate -- t = (at+bm+b)/6

Worst absolute error as a proportion of the range.

s “(.8a+3.6m+.9b) - (a+lun+b), 'Ll.la+l|-.1+m+l.2b)-(a+hm+b) ’J
R 5 s % s
1 [a+lm2p

-0) bea :

Worst net error (sum of worst positive and worst negative errors)

as a proportion of the range.
1 [ -.2a-.1!-m-.1b+.la+.ll-m+.2b]
2’

b-a 6
= 1/60.
Standard Deviation: Assumption -- (= (b-a)/6

Worst absolute error as a proporation of the range.

1 “g.gb-l.la)-@ﬂ' lﬁl.zb-.Ba)-(b-a)I}
b-a 6 ) 6 ’

1 (e
30 \b-a |



Worst net error as a proportion of the range.
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= b-a
_1 (pea),
=% |b-a

Effect of mode:

Mode

a+2b

a+3b
T

*
Worst Absolute Error
Standard

Mean

a+2b
60{b-a)

Lhat3b
60(b-a)

112+10b
1802 b-a 5

3a+ib
60(b-2)

Ta+1lb

180(-a)

2a+5Db

60(b-a)

a+6b

60(b-2)

1

.

30

(

"

b-a

Deviation

b+a,)

1 [(.9b-l.la)-(b-2)+(1.2b-.8a)-(b-gl]’

*
Worst Net Error

Mean

1.6

Standard
Deviation

1l |[bta
() (ﬁ’)

"
"
"
"
"

”"

This table, which was derived from the results on the previous page,

shows that the value of the mode only affects the absolute error of

the mean.

¥*
As a proportion of the range.
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Appendix C

POSSIBLE ERROR DUE TO THE STANDARD DEVIATION ASSUMPTION

AND THE APPROXIMATION OF THE MEAN

Beta distribution: f£(t) = {Eﬁikéiﬂkli- £ (1-t)°

A
Mode: m=W.
Mean: t = X+ m(X+ 1)

e <+ 38 +2 T o+ 2m
2 (HA+1)(X+2)

: Lo(+l)2

2 2
Variance: Tg = E(x") - {E(x)} T (x+B 2]+ B+3) T (X+g+2)2

_(A+1)(B+1)
T LB+ (X+8+3)°

The table below gives values of the variance for various values

of and m.
=3
Mode | © 1/10{ 1/6] .29|1/2 | .70 3/4| 1 [1.21(1.82 2 6 | 10
1/2 | .083| .078 |.0T5 -063 .056 | .050 .036 | .028 | .07 | .011
1/3 .083] .076 {.0TL 054 Oou6 | 040 .028.026' .019 |.011 | .007
/4 | .083| .073 |.067 LOUT .038 | .032|.028 L019 | .013 | .007 | .005
1/6 .083 ] .068 }.059 .035 |.028 |.026 | .021 L011 | .008 | .00k |.002
1/12 |.083| .054% {.ok1}.028|.017 .011 | .008 ook |.002 |.001 |.001

Note that

.028 is the decimal equivalent of 1/36 (i.e., the PERT variance).
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Tables showing the PERT mean and variance and the actual mean and

* *
variance for greatest and least variances at each mode (as obtained

from the table on the previous page) for (1) an extreme case, and (2)

a reasonable case.

(1) Extreme Case PERT (2) Reasonable Case

Standard {Actual Standard Standard |Actual

Mode Variance |Deviation| Mean Mean |[Deviation | Variance|Deviation| Mean
1/2 |Greatest .083 .288 .500 | .500 167 .036 .190 .500
least Nk .105 .500 .017 .130 .500

1/3 |Greatest .083 .288 .500 | .389 167 .04o .200 R Tole}
Least .007 .08k .343 .019 .138 .363

1/4 |Greatest .083 .288 .500 | .333 W67 .032 179 .333
least .005 071 262 .019 .138 .300

1/6 |Greatest .083 .288 .500 | .278 .67 .035 187 .300
least .002 .045 ATT .021 L3145 .250

1/12 |Greatest .083 .288 .500 | .222 L1167 o' .202 .292
least .001 .032 .090 Noik .130 .188

*
Standard deviation is also shown.

**
"Reasonable" here refers to bete distributions whose parameters

A, p are near 1 or 2.
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Table showing the per cent errors between the PERT mean, variance,

and standard deviation and the actual mean, variance, and standard

deviation for values shown in the table on the preceding page.

Worst Reasonable Worst Reasonable
Absolute Error | Absolute Error| Net Error Net Error¥
Mode (% of Range) (% of Range) |(% of Range) | (% of Range)
1/2 | Mean 0.0 0.0 0.0 0.0
Variance 5.5 1.2 3.8 =0.3
Standard
Deviation 12.1 3.7 5.9 1.4
1/3 |Mean 1.1 2.6 6.5 -1.5
Variance 5.5 1.2 3.4 0.3
Standard
Deviation 12.1 3.3 3.8 o.k
1/% |Mean 16.3 3.3 9.6 =3.3
Variance 5.5 0.9 3.2 =0.5
Standard
Deviation 12.1 2.9 2.5 -1.7
1/6 |Mean 22.2 2.8 12.1 -0.6
Variance S5 0.7 2.9 0.0
Standard
Deviation 12.1 2.2 «0.1 -0.2
1/12 |Mean 27.8 7.0 15.4 3.6
Variance 5.5 1.3 2.8 0.2
Standard
Ibviation 12 ul 3 3 7 -1 .l.- -O . 2

*
The net error is the sum of the positive and negative errors.
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Appendix D
TRIANGULAR DISTRTBUTTION

2§ x-a2 2
= < —
———_ Y > asxsn b-o
=( b'z-mb-.}bc-a . m5x$b

£(x) = {

\

m b
2x(x=a, 2x(b-x
Mean 1;e —/ mea )(b-a dx +£ b-m)(b-a
a

g +m+5D

h 3

m b
2 2
. 2 2 2 X - 2x (b=x 2
Variance =0, = E(x%) - [E(x)] =[ '(Tn:é,%c'(%}ej ax +! ey & - E(x)5
a

_ (0-2)® + (m-a)(m-d)
18
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Appendix E

CRITICAINESS IN A STOCHASTIC MODEL

Consider the following network with the indicated times for each

activity.

Problem: Obtain a measure of criticalness of each activity.

PERT (deterministic) solution:

From the expression t_ = (a+lmib)/6, the activity means are calcu-
lated. These are shown in the circles on the network. The longest path
through the network using these means is ABDF with a mean length of 13.
This is the PERT (deterministic) critical path.

A possible stochastic solution:

The probability that an activity will be on the longest path would
serve as a measure of criticalness. If the activities are assumed to
be uniformly distributed (for computational ease), this probability may
be determined by taking each possible activity time on one path with
all possible times on all other paths. This may be done by setting up
the tables shown below. The entries in the tables are the maximm of
the corresponding parellel activities plus the corresponding series
activity (e.g., in the top table, entry = max [BF, BD(F)} + AB). The

arrow indicates vhiech parallel activity was the maximum.
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Top Paths (ABDF and ABF)

Activity BF

Activity Activity

AB BD(F) 1 3 7
2 9¢&— (0-1) | 10 4 (1-2) A (2e-7)
T 4 11 & (3-3) | 11« (3-3) i 4 (12-7)
6 13 & (9-3) 13 & (9-3) U A (12-T7)
2 1 & (3-3) | 12 4~ (6-3) 16 4 (22-2)
9 4 13 4= (9-3) | 13< (9-3) 16 4 (22-2)
6 15 < (19-3) 15 ¢ (19-3) 16 4 (22-2)
2 13« (9-3) | 1 4 (12-7) 18 (a1)
1 L 15 & (19-3) 15 ¢ (19-3) B4 (21)
6 17 <= (24-3) | 17 < (24-3) B4 (27)

Bottom Paths (ACEF and ACF)
Activity CF
Activity Activity

AC CE(F) 1 3 T
2 9 « (0-1) | 10 T (1-1) T (11-4)
T k 11 < (2-3) 11 & (2-3) ik 4 (11-4)
6 13 ¢« (6-5) | 13 < (6-5) i 4 (11-4)
2 10 (1-1) | 11 4+ (2-3) 15 1 (15-4)
8 L 12 < (5-1) | 12 < (5-1) 15 A (15-4)
6 1l < (11-4) | 1 & (11-k) 15 4 (15-k)
2 12 < (5-1) | 13 4 (6-5) 17T 1 (22-2)
10 L < (11-4) | 1% < (11-4) 17 4 (22-2)
6 16 < (19-3) 16 &~ (19-3) 17 A (22-2)
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Each top path combination is taken with every bottom path com-
bination, and vice versa. The mumbers in the parentheses vindicate
'how many times the particular combination was larger (L) or tied (T)
for the largest (I~T) with all the combinations in the other table.

The table below surmarizes this for each activity.

Total Iarger or Tied
Divided by the Total

Total Iarger Possible Combinations

Activity Iarger Tied or Tied (36 = 729)
AB 380 82 L62 0.63
AC 267 82 349 0.48
BD(F) 178 43 221 0.30
BF 202 39 2kl 0.33
CE(F) 1% 43 157 0.22

CF 153 39 192 0.26
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Appendix F

VARIANCE OF THE MAXTMUM OF TWO SYMMETRICAIILY-DISTRIBUTED RANDOM VARIABLES

It ¢ t2 have identical distributions, which are symmetric, con-

l,
*

tinuous, and of compact support, then the variance of the distribu-

tion of the max (tl, te) is less than the variance of the distribution

of either t, or t..

1 2
et tl have the following distribution: f(ti)
and cumulative distribution: : F(ti)
£1) -f(ti) = f(1 - ti)
F(ti) =1 -FQ1 - ti)
Mean of t, =p =%
R
-t Mode of ti = =3
o} 1 1 o
2 Variance of t, = @

i
Let t° = max (t,, t,)
= max l, 2
. * *
Then the cumulative distribution of t , G(u) = Pr(t < u)
2
= F7(u);
and t" has the following distribution: g(u) = 2f(u)F(u).
Mean of £ = pf;%- Variance of t* = 032
(p* - p) and (p* + 1 = 1) are both positive, hence
* %*
(" =p) (p +n-1)>0,
* ¥* %*
= -3+p+d-op s (0 -n) (0 + 00,
,- 1 .
. * *
= 3 [asa-me]a 6 68w,
(o]

m 1l
=1 f(t)[-l + 21:][1 - EE‘(t)]dt + %A f(t)[-l + 2::][1 - ZE‘(t)] dt

(o) *2 2
+p T -p >0,

*Bere the interval of support is 50,1]. The result is, however,
applicable to any compact intervalla,b].
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=[mf(t) [-1+ 2t][2 - 2p(e)]at + p? - u2yo,
(o]

- / f(t)[t2 - 2t%F(£) + 1 -2t + 12 - 24 bt - 262+ 2F(t) - WtP(t)
(o]
+ 2t2F(t)]dt + p*2 my®50,

=[mt2f(t)[l - 2F(t)]dt +fm(1 - t)%e(1 - t)[l - 2F(1 - t)]dt
o R ,\12>O,

m 1 o
=[ tf(t)l-ZF(t) dt +/tf(t)l-2’&‘(t)]dt+p -n“>o0,

(o]

m
1 1 1 N
=f t f(t) 1- 2F(t) at + [ af(t)F(t)dtJ [ftf(t)dt} >0,

(o)

1
= flt 2r(t)at - [ftf(t)dt]2>jit2g(t)dt - [[tg(t)dtJ 2

= o2 > g
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DIFFICULTIES IN THE ANALYTTCAL CAICUIATION OF THE PROJECT DISTRIBUTION

As was stated before, the mein difficulty in determining the
errors made by PERT in particular networks is the calculation of the
actual network distribution from the individual activity distributions.

Consider, for exsmple, the following network.

Iet t 1 be the random variable which represents the duration of
activity I i=1,2 3, 4, 5; and let the density function of 'l:i be
given by f(‘bi) , then the cumilative distribution of the network is

F(u) = Pr (max [tl byt

J

3+t5, t2+t5]éu),

)t

ff(th)dthff(t )dt F(t )dt f(t5)dt5 f(tl)dtl

u
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Two types of unimodal, continuous distributions (i.e., density
functions) are considered:

(1) Those which are nonzero over an infinite domain, such as:

= - < £ = - é
f(ti) 0 00§, <0 f(ti) 0 00 ¢t <0,
and
5 ks
= e <t.« = £
tie 1 0« ti\ oo 1—:1: 0 'tiS o0 ,
i

(2) Those which are nonzero only over some finite damain, such as:

£(t) =0 -00ft<ea £f(t) =0 -00£t <0
= K(t-2)+(b-t) a¢t<b and =1 0<t<1
=0 b <t €00 =0 l1<t< 00

The calculation of the network distribution from functions of
elass (1) is almost impossible, since if the functions themselves are
integrable in a closed and simple expression -- which is not alwe\ysk
the case -- the itérated integrals become very complicated. For the

two functions given, the project distribution "reduces" to the evalua-

tion of:
tr T ( ) (ust)
_ “(u-t -t )1t , -(u-t
F(u) =[0 “'o [l-(u+l-tl-'b5)e 1775 ][l-(wl—tl)e 1 ]
.[l-(a+l-‘b5)e—(u_t5) ] #(tg)at, } £(t,)dt,,

end " - 2. Sy L \2, -1
P - stu j,u 1 tan l(u-tl—ts) tan (u-’cl) tan 1(u-‘b5)2 tltS s las

olJo (1+t;) (1+t1{) 5171

Whereas F(u) would be difficult to evaluate in the first case, it is
doubtful that F(u) can even be expressed as an elementary function im

the latter case.
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Although the functions in elass (2) are easier to integrate, in
general, they have to be defined in two or more parts. This causes
much difficulty in the evaluetion of F(u), since the single integral

~ expression must be broken up into a number of parts.

Ir £(t) = 0 t 6[-00,0)U(l,oo] (See Appendix K)
-1 t €[O,l]
then,

F(u) = 21"216“5’ O¢usl

1 5 Lo 3 2 .8 8 <u <

= 555 (v’ - 20u’ + 10007 - 120u° - 80u - 28), l€u <2

= %(u3-9u2+27u-21), 2¢u<3

= 0. Otherwise

If the activity density functions have a more complicated form, F(u)

becomes more involved end more difficult to calculate.
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Appendix H

MAXTMUMS OF SIMPLE (INDEPENDENT) BETA DISTRIBUTIONS

Teke the beta distribution :E‘l('b) on the interval [O,l] with o(zp:l.

fl(t) — g 9:(“:‘ /?6—1 l): _bo((l _ t)ﬁ,
= 6t(1 - t).

t " .
7 (t) :[ £, (w)au =] 6u (1-u)au = 3t - 283,
Q e}

Fo(t) = F(%) Fy(t),
- (37 - 2838,
= 9th - 1287 - l'rt6.
ar, ()
£,(t) = a-'f - 3663 - 6otk + 2u’.

P (t) = Fy(6)s Fy(6)e T, (5),

- (37 - 2t3)3,
- 2"(t6 - 5ht7 + 36t8 - 87,
ar.(t)

:E’3(-b) = ”Eg“"' - 162%° - 378t6 + 28847 - 72t8.
1

Py —_f t £, (t)at.
(]

oi® - /’ltgfi(‘c)d" -}1i2.

(o]
ny = 0.50,
u2 = 0.63,

)'13 = 0‘690
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EXAMPLES -~ PARATIELISM AND CROSS CONNECTIONS

f(t)

AB
cD 1/2
/41 g % 7 .
23 o
AC /2
BD
il o om .,
2 4 6
Distribution of Paths ABD and ACD ABD = AB + BD
ACD = AC + CD
Sum
£(t) ol W= I
4 2 L 6
12l 315 | 7T
4 3 L 5 6 7 8 9
% 2)f b 6 8
£(+)|l1/16]2/16)3/16|4/16|3/16 |2/16 {1/16
= 3 5 7 9
Distribution of Event D D = Mex [ABD, ACD}
Mex ,
£(t) _[/2612/16]3/164/1613/16|2/16 1/16
t13 L 5 16 T 8 9
/1613413 14 15 |6 |7 18 19
/15fullh {4 [ 5 |6 |7 18 |9 t 3 L 5 6 7 8 S
3/16/51|5 5 5 & 7 8 9 r(t) || 1/256]8/256|27/256|64/256169/256 |56/256{ 31/25
L/1616 1|6 6 6 6 T 8 9 Mean - 6.89
il {7 7 17 171819
2/161 8118 8 8 8 8 8 9
1/16{91i9 9 9 9 9 9 9




t |3 | w |5 |6 |7 1¢& ¢

2(t) [[1/26 | 2/16 | 3/16 | /16| 3/16| 2/16| 1/16

Note that this is the sum of the distributions

with means 2 and L.

D = Mex |ARD, ACD, AD]

L

t 3 4 5 6 7| 8 9
£(£) || 1/4096|26/1096]189/4096 | T6L/%096 |1197/1096| 1178/4096| 721/4096

MEan = 7. 336

D=p(B—-1)-[D/(B=1)] + p(Bze)-[D/(B=2)] + p(B=3)o[D/(B:3)]
D/(B=1) = M=x [1 + BD, C/(B:l)]

c/(B=1) = DMex [1 + BC, AC] etc.

D t 3 L 5 6 7 8 9

() || 1/102L | 6/102k |75/ 102k |243/102) | 315/1024 | 262/102) {11 7/102)

Mean = T.0Th
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Appendix J

FEFFECT OF SLACK

Consider the network below.

Activities a, b, and ¢ are 211
normally distributed with varience
= 1. Means sre given bhelow.
Formules are from Clark[ l}'

I. Means: =2 =4 II. Means: a = 3
b =2 b =2
C = =
Bvent Event
A EB(L) =0 A E(L) =0
v(a) =0 v(a) =0
B E(3B) =2 B E@®) =2
v(B) =1 v(B) =1

C C = Mex (a,B:C) E(2)=k E(B+c)=k C C = Max (2,B+¢) E(a)=3 E(B:c)=k

V(a)=1 V(B+c)=2 V(2)=1 V(B-c)=2

- oorzangieoss | f -3
<= (g -m,)/q=0 « = =0.5TT
W 30+ pe B+ g9 =) Y= 4.303

= b 3(0) + 4 F(0+3 $(0) ¥ = 19.839

= 4.69 E(e) = 4.303
Y= G2 = 63005 2)dbed v(e) = 1.323

(PP )94(a) )
= (17)8(0)+(18)3(0)+8(3)*(0)
= 23.03

E(c) =Y = k.69
V(e) = % -‘V?l - 23.03 - 22.00 = 1.03
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IIT. Means: & = 3 IV. Means: =a =2
b =3 b=24
=3 c =L
Event Event
A E(A) = 0O A E(A) = 0
v(a) = 0 v(a) = 0
B E(B) = 3 B E(B) =k
V(B) =1 V(B) =1
c C = Max (&,B+c) E(a)=3 E(B+c)=6/C C = Max (a,B+c) E(a)=2 E(B+c)=8

V(a)=1 V(B+c)=2

2

9 =3

L = =1.732

Vv = 6.03

Vp = 38.22
E(c) = 6.03

V(c) = 1.86

v(a)=1 V(B+c)=2

9" =3

ok = =3.464

w/l = 8.000

')5 = 66.000
E(c) = 8.00
v(c) = 2.00
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Appendix K

FOUR EVENT NETWORK -- CONTINUOUS DISTRIBUTIONS

Normal:
Analytical calculation of project mean and varience for the net-
work below, all distributions being normally distributed. The formulas

used are from Claﬁk,[ll.

Means:

E(a) = E(v) = E(c) = E(d) = E(e) = 1.
Variances:

v(a) = v(v) = V(c) = v(a) = V(e) = 1.

A Mean = E(A) = 0,
Variance = V(A) =.0.

by definition

B E(B) = E(b) + E(A) = 1,
v(B) = v(b) + v(A) = 1.

c C =Mx (a, B+ c)e. E(a) = 1 E(B+c) = 2
Vv(ia) =1 V(B+c) = 2

2 2 2
e =O.l+o—2 - 201%6’

V(a) + V(Brc) - 2vE(a) VE(Bre)-r(a,Bre) = 1+ 2- 0 = 3.

«% = (- py)le,
- [®(a) - E(B+e)] B = -0.577.
V= B+ (o) + g HR),

E(a) (-0.5T7) + E(B+c) (0.577) + 1.732 (-0.577),
1 (0.2820) + 2 (0.7180) + 1.732 (0.3377) = 2.203,
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¢ (contimed) ¥ = (2 +0D)FE) + (2 +a3) (<) + O3y + ny) £S(X),

= (1 + 1) (=0.5T7) + (& + 2) (0.577) + (1 + 2)¥3 (~0.577),
= 0.564 + L.308 + 1.755 = 6.62T.

E(C) = Vi = 2.203.

v(c) = V2 - V2 = 6.627 - 4.853 = 1.TTh.

D D=Mx(B+e, C+ 4d) E(B+e)=2 E(C+d)=3.203
V(B+e)=2 V(C+4d)=2.7TTk

r(B+e, C+4d)= V:%:(B) v%(c)lr(B,C).
V2(B + e) V2(C + 4)

r(B,C) = r [b, max (a, b + c)],

% A <?(O()lﬂ"z (BH-d)
7, -VF

ﬁl=r(a,b)=0.

1
V?(b) = 1 = Q0.T702.
V(b +e) V2

f’2=r(b+c,b)=

_ (2)(0) &(-0.577) + (?) (0.702)5';3(0.577)’

r(B:C) I
(1.774)2
_ .718 .
(1.774)2
1 L
r(Bre,crd) = S (LTRZ | (-728) _ 6.3055.

(2)2 (2.174)2  (1.774)2
2 2 2 . 2 3 _
g° =91 +0; - 2qG,P= 2 + 2.714 - (2)(2)2(2.774)2(.3055) = 3.338.

o = (1 - p,)/e = (-1.203)/1.827 = -0.658.
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D (continued) ‘Vl = pl'c}(vc) + pzé(-u«) + gf(x) = 2(.2552) + 3.203 (.7448)
+ 1.827 (.3214),
= 3.4832,
VS = 0 402030 + (u3 +aS)F-0) + (uy + 1) &),
(6) (.2552) + (13.033) (.7448) + (5.203) (1.827) (.3214),

= 14.203,
E(D) =Y = 3.483,
V(D) =% -ﬁ = 14.293% - 12,1313 = 2.162.

Uniform

ti : duration of activity di
4 <

density of t, 1 0<t,<1

0 otherwise

Project Cumulative Distribution F(u)

For 1£u<2,

u-1 u-l-t

F(u)=f [jo'

o}

1l
dt SJ d‘bl

u-1 u-l

+j _ fu_l_tl (u -t - ts)d‘bs):l dt,

+/.1 r fu-l (a-%) (u-t - t5)dt5]dtl

u-1- "o




;

(u - ts) (u - £, - ts)dtsttl

(o} u-1
1 u-'l:l
+ [[ (u - tl) (u - t5) (u - t, - ts)dts]dtl
u-1 - Tu-l
- 1-12—0- [-u5 - 20u* + 100u3 - 120u% + Bou - 28}.
For 0<u<fl,
u-tl
F(u) = [ (u - tl) (u - ts) (u - t, - ts)dt5]dtl,
R S
= v

For 2<u<€3,

F(u) =1 -7 (3 - ),

%(u3-9\12+2"{u-21).
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Appendix L

FOUR-EVENT EXAMPLE -- DISCRETE DISTRIBUTIONS

The same calculastion procedure is used as was used in Appendix I.

The distributions are:

Event
D t 3 N 5 6| 7 8 | o
£(t) 1 87 | 528| oh1]| 21339 | hok| 25
3125 | 3125 | 3125 | 3125 | 3125 | 3125 | 3125
Mean = 6.42
Variance = 1.059
(E t i 5 T 8 9 10 11 i2
without
. 1 90 2305 | 11156 {18380 | 21078 | 1891k | 5176| 125
activity AE) | f£(t) w8155 | 78125 | 78125 | 76125 | 18125 | TB125 | 78125 | 16125 | 16125
Mean = 8.77
Varisnce = 1.557
E (with activity AE)
t L 5 6 7 8 9 10 11 12
1l 90 2305 51812 | 73520 | 87912 | 75656 8Tok | 625
2(t) || 350655 | 390625 | 390625 | 300625 | 390625 | 390625 | 390625 | 390625 |390625
Mean = 9.23
Varience = 1.941
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Appendix M

EXAMPLES -- COMBINING SIMPLE SERIES AND PARATIKL

2 f(t) f(t)

3
® 9’9 1/2 1/2

1/4 1/4

The calculation procedure is similar to that given in Appendix I.
Taking parallel element BC

Distribution of C:

t 1 2 3 . Mean = 2.38
e(t) |l 1/16 | 8/16 | 7/16

Adding series element AB

Distribution of C:




9T 6T #T €T AN 1T [0} 6 Q L 9 4 f 9

67=

Wm.mu 9601 | 960 | 960n | 9601 | 960 | 960t Mmdou 9601 | 9601 | 9601 | 9601 | 9601 || (4)s
w2t | 72 |won | 209 | 9EL | 899 | i 1ot |9lT | eg | ot T
TT

9T | 6T #T | €T 2T o1 6 o) L 9 4 4 3

7 JO UOTNATIISTIA
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