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Abstract

Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor’s molecular 

and cellular landscapes are complex and their relationships to histologic features routinely used for 

diagnosis are unclear. Here we present the Ivy Glioblastoma Atlas, an anatomically-based 

transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic 

and gene expression patterns, thus assigning a molecular significance to the most important 

morphologic hallmarks of glioblastoma. The atlas and its clinical and genomic database are freely 
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accessible online data resources that will serve as a valuable platform for future investigations of 

glioblastoma pathogenesis, diagnosis, and treatment.

Glioblastoma is the most common and the most lethal malignant brain tumor (1). Even for 

patients receiving aggressive treatment, the median survival is 12–15 months (2). The 

tumors evolve rapidly as they acquire new mutations; the resultant increase in intratumor 

genomic heterogeneity leads to the development of drug resistance, which limits the long-

term efficacy of therapies (3, 4). Two large-scale efforts aimed at characterizing the genomic 

alterations in human glioblastoma are The Cancer Genome Atlas (TCGA), which is a 

catalog of multi-omics data, including genomics, transcriptomic, DNA methylomics, 

proteomics, etc. (5, 6), and REpository for Molecular BRAin Neoplasia DaTa 

(REMBRANDT), which also includes multiple data domains (7). These efforts helped 

clarify the role of genomic alterations in the pathogenesis of glioblastoma but were not 

designed to address intratumor heterogeneity. Subsequent studies addressed heterogeneity 

spatially within bulk tumor or at the single cell level (4, 8–12), but we lack the systematic 

understanding of the molecular heterogeneity of this tumor as it relates to the anatomical 

heterogeneity framed by the variable combination of the classical histological features of 

glioblastoma, which include tumor infiltration, endothelial cell proliferation, and necrosis. 

This notion is underscored by the empirical pathology-guided selection of samples typically 

applied for molecular studies. Here, we report the Ivy Glioblastoma Atlas (http://

glioblastoma.alleninstitute.org/), a comprehensive pathology-molecular map of 

glioblastoma, to guide the unbiased assignment of key molecular alterations to each of the 

known anatomical features of glioblastoma. By systematically determining the genomic 

alterations and gene expression profiles of each anatomic feature, we have generated a 

molecular-pathology encyclopedia of glioblastoma. The atlas will be invaluable for the 

accurate deconvolution of individual anatomical states within any new tumor, therefore 

providing unique information for the comprehensive diagnostic characterization of 

glioblastoma heterogeneity.

To create the atlas, we surveyed the anatomic features by in situ hybridization (ISH), 

analyzed their transcriptomes by laser microdissection (LMD) and RNA sequencing (RNA-

Seq), and validated the feature specific, gene expression enrichment of newly-identified 

markers by ISH (Fig. 1). We created a clinical and genomic database (http://ivygap.org/) for 

the 41-patient cohort (table S1) whose tumors (n=42) were evaluated to create the atlas. We 

describe gene sets whose expression is enriched in the anatomic features, measurements of 

intra- and inter-tumor heterogeneity, and a molecular subtype classification of transcriptomic 

samples from our atlas and The Cancer Genome Atlas (TCGA). Together, these two on line 

resources constitute the Ivy Glioblastoma Atlas Project (Ivy GAP).

To identify gene sets with enriched expression in each anatomic feature (fig. S1), we used 

LMD to isolate RNA from the leading edge (LE), infiltrating tumor (IT), cellular tumor 

(CT), pseudopalisading cells around necrosis (PAN), and microvascular proliferation 

(MVP). In total, we isolated 122 samples from 3 different blocks per tumor in 8–10 tumors. 

In consultation with a neuropathologist, we manually drew outlines (LMD guidelines) for 

each of the anatomic features on images of histologically-stained tissue sections. Three 
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additional neuropathologists independently validated the LMD guide lines, and the results 

showed excellent concordance (table S2). Differential gene expression analysis revealed a 

total of 3627 genes that had enriched expression in LE, CT, PAN, and MVP samples (Fig. 

2A, table S3). Multidimensional scaling demonstrated that samples from these four features 

were largely distinct, whereas IT appeared to fall on a continuum between LE and CT (Fig. 

2B). Gene Ontology enrichment analysis of gene sets with enriched expression in anatomic 

features (Fig. 2C) confirmed and extended previous reports (13, 14). In general, samples 

from the same anatomic feature, whether derived from the same or different tumors, were 

more similar to each other than to other samples from the same tumor (Fig. 2D), and within 

a given anatomic feature, inter-tumor heterogeneity exceeded intra-tumor heterogeneity (fig. 

S2).

We selected 31 genes with enriched expression in anatomic features for further analysis by 

ISH, and found that 27 showed at least partial agreement and 22 showed good agreement 

between RNA-Seq and ISH assessments of enrichment in PAN, CT, or MVP (table S4) (Fig. 

2E–I). Assessing enrichment of gene expression by ISH required that we calculate the 

overlap between the expression pattern and our machine learning (ML) annotations for each 

anatomic feature, which we validated using (i) ML-determined rates of accuracy and 

precision (table S5); (ii) an inter-neuropathologist test to establish agreement on definitions 

of anatomic features (fig. S1, tables S6, S7); and (iii) neuropathology concordance analyses 

(tables S8–table S11).

To characterize intra-tumor genetic heterogeneity across anatomic features, we assessed 

RNA-Seq derived copy number changes in the features and compared them to the DNA level 

copy number variations (CNVs) (12) from the corresponding bulk tumor (fig. S3; table S12). 

The CT and PAN samples consistently showed gene expression changes corresponding to 

the CNVs, whereas LE samples did not as LE samples by definition consist largely of non-

neoplastic cells and hence would not harbor the CNVs. On the other hand, MVP samples 

showed some gene expression changes corresponding to the CNVs indicating a mixture of 

tumor and non-neoplastic cells. To evaluate the distribution of somatic mutations targeting 

key glioblastoma genes within the different anatomic features of this tumor, we used RNA-

Seq to call Single Nucleotide Variants (SNVs) in eight genes (TP53, PTEN, EGFR, ATRX, 
IDH1, NF1, PIK3R1, PIK3CA) known to harbor recurrent and functionally important 

mutations in glioblastoma across anatomic features for tumors where there was at least one 

sample available from each of the LE, CT, PAN and MVP features (fig. S4; table S13). We 

detected somatically mutated alleles in RNA from CT, PAN and MVP samples, but only the 

wild-type variants in LE samples (fig. S4A). The ratio of mutant to wild-type expression was 

least for MVP relative to CT and PAN samples (fig. S4B). Some of the SNVs occurring 

across anatomic features were corroborated by ISH data (table S1). Together, the copy 

number and mutation analyses indicated that LE samples largely consist of non-neoplastic 

cells, CT and PAN samples comprise largely tumor cells and MVP samples have a mixture 

of tumor and non-neoplastic cells. The observed intra-tumor heterogeneity in copy number 

and mutation profiles is consistent with previous studies (8, 9). Only 3 tumors from our 41-

patient cohort harbored the R132H mutation in isocitrate-dehydrogenase 1 (IDH1) (table 

S1); thus, there was insufficient statistical power for analysis of this mutation by anatomic 

feature. We did not identify any mutation associated with a particular anatomic feature that 
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predicted overall survival better than the promoter methylation status of the MGMT gene in 

the bulk tumor (fig. S5A,B) (15).

Finally, we developed an admixture model using a 293 gene signature matrix (table S14) for 

computational decomposition of bulk tumor samples into four anatomic features (LE, CT, 

PAN, and MVP), and classified the 122 anatomic feature RNA-Seq samples on the basis of 

histology, admixture (table S14), molecular subtype (6) , and cell type gene expression 

signature (table S15) enrichment (fig. S6A–D; table S16). Several genes exhibited 

differential expression across known molecular subtypes of glioblastoma within each 

anatomic feature (fig. S7A–C). Enrichment of the cell type gene expression signatures in the 

anatomic features was consistent with Gene Ontology enrichment analyses (Fig. 2C). The 

correlation between the anatomic feature gene sets and molecular subtypes (table S16) is 

broadly consistent with results of previous studies (8, 9). When we applied our admixture 

model to 167 RNA-Seq samples of the TCGA data, we observed similar patterns (fig. S8A–

C; table S16).

This atlas and the associated database for clinical and genomic data will serve as a valuable 

platform for developing and testing new hypotheses related to the pathogenesis, diagnosis, 

and treatment of glioblastoma. We note that investigators are already leveraging this 

resource (16–33). In one study, Miller et al. (22) used the atlas to prioritize potential 

druggable targets based on relationships to tumor microenvironment signatures. We envision 

use of the Ivy GAP dataset in preclinical studies where investigators identify the cells that 

drive tumor growth, and target their resident anatomic features for the preferred drug 

delivery route to maximize the therapeutic effect, as demonstrated by Yu et al.(31).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors 

Ralph B. Puchalski1,2,*,†, Nameeta Shah2,3,*,†, Jeremy Miller1, Rachel Dalley1, 
Steve R. Nomura2, Jae-Guen Yoon2, Kimberly A. Smith1, Michael Lankerovich2, 
Darren Bertagnolli1, Kris Bickley1, Andrew F. Boe1, Krissy Brouner1, Stephanie 
Butler1, Shiella Caldejon1, Mike Chapin1, Suvro Datta1, Nick Dee1, Tsega Desta1, 
Tim Dolbeare1, Nadezhda Dotson1, Amanda Ebbert1, David Feng1, Xu Feng7, 
Michael Fisher1, Garrett Gee1, Jeff Goldy1, Lindsey Gorley1, Benjamin W. Gregor1, 
Guangyu Gu1, Nika Hejazinia1, John Hohmann1, Parvinder Hothi2, Robert Howard1, 
Kevin Joines1, Ali Kriedberg1, Leonard Kuan1, Chris Lau1, Felix Lee1, Hwahyung 
Lee2, Tracy Lemon1, Fuhui Long1, Naveed Mastan1, Erika Mott1, Chantal Murthy2, 
Kiet Ngo1, Eric Olson1, Melissa Reding1, Zack Riley1, David Rosen1, David 
Sandman1, Nadiya Shapovalova1, Clifford R. Slaughterbeck1, Andrew Sodt1, 
Graham Stockdale1, Aaron Szafer1, Wayne Wakeman1, Paul E. Wohnoutka1, 
Steven J. White4, Don Marsh4, Robert C. Rostomily5,6, Lydia Ng1, Chinh Dang1, 
Allan Jones1, Bart Keogh7, Haley R. Gittleman8, Jill S. Barnholtz-Sloan8, Patrick J. 
Cimino9, Megha S. Uppin10, C. Dirk Keene9, Farrokh R. Farrokhi11, Justin D. 

Puchalski et al. Page 4

Science. Author manuscript; available in PMC 2019 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lathia12, Michael E. Berens13, Antonio Iavarone14,15,16, Amy Bernard1, Ed Lein1, 
John W. Phillips1, Steven W. Rostad17, Charles Cobbs2, Michael J. Hawrylycz1,†, 
and Greg D. Foltz2,18

Affiliations
1Allen Institute for Brain Science, Seattle, WA 98109, USA.

2The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish 
Neuroscience Institute, Seattle, WA 98122, USA.

3Mazumdar Shaw Center for Translational Research, Bangalore, 560099, India.

4White Marsh Forests, Seattle, WA 98119, USA.

5Department of Neurosurgery, Institute for Stem Cell and Regenerative Medicine, 
University of Washington School of Medicine, Seattle, WA 98195, USA.

6Houston Methodist Hospital and Research Institute, Department of Neurological 
Surgery, Houston, TX 77030, USA.

7Radia Inc., Lynnwood, WA USA 98036, USA.

8Case Comprehensive Cancer Center, Case Western Reserve University School of 
Medicine, Cleveland, OH 44106, USA.

9Department of Pathology, Division of Neuropathology, University of Washington 
School of Medicine, Seattle, WA 98104, USA.

10Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad, 500082, India.

11Virginia Mason Medical Center, Seattle, WA 98101, USA.

12Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 
44195, USA.

13TGen, Translational Genomics Research Institute, Phoenix, AZ 85004, USA.

14Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.

15Department of Neurology, Columbia University, New York, NY 10032, USA.

16Department of Pathology, Columbia University, New York, NY 10032, USA.

17CellNetix, Seattle, WA 98122, USA.

18Deceased.

ACKNOWLEDGEMENTS

We thank the Allen Institute founders, P. G. Allen and J. Allen, for their vision, encouragement, and support. We 
thank B. Aronow, B. Bernard, D. Ghosh, L. Hood, C. Hubert, J. Lathia, B. Lin, J. Olson, N. Sanai, I. Shmulevich, 
Q. Tian, and I. Ulasov for providing lists of genes for putative cancer stem cell markers. We thank J. Rich for his 
critical review of the manuscript and helpful comments. We thank N. Hansen from Swedish Research Institute for 
help with patient consent and clinical data collection. We thank T. Crossley for help with the ivygap.org website. 
We thank P. Sonpatki for help with neuropathology evaluation forms. We thank B. Facer and N. Stewart for artistic 
and administrative assistance, respectively.

Puchalski et al. Page 5

Science. Author manuscript; available in PMC 2019 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Funding:This project was supported by The Ben and Catherine Ivy Foundation. R.C.R. was supported by NINDS 
R01 NS091251 and NCI R01 CA136808 grants (to R.C.R.), and A.I. was supported by R01CA178546, 
U54CA193313, R01CA179044, R01CA190891, R01NS061776 and The Chemotherapy Foundation (to A.I.).

Dedication: This project is dedicated to G.D.F., a dedicated and talented neurosurgeon, as well as visionary in 
glioblastoma research, who passed away during the course of the study.

REFERENCES AND NOTES

1. Ostrom QT et al., CBTRUS Statistical Report: Primary brain and other central nervous system 
tumors diagnosed in the United States in 2010–2014. Neuro-Oncology. 19(S5), 1–88 (2017). 
[PubMed: 28031379] 

2. Stupp R et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New 
Engl. J. Med 352, 987–996 (2005). [PubMed: 15758009] 

3. Frattini V et al., The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet 
45, 1141–1149 (2013). [PubMed: 23917401] 

4. Meyer M et al., Single cell-derived clonal analysis of human glioblastoma links functional and 
genomic heterogeneity. Proc. Natl. Acad. Sci. U.S.A. 112, 851–856 (2015). [PubMed: 25561528] 

5. The Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines 
human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008). [PubMed: 
18772890] 

6. Verhaak RG et al., Integrated genomic analysis identifies clinically relevant subtypes of 
glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 
98–110 (2010). [PubMed: 20129251] 

7. Madhavan S et al., Rembrandt: helping personalized medicine become a reality through integrative 
translational research. Mol. Cancer Res. 7, 157–167 (2009). [PubMed: 19208739] 

8. Sottoriva A et al., Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary 
dynamics. Proc. Natl. Acad. Sci. U.S.A 110, 4009–4014 (2013). [PubMed: 23412337] 

9. Kumar A et al., Deep sequencing of multiple regions of glial tumors reveals spatial heterogeneity for 
mutations in clinically relevant genes. Genome Biol. 15, 530 (2014). [PubMed: 25608559] 

10. Mazor T et al., DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define 
Similar Evolutionary Histories in Brain Tumors. Cancer Cell 28, 307–317 (2015). [PubMed: 
26373278] 

11. Lee JK et al., Spatiotemporal genomic architecture informs precision oncology in glioblastoma. 
Nature Genetics 49, 594–599 (2017). [PubMed: 28263318] 

12. Patel AP et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. 
Science 344, 1396–1401 (2014). [PubMed: 24925914] 

13. Pen A, Moreno MJ, Martin J, Stanimirovic DB, Molecular markers of extracellular matrix 
remodeling in glioblastoma vessels: microarray study of laser-captured glioblastoma vessels. Glia 
55, 559–572 (2007). [PubMed: 17266141] 

14. Dong S et al., Histology-based expression profiling yields novel prognostic markers in human 
glioblastoma. J. of Neuropathology and Experimental Neurology 64, 948–955 (2005).

15. Hegi ME et al., MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl. 
J. Med 352, 997–1003 (2005). [PubMed: 15758010] 

16. Muller S et al., Single-cell sequencing maps gene expression to mutational phylogenies in PDGF- 
and EGF-driven gliomas. Molecular Systems Biology 12, 889 (2016). [PubMed: 27888226] 

17. Mineo M et al., The long non-coding RNA HIF1A-AS2 facilitates the maintenance of 
mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep. 15, 2500–2509 (2016). 
[PubMed: 27264189] 

18. Cheerathodi M et al., The cytoskeletal adapter protein spinophilin regulates invadopodia dynamics 
and tumor cell invasion in glioblastoma. Mol. Cancer Res. 14, 1277–1287 (2016). [PubMed: 
27655131] 

19. Ghosh D et al., TGFbeta-Responsive HMOX1 expression is associated with stemness and invasion 
in glioblastoma multiforme. Stem Cells 34, 2276–2289 (2016). [PubMed: 27354342] 

Puchalski et al. Page 6

Science. Author manuscript; available in PMC 2019 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Pollak J et al., Ion channel expression patterns in glioblastoma stem cells with functional and 
therapeutic implications for malignancy. PLOS One 12, e0172884 (2017). [PubMed: 28264064] 

21. Jin X et al., Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature 
Med. 23, 1352–1361 (2017). [PubMed: 29035367] 

22. Miller TE et al., Transcription elongation factors represent in vivo cancer dependencies in 
glioblastoma. Nature 547, 355–359 (2017). [PubMed: 28678782] 

23. Godlewski J et al., MicroRNA signatures and molecular subtypes of glioblastoma: the role of 
extracellular transfer. Stem Cell Rep. 8, 1497–1505 (2017).

24. Wang Q et al., Tumor evolution of glioma-intrinsic gene expression subtypes associates with 
immunological changes in the microenvironment. Cancer Cell 32, 42–56 (2017). [PubMed: 
28697342] 

25. Muller S et al., Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for 
regional differences in macrophage activation in the tumor microenvironment. Genome Biology 
18, 234 (2017). [PubMed: 29262845] 

26. Cantanhede IG, de Oliveira JRM, PDGF family expression in glioblastoma multiforme: data 
compilation from Ivy Glioblastoma Atlas Project database. Scientific Rep. 7, 15271 (2017).

27. Otani Y et al., Fibroblast growth factor 13 regulates glioma cell invasion and is important for 
bevacizumab-induced glioma invasion. Oncogene 37, 777–786 (2018). [PubMed: 29059154] 

28. Mills BN, Albert GP, Halterman MW, Expression profiling of the MAP kinase phosphatase family 
reveals a role for DUSP1 in the glioblastoma stem cell niche. Cancer Microenvironment 10, 57–68 
(2017). [PubMed: 28822081] 

29. Lee SY, Kim JK, Jeon HY, Ham SW, Kim H, CD133 Regulates IL-1beta signaling and neutrophil 
recruitment in glioblastoma. Molecules and Cells 40, 515–522 (2017). [PubMed: 28736425] 

30. Johansson E et al., CD44 interacts with HIF-2alpha to modulate the hypoxic phenotype of 
perinecrotic and perivascular glioma cells. Cell Rep. 20, 1641–1653 (2017). [PubMed: 28813675] 

31. Yu D et al., Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric 
nanoparticle infusion delays glioblastoma progression. Proc. Natl. Acad. Sci. U.S.A 114, E6147–
E6156 (2017). [PubMed: 28696296] 

32. Kwiatkowski SC et al., Neuropilin-1 modulates TGFbeta signaling to drive glioblastoma growth 
and recurrence after anti-angiogenic therapy. PLOS One 12, e0185065 (2017). [PubMed: 
28938007] 

33. Khagi S, Miller CR, Putting “multiforme” back into glioblastoma: intratumoral transcriptome 
heterogeneity is a consequence of its complex morphology. Neuro-Oncology 19, 1570–1571 
(2017). [PubMed: 29016836] 

34. Hothi P et al., High-throughput chemical screens identify disulfiram as an inhibitor of human 
glioblastoma stem cells. Oncotarget 3, 1124–1136 (2012). [PubMed: 23165409] 

35. Lein ES et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–
176 (2007). [PubMed: 17151600] 

36. Culling CFA, Allison RT, Barr WT, “Haemotoxylin and its counterstains” in Cellular Pathology 
Technique. (Butterworths, London, ed. 4, 1985), pp. 160–161.

37. Rozen S, Skaletsky H, Primer3 on the WWW for general users and for biologist programmers. 
Methods Mol. Biol 365–86 (2000).

38. Sorzano CO, Thevenaz P, Unser M, Elastic registration of biological images using vector-spline 
regularization. IEEE Trans Biomed Eng 52, 652–663 (2005). [PubMed: 15825867] 

39. Criminisi A, Shotton J, “Decision forests for computer vision and medical image analysis” in 
Advances in Computer Vision and Pattern Recognition (Springer, 2013), pp. 368.

40. Criminisi A et al., Regression forests for efficient anatomy detection and localization in computed 
tomography scans. Med. Image Anal. 17, 1293–1303 (2013). [PubMed: 23410511] 

41. Pathak SD, Chalana V, Haynor DR, Kim Y, Edge-guided boundary delineation in prostate 
ultrasound images. IEEE Trans. Med. Imaging 19, 1211–9 (2000). [PubMed: 11212369] 

42. Cohen J, A coefficient of agreement for nominal scales. Educational and Psychological 
Measurement 20, 37–46 (1960).

Puchalski et al. Page 7

Science. Author manuscript; available in PMC 2019 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Orringer DA et al., Rapid intraoperative histology of unprocessed surgical specimens via fibre-
laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng 1, 0027 (2017). [PubMed: 
28955599] 

44. Meyer LR et al., The UCSC Genome Browser database: extensions and updates 2013. Nucleic 
Acids Res 41, D64–69 (2013). [PubMed: 23155063] 

45. Aronesty E, ea-utils: “Command-line tools for processing biological sequencing data” 2011) 
https://github.com/ExpressionAnalysis/ea-utils.

46. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN, RNA-Seq gene expression estimation with 
read mapping uncertainty. Bioinformatics 26, 493–500 (2010). [PubMed: 20022975] 

47. Langmead B, Trapnell C, Pop M, Salzberg SL, Ultrafast and memory-efficient alignment of short 
DNA sequences to the human genome. Genome Biol. 10, R25 (2009). [PubMed: 19261174] 

48. Miller JA et al., Improving reliability and absolute quantification of human brain microarray data 
by filtering and scaling probes using RNA-Seq. BMC Genomics 15, 154 (2014). [PubMed: 
24564186] 

49. Kadota K, Nishiyama T, Shimizu K, A normalization strategy for comparing tag count data. 
Algorithms Mol. Biol 7, 5 (2012). [PubMed: 22475125] 

50. Robinson MD, McCarthy DJ, Smyth GK, edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). [PubMed: 
19910308] 

51. Storey JD, Bass AJ, Dabney A, Robinson D, qvalue: Q-value estimation for false discovery rate 
control. R package version 2.2.2 (2015). http://github.com/jdstorey/qvalue.

52. Newman AM et al., Robust enumeration of cell subsets from tissue expression profiles. Nat 
Methods 12, 453–457 (2015). [PubMed: 25822800] 

53. Chen J, Bardes EE, Aronow BJ, Jegga AG, ToppGene Suite for gene list enrichment analysis and 
candidate gene prioritization. Nucleic Acids Res 37, W305–311 (2009). [PubMed: 19465376] 

54. Olshen AB, Venkatraman ES, Lucito R, Wigler M, Circular binary segmentation for the analysis of 
array-based DNA copy number data. Biostatistics 5, 557–572 (2004). [PubMed: 15475419] 

55. Subramanian A et al., Gene set enrichment analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A 102, 15545–15550 (2005). 
[PubMed: 16199517] 

56. Cheng L et al., Glioblastoma stem cells generate vascular pericytes to support vessel function and 
tumor growth. Cell 153, 139–152 (2013). [PubMed: 23540695] 

57. Chase A et al., TFG, a target of chromosome translocations in lymphoma and soft tissue tumors, 
fuses to GPR128 in healthy individuals. Haematologica 95, 20–26 (2010). [PubMed: 19797732] 

58. Cerami E et al., The cBio cancer genomics portal: an open platform for exploring multidimensional 
cancer genomics data. Cancer Discov. 2, 401–404 (2012). [PubMed: 22588877] 

59. Cancer Genome Atlas Research Network et al., Comprehensive, integrative genomic analysis of 
diffuse lower-grade gliomas. New Engl. J. Med 372, 2481–2498 (2015). [PubMed: 26061751] 

60. Bao ZS et al., RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript 
in secondary glioblastomas. Genome Res. 24, 1765–1773 (2014). [PubMed: 25135958] 

61. Shah N, Schroeder B, Cobbs C, MGMT methylation in glioblastoma: tale of the tail. Neuro-Oncol. 
17, 167–168 (2015). [PubMed: 25395464] 

62. Zhang Y et al., Purification and Characterization of Progenitor and Mature Human Astrocytes 
Reveals Transcriptional and Functional Differences with Mouse. Neuron 89, 37–53 (2016). 
[PubMed: 26687838] 

63. Darmanis S et al., A survey of human brain transcriptome diversity at the single cell level. Proc. 
Natl. Acad. Sci. U.S.A 112, 7285–7290 (2015). [PubMed: 26060301] 

64. Meyer J et al., PCR- and restriction endonuclease-based detection of IDH1 mutations. Brain 
Pathol. 20, 298–300 (2010). [PubMed: 19744125] 

65. Yoshimoto K et al., Development of a real-time RT-PCR assay for detecting EGFRvIII in 
glioblastoma samples. Clin. Cancer Res. 14, 488–493 (2008). [PubMed: 18223223] 

Puchalski et al. Page 8

Science. Author manuscript; available in PMC 2019 March 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ExpressionAnalysis/ea-utils
http://github.com/jdstorey/qvalue


Fig. 1. Data generation, analysis, and presentation pipeline for the Ivy Glioblastoma Atlas 
Project.
(A) Clinical data were collected for the Ivy cohort of 41 patients. (B) Tissue preparation 

required en bloc resection and formation of tissue blocks with custom L bars. (C) Two 

studies, Anatomic Feature Based Profiling and Cancer Stem Cell Marker Based Profiling, 

provided a framework for the ISH surveys, LMD/RNA-Seq experiments, and ISH 

validations. (D) Informatics included image registration, ontology development, and 

anatomic feature prediction based on a novel machine learning (ML) analysis of histological 

data. Search tools support queries of the data set by tumor, tumor block, and gene expression 

filtered by anatomic feature, molecular subtype, and clinical information. Searchable manual 

labels delineating the laser microdissections for 270 RNA-Seq samples from the two studies 

overlay the histology images. The atlas is equipped with image viewers that resolve the 

histology at 0.5μm/pixel, a transcriptome browser, an application programming interface, 

and help documentation. The database has detailed longitudinal clinical information and 

MRI time courses (table S1). (E) This free resource is made available as part of the Ivy 

Glioblastoma Atlas Project (Ivy GAP). (http://glioblastoma.alleninstitute.org/) via the Allen 

Institute data portal (http://www.brain-map.org), the Ivy GAP Clinical and Genomic 

Database (http://ivygap.org/) via the Swedish Neuroscience Institute (http://

www.swedish.org/services/neuroscience-institute), and The Cancer Imaging Archive 

(https://wiki.cancerimagingarchive.net).
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Fig. 2. Gene expression in anatomic features.
(A) Differential expression matrix based on genes identified in the 122 anatomic feature 

RNA-Seq samples isolated in triplicate from 8–10 tumors. Values are numbers of genes, of 

the total 3627, whose expression is enriched in the row feature relative to the column feature 

(FDR<0.01, fold change >2; P<0.1, BH corrected). Values on diagonal are numbers of genes 

with higher expression in one feature compared with all other features (i.e. top marker 

genes). (B) Multidimensional scaling of all genes reflects anatomic specificity. (C) Gene 

ontology enrichment analysis. LE and CT were enriched for gene ontology terms related to 

neuronal systems and glial cell differentiation, respectively, whereas PAN was associated 

with stress, hypoxia, and immune responses, and MVP was related to angiogenesis, immune 

regulation, and response to wounding. (D) Mean Euclidean distance within and between 

tumors based on hierarchical clustering of all genes in all 122 anatomic feature RNA-Seq 

samples grouped by anatomic feature (fig. S1; fig. S2). Cross Feature measures variance 

between anatomic features. (E-I) Representative marker genes showing RNA-Seq 
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expression levels for features isolated by LMD, representative ISH, ML annotations for ISH 

and H&E, and H&E adjacent to ISH. LE (blue), IT (purple), CT (green), PNZ (light blue), 

PAN (turquoise), HBV (orange), MVP (red/magenta).
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