
Received March 15, 2020, accepted April 18, 2020, date of publication April 23, 2020, date of current version May 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989807

An Anchor-Free Convolutional Neural Network
for Real-Time Surgical Tool Detection in
Robot-Assisted Surgery
YUYING LIU 1, ZIJIAN ZHAO 1, (Member, IEEE), FALIANG CHANG 1, AND SANYUAN HU2
1School of Control Science and Engineering, Shandong University, Jinan 250061, China
2Department of General Surgery, First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China

Corresponding author: Zijian Zhao (zhaozijian@sdu.edu.cn)

This work was supported by the National Key Research and Development Program of China under Grant 2019YFB1311300.

ABSTRACT Robot-assisted surgery (RAS), a type of minimally invasive surgery, is used in a variety of
clinical surgeries because it has a faster recovery rate and causes less pain. Automatic video analysis of RAS
is an active research area, where precise surgical tool detection in real time is an important step. However,
most deep learning methods currently employed for surgical tool detection are based on anchor boxes, which
results in low detection speeds. In this paper, we propose an anchor-free convolutional neural network (CNN)
architecture, a novel frame-by-frame method using a compact stacked hourglass network, which models the
surgical tool as a single point: the center point of its bounding box. Our detector eliminates the need to
design a set of anchor boxes, and is end-to-end differentiable, simpler, more accurate, and more efficient
than anchor-box-based detectors. We believe our method is the first to incorporate the anchor-free idea for
surgical tool detection in RAS videos. Experimental results show that our method achieves 98.5% mAP and
100%mAP at 37.0 fps on the ATLAS Dione and Endovis Challenge datasets, respectively, and truly realizes
real-time surgical tool detection in RAS videos.

INDEX TERMS Anchor-free, center point, RAS, single-stage, stacked hourglass network, and surgical tool
detection.

I. INTRODUCTION
Robot-assisted surgery (RAS) is the latest development in
minimally invasive surgical technology. Robotic surgical
tools make it easy to perform complex motion tasks dur-
ing surgery by transforming the surgeon’s real-time hand
movements and forces acting on the tissue into small-scale
movements [1]. Despite its advantages in minimally invasive
surgery, the RAS system still has problems, such as a narrow
field of view, narrow operating space, and insufficient tactile
feedback, which may cause holes in organs and tissues during
an operation [2]. Surgical tool detection can help solve these
problems by providing the trajectory of a tool to realize
surgical navigation. Also, to have real-time information on
the motions of a surgical tool can help model poses for
real-time automated surgical video analysis [3]–[6], which
assists surgeons with automatic report generation, optimized
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scheduling, and offline video indexing for educational pur-
poses [7]. Hence, in this study, we focus on real-time surgical
tool detection in videos.

Many methods have been proposed for surgical tool detec-
tion. Image-based methods are becoming more popular,
as they rely purely on equipment already in the operating the-
atre [8]. Deep convolutional neural network (CNN) has been
merged into various RAS medical image-based tasks, such
as surgical tool detection [9]–[13], tracking [14]–[18], pose
estimation [19]–[21], and segmentation [22]–[25]. Single-
and two-stage detectors are generally used to detect surgical
tools. Two-stage detectors [1], [3] apply a region proposal
network (RPN) to generate region proposals before being
passed to a final classification and bounding box refine-
ment network; single-stage detectors [13], [26] place anchor
boxes densely over an image and generate final box predic-
tions by scoring anchor boxes and refining their coordinates
through regression. Both single- and two-stage detectors use
anchor boxes extensively, but single-stage detectors are more
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competitive and efficient than two-stage detectors. However,
anchor boxes have two drawbacks [27]. They introduce many
hyperparameters that require fine design, and they create a
huge imbalance between positive and negative anchor boxes
that slows down training. Methods using anchor boxes usu-
ally detect surgical tools with high accuracy, but cannot detect
them in real time (handling at less than 20 fps). The method
proposed by Jin et al. [5] and the surgical tool detection
method proposed by Twinanda et al. [9] only detect the pres-
ence of the tool and cannot output the location of the surgical
tool. Zhao et al. [13] presented a CNN-cascaded surgical tool
detection method, which can not achieve end-to-end training
and needs to design the output heatmaps carefully. Compared
with the work of Zhao et al. [13], our method can not only
achieve end-to-end training, but also innovatively use a more
efficient and compact CNN backbone, which has an accuracy
rate that exceeds their work at comparable speeds.

In view of the deficiencies of the various methods men-
tioned above and the inspiration of CenterNet [28], we pro-
pose a single-stage approach to detect surgical tools without
anchor boxes. We introduce a compact stacked hourglass
network [29] to detect the surgical tool as the center point
of its bounding box. We evaluated the performance of the
proposed method on the publicly available ATLAS Dione
dataset [1] and the EndoVis Challenge dataset [21], and our
approach performed better than three state-of-art detection
methods with regard to detection accuracy and speed.

Our main contributions are summarized as follows:
(1) We propose an anchor-free CNN architecture for

real-time surgical tool detection in RAS. We integrate the
lightweight idea (fire module and depthwise separable con-
volution [30]–[32]) in our architecture so that the accuracy is
basically not reduced and the speed of detection of surgical
tools is faster.

(2) Our approach distributes the ‘‘anchor’’ based only on
location rather than box overlap [33]. Each of our objects
has only one positive ‘‘anchor,’’ so no NMS is needed, and
only local peaks in the keypoint heatmap must be extracted
to achieve points to bounding boxes.

(3) We extensively evaluate our proposed surgical tool
detection approach on the ATLAS Dione and EndoVis Chal-
lenge datasets. For greater accuracy, we manually relabeled
the EndoVis Challenge dataset. Our approach demonstrates
superior performance over state-of-the-art approaches.

The rest of this paper is organized as follows. Section II
introduces our approach, including the network architecture
and the loss function for learning. Section III elaborates on
the experiments and results. We discuss the effectiveness
of our approach and future directions for improvement in
Section IV. Finally, our conclusions are drawn in Section V.

II. METHODOLOGY
A. NETWORK ARCHITECTURE
Inspired by [30]–[32], we designed a lightweight hourglass
backbone that works better than CenterNet [28]. The new

network consists of two hourglass modules, and the residual
modules in the traditional hourglass backbone are replaced
with the more effective fire modules [30]–[32] to predict the
heatmap at the center point of all instances of the surgical
tools. Additional details can be found in Figure 1. As we can
see, the fire module first uses a 1 × 1 kernel to squeeze the
input channels, which reduces the parameters to accelerate
our network. Then, it passes through a mixture of 1 × 1 and
3× 3 kernels to feed the results. To accelerate the training of
the network structure, we replace the original 3× 3 standard
convolution with a 3 × 3 depthwise separable convolution,
as shown in the orange block (Dwise) in Figure 1. Peaks in
the heatmap correspond to tool centers [34]. Image features at
each peak predict the surgical tool bounding box’s height and
weight (Figure 2). Inference is performed by a single network
forward-pass, without non-maximal suppression (NMS) [35]
for post-processing. In general, the depthwise separable con-
volution splits the ordinary convolution into deep convolution
and point-by-point convolution. The advantage of depthwise
separable convolution is that the number of parameters and
the computational complexity can be greatly reduced with
less loss of precision.

FIGURE 1. The fire module replaces the residual module.

FIGURE 2. We model the surgical tool as the center point of its bounding
box. From the keypoint features of the center, the bounding box size and
other attributes of the surgical tool can be inferred.

In our architecture (Figure 3), we use a 7 × 7 convo-
lution module and a residual module to reduce the input
image size (512 × 512) by a factor of four, followed by
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FIGURE 3. Architecture of proposed network.

two hourglass modules. We modified the architecture of the
hourglass modules. Each is a symmetric 2-layer downsample
and upsample CNN with skip connections, each consisting
of a fire module. A fire module followed by nearest neighbor
upsampling is applied to upsample the features. There is a fire
module in the middle of each hourglass module. We do not
use max pooling, but simply use stride 2 to reduce the feature
resolution. We increase the number of feature channels along
the way (384,512) and reduce feature resolutions two times.
We also adopt a 1 × 1 Conv-BN module to both the input
and output of the first hourglass module as intermediate
supervision. Inference is performed by a single CNN for-
ward pass, without NMS for post-processing. The features of
the stacked lightweight hourglass backbone are then passed
through a separate 3 × 3 convolution, ReLU, and another
1 × 1 convolution.

B. LOSS FUNCTION FOR LEARNING
We denote an input video frame of width W and height
H by IεR

W
R ×

H
R ×3. Then, we leverage the lightweight

stacked hourglass network to predict the keypoint heatmap
Ŷ ε[0, 1]

W
R ×

H
R ×C , local offset Ôε<

W
R ×

H
R ×2, and size

Ŝε<
W
R ×

H
R ×2, where R is the output stride and C is the

number of surgical tool classes. We predict the heatmap at
the center point of all instances of the surgical tools. Peaks
in the heatmap correspond to object centers. Image features
at each peak predict the surgical tool bounding box’s height
and weight. We train our network following Zhou et al. [28].
Focal loss [36]mainly solves the problem of severe imbalance
of positive and negative samples in single-stage surgical tool

detection. The focal loss function reduces the weight of a
large number of simple negative samples in training, which
can also be interpreted as a kind of difficult sample mining.
The training objective is a penalty-reduced pixel-wise logistic
regression with modified focal loss:

Lk =
−1
N

∑
xyc


(1− Ŷxyc)α log(Ŷxyc) if Yxyc = 1
(1− Yxyc)β (Ŷxyc)α

∗ log(1− Ŷxyc) otherwise,

(1)

where α = 2 and β = 4 [27] are hyperparameters of the
focal loss, N is the number of keypoints in image I , Yxyc
is a Gaussian kernel, and at the center point Yxyc = 1,
the diffusion of Yxyc around the center point slowly decreases
from 1 to 0. Ŷxyc = 1 corresponds to a detected keypoint,
while Ŷxyc = 0 is the background. The offset is trained with
an L1 loss:

Lo =
1
N

∑
p

|Ôp̃ − (
p
R
− p̃)|, (2)

where p is ground truth of the keypoint, and p̃ = b pRc is a
low-resolution equivalent. We use an L1 loss at the center
point:

Ls =
1
N

N∑
k=1

|Ŝpk − sk |, (3)

where sk = (x(k)2 − x
(k)
1 , y(k)2 − y

(k)
1 ) is the object size, pk =

(
(x(k)1 +x

(k)
2 )

2 ,
(y(k)1 +y

(k)
2 )

2 ) is the center point location, and Ŝpk is a
single size prediction for all tools. We let (x(k)1 , y(k)1 , x

(k)
2 , y(k)2 )
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be the bounding box of object k with category ck . The overall
training objective is

Ldet = Lk + λsLs + λoLo. (4)

We set λsize = 0.1 and λo = 1 in our experiments. From
center points p̂ = {(x̂i, ŷi)}ni=1 to bounding boxes:

(x̂i + δx̂i − ŵi/2, ŷi + δŷi − ĥi/2, x̂i + δx̂i + ŵi/2,

ŷi + δŷi + ĥi/2), (5)

where (δx̂i, δŷi) = Ôx̂i,ŷi is the offset prediction and (ŵi, ĥi) =
Ŝx̂i,ŷi is the size prediction. No output needs post-processing.
The entire model regresses only four values (x, y, w, h) in

addition to the surgical tool attributes: the center point (x, y)
and (w, h) of the bounding box. First, the heatmap of the pic-
ture is obtained through the backbone network, and then the
ground truth keypoints are distributed to the heatmap through

the Gaussian kernel function Yxyc = exp(− (x−p̃x )2+(y−p̃y)2

2σ 2p
),

where σp is a surgical tool size-adaptive standard devi-
ation [27]. According to the peaks on the feature map,
100 peaks that are greater than or equal to 8-connected
neighbors values around are selected as the central keypoints
for preliminary prediction. Then it is necessary to predict
the offset of the center keypoint Ôx̂i,ŷi (because there will
be deviation after scaling the extracted feature scale). Next,
we can predict the size of bounding box Ŝx̂i,ŷi . Finally, we can
predict the coordinates of the bounding box by Equation 5.
In summary, the procedures of training our network are per-
formed as Algorithm 1 with the steps.

Algorithm 1 Steps of Training Our CNN Network
Input: input images I with labels;
Output: output (x,y,w,h);

1 Preliminary;

2 for IεR
W
R ×

H
R ×3 do

3 splatting all ground truth keypoints onto a heatmap
by using a Gaussian kernel;

4 if then
5 using keypoints estimator to predict all center

points;
6 end
7 end
8 Objects as Points;
9 repeat
10 calculating the loss on training via Equation 4;

updating parameters via back propagation;
11 until the iteration satisfies the second stop condition;
12 From points to bounding boxes;
13 for i=1,2,· · · ,n do
14 calculating the bounding box coordinates via

Equation 5;
15 end
16 return the center point (x, y) and (w, h) of the bounding

box.

III. EXPERIMENTS AND RESULTS
A. DATASET
Weused the ATLASDione dataset [1], consisting of 99 action
video clips of ten surgeons from the Roswell Park Cancer
Institute (RPCI) (Buffalo, NY) performing six surgical tasks
(subject study) on the da Vinci Surgical System (dVSS). The
resolution of each frame is 854 × 480 with the surgical tool
annotations. Despite being a phantom setting, the ATLAS
Dione dataset is challenging, as it has camera movement
and zoom, free movement of surgeons, a wide range of
expertise levels, background objects with high deforma-
tion, and annotations including tools with occlusion, change
in pose, and articulation. Figure 4 shows some disturbing
factors of the ATLAS Dione dataset. To train our model,
we divided the entire set of video clips into two subparts:
90 video clips (20491 frames) for training and the leftover
nine video clips (1976 frames) for testing. To validate the
extensibility of our architecture, we evaluated our approach
on the MICCAI′15 EndosVis Challenge dataset [21], which
includes 1083 frames from ex-vivo video sequences of inter-
ventions. The resolution of each frame is 720 × 576 with
the surgical tool annotations. For greater accuracy, we rela-
beled the dataset manually. This dataset was separated into
a training set (984 frames) and test set (109 frames). The
ATLAS Dione dataset is more challenging than the EndosVis
Challenge dataset because there are more disturbing factors,
such as motion blurring, fast movement, and background
changes.

B. EXPERIMENTAL SETTINGS
We implemented the lightweight hourglass networks on the
Ubuntu 18.04 LTS operating system using the PyTorch 1.0
framework based on Python 3.6, CUDA 10.1, and
CUDNN 7.4. The Titan Xp GPU was used as an accelerator
for training. We fixed the input and image resolution to
512 × 512 and 128 × 128, respectively. Before training,
we used random scaling, flipping, cropping, and color
jittering as data augmentation. The learning rate was initial-
ized at 3.125e−5 for all layers, and decreased by a factor
of 10 at 90 and 120 interations. We trained the networks
for 140 epochs. To guarantee the fairness of comparison,
we downloaded code and pre-trained models to test run time
for each model on the same machine. As for the ATLAS
Dione dataset, training on a TITAN GPU, our method uses
half of the time required by CenterNet.

C. RESULTS
We elaborate the surgical tool detection outputs of ourmethod
in the video frames, in Figure 5 and Figure 6, where col-
umn (a) shows the outputs of the heatmaps of prediction, and
the green area overlaid on the original image in column (a)
consists of heatmaps of the center point of the surgical tool,
and column (b) shows the prediction bounding boxes of
different methods. The bounding boxes are the locations and
sizes of surgical tools.We also show bounding boxes detected
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FIGURE 4. Disturbing factors of ATLAS Dione dataset. (a) motion blurring; (b) high deformation; (c) annotations including tools with occlusion.

FIGURE 5. Outputs of proposed network (based on ATLAS Dione dataset). (a) The green area overlaid on the original image consists of heatmaps of the
center point of the surgical tool; (b) The prediction bounding boxes of different methods. As shown in the example frames: our method is in purple,
Faster RCNN in green, Yolov3 in blue, CenterNet in white, and the ground truth is in red.

by three other state-of-the-art methods as a comparison.
Our method is in purple (the probabilities are indicated in
the top-left corners of bounding boxes), Faster RCNN is
in green, Yolov3 is in blue, CenterNet is in white, and the
ground truth is in red. To eliminate the need for multiple
anchor boxes [37], our surgical tool detector uses a larger
output resolution (output stride of 4) compared to many
object detectors (output stride of 16) [38], [39]. To demon-
strate the effective generalization capability of our backbone,
we performed extensive experiments with five backbones:
ResNet-18, ResNet101 [39], DLA-34 [40], Hourglass-
104 [29], and ours(lightweight Hourglass). We also modified
both ResNets and DLA-34 employing deformable convolu-
tion layers and leveraged the Hourglass network [28], [41].

For the DLA-34 and ResNet backbones, the learning rate,
learning rate dropped, and training epochs were set the
same as our backbone in Section 3.2. For Hourglass-104,
we complied with ExtremeNet [42] and used batch size 8 and
learning rate 3.125e−5 for 50 epochs with 10× learning rate
dropped at the 40th epoch. After training for 140 epochs, all
backbones could converge.

Speed and accuracy tradeoffs for different backbones on
the ATLAS Dione and EndosVis Challenge datasets are dis-
played in Table 1, respectively, from which we can observe
the performance of these backbones. We present the mean
average precision (mAP) at intersection over union (IoU)
threshold 0.5 (this threshold is given by referring to Pascal
VOC [43] dataset: if the IoU of the predicted bounding
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FIGURE 6. Outputs of proposed network (based on EndoVis dataset). (a) The green area overlaid on the original image consists of heatmaps of the center
point of the surgical tool; (b) The prediction bounding boxes of different methods. As shown in the example frames: our method is in purple, Faster
RCNN in green, Yolov3 in blue, CenterNet in white, and the ground truth is in red.

TABLE 1. Speed and accuracy tradeoff for different backbones. The
mAP1 and the mAP2 represent the detection mAP on the ATLAS Dione
and EndoVis Challenge datasets, respectively.

box and the ground truth were greater than 0.5, then we
considered the surgical tools to be successfully detected in
a frame.). IoU is the ratio of the intersection and union of
the prediction bounding box and ground truth, and is also
referred to as the Jaccard index. We set different thresholds
(0.5, 0.75, 0.95), comprehensively compare the experimental
results of different backbones, and found that our backbone is
the best in the balance of speed and accuracy. We also notice
that the performance growth rate tends to be slower with
the increase of ResNet deep, and our lightweight hourglass
backbone works better than the Hourglass-104 backbone.
The superior performance on both the ATLAS Dione and
EndosVis Challenge datasets verifies the extensibility of our
approach.

To prove the value of our tools detection method, we com-
pared our method to three state-of-the-art detection meth-
ods on the ATLAS Dione and EndosVis Challenge datasets.
We selected two anchor-based methods, Faster RCNN [44]
and Yolov3 (Darknet-53) [45], and one anchor-free method,
CenterNet (Hourglass-104) [28]. As described in Table 2,
the mAP1 and the mAP2 represent the detection mAP on the
ATLAS Dione and EndoVis Challenge dataset, respectively.
Our method achieved a mAP of 98.5% for the ATLAS Dione
dataset, and a mAP of 100% for the surgical tool detection of

the EndoVis Challenge dataset.We compared the speed of our
method with those of the other three state-of-the-art detection
methods on two datasets, as shown in Table2. Our method
had real-time performance at a speed of 0.027 seconds (over
20 fps), which demonstrates its potential for online surgical
tool detection.

To more comprehensively reveal the advantages of our
method, we also evaluated our method by the distance eval-
uation method. If the distance between the center of the
predicted bounding box and the center of the ground-truth
bounding box is less than the threshold in the image coor-
dinates, then the surgical tool is considered to have been
correctly detected. The experimental results are shown in
Figures 7 and 8. CenterNet and our method achieved com-
petitive performance on the ATLAS Dione dataset at the cost
of lower 2× detection speed. Our method shows the best
performance on the Endovis Challenge dataset.

IV. DISCUSSION
Automatically detecting tool location from videos plays a
important role of the development of the RAS. Based on
Table 2, we can see that our method is more accurate than
the other three methods. In particular, experiments on the
ATLAS Dione dataset demonstrate the superior performance
of our method, which exceeds Fast-Rcnn and Yolov3 by a

TABLE 2. Comparison of speed and accuracy of different methods. The
mAP1 and the mAP2 represent the detection mAP on the ATLAS Dione
and EndoVis Challenge datasets, respectively.
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FIGURE 7. Detection accuracy of surgical tool based on distance
evaluation (ATLAS Dione dataset).

FIGURE 8. Detection accuracy of surgical tool based on distance
evaluation (EndosVis Challenge dataset).

significant margin. On the other hand, our approach shows
superior speed to Faster RCNN and CenterNet, is compet-
itive with Yolov3, and is two times faster than CenterNet.
The considerable improvement of CenterNet (based on
Hourglass-104) is largely attributed to the replacement of
the residual modules in the hourglass backbone with the
more effective fire modules and the utilization of depthwise
separable convolution.

Our method achieved good results, but there are potential
limitations. For example, if the center points of two surgical
tools just overlap, our method can only predict one of them.
The lack of large datasets (with tool annotations), the need
to improve the speed, and the high training costs are other
limitations of our study. Based on the above considerations,
the following ideas should be investigated. With regard to the
lack of datasets, our future work will pay more attention to
extending the detection of weakly supervised surgical tools.

To increase the speed, we will try to leverage temporal infor-
mation (using a long short-term memory network to extract
temporal information) for the surgical tool detection task.
We hope to employ time information to realize the detection
task of surgical tools with a faster speed and greater accuracy.

V. CONCLUSION
We introduced an anchor-free CNN architecture and a frame-
by-frame method using a lightweight stacked hourglass net-
work to predict the heatmap at the center point of a surgical
tool for real-time surgical tool detection in robot-assisted
surgery. Peaks in the heatmap correspond to tool centers.
Image features at each peak predict a tool’s bounding box
size. Our detector eliminates the need to design a set of anchor
boxes, and is end-to-end differentiable, simpler, more accu-
rate, and more efficient than corresponding anchor box-based
detectors.We believe our method is the first to incorporate the
anchor-free idea for surgical tool detection in RAS videos.
Our method has achieved good accuracy and speed to realize
real-time surgical tool detection in RAS videos.
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